

h

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

LABORATORIUM FÜR HOCHENERGIEPHYSIK LHEP UNIVERSITÄT BERN

ArgonCube

ArgonCube: A Modular LArTPC with Pixelated Charge Readout

NNN19 Medellín – Nov. 7th 2019

Patrick Koller, University of Bern (patrick.koller@lhep.unibe.ch)

Liquid Argon in DUNE

UNIVERSITÄT

Fermilab

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

MW v beam from Fermilab across 1'280 km to the 4 x 10 kt **LAr** DUNE FD at SURF, ~**3.4** ν events per hour.

 Primary Beam Enclosure Apex of Embankment ~ 60' MI-10 Point of Extraction Absorber Hall Target Hall Complex Near Detector **Primary Beam** Kirk Service Building Service Building (LBNF-20) Service Building Road (LBNF-30) (LBNF-40) (LBNF-5) Absorber Hall and Muon Alcove SOIL 636 ft [194 m] ROCK 725 ft [221 m] Muon Shielding -Target (MCZero) Beamline Near Detector Hall Target to Near Detector ~ 1880 ft (574 m) ~ 205 ft Deep Main Injector Extraction 997 ft [304 m] Enclosure

I Ar is desirable in the ND to constrain uncertainties and flux.

At the ND, 574 m from the target, \sim 0.16 v events per tonne of LAr and per beam spill (10 µs).

Near Detector Hall

Sanford

Research Facility

Underground

Not to Scale

ROCK

Argon**Tube** (2013)

ArgonTube was built to investigate **long drift distances** in LArTPC's. (JINST 8 (2013), P07002)

It succeeded in demonstrating aspects of modern LArTPC's:

- Cold amplifiers (BNL's LARASIC4*)
- UV laser E-field calibration

But it also showed the dielectric strength of LAr to be much lower than expected:

Breakdowns were found to occur at field strengths of ~40 kV/cm.

Breakdowns are bad:

- Can damage R/O electronics ٠
- (Partially) discharges TPC .
- Distorts E-field uniformity ۰
- Triggers Light R/O .
- High power consumption .

Results from Bern reproduced by Fermilab

△ Swan and Lewis, r=2.5mm, 0.002% O2 💠 Swan and Lewis, r=2.5mm, 0.00002% O2

□ Swan and Lewis, r=2.5mm, 1% O2

• Swan and Lewis, r=2.5mm, 20% O2

JINST 9 (2014) no.11, P11001

UNIVERSITÄT BERN AFC

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL

The Solution – ArgonCube

Instead of having a monolithic detector volume, divide the detector into a number of **self**contained TPC modules sharing a common cryostat. - M. Weber & I. Kreslo c. 2014

- Short drift distances ٠
- Low cathode voltage .
- Reduced stored energy •
- Reduced purity requirements •
- Contained scintillation light .
- Upgradeable/repairable w/o downtime .
- Unambiguous charge R/O ٠

\rightarrow Reduced pileup

Resistive Shell TPC

Highly **resistive Kapton foil** is laminated to G10 planes forming the field shell and cathode of the TPC.

- Minimise dead material
- Maximise active volume
- Continuous field shaping
- Reduce component count and potential points of failure
- Limit power dissipation in the case of a HV breakdown

U

UNIVERSITÄT BERN AEC

Resistive shell TPC. Instruments 3 (2019), no.2, 28.

Resistive Shell TPC

UNIVERSITÄT BERN AEC

ALBERT EINSTEIN CENTER

Prototype resistive shell TPC, Bern 2018

- 50 µm carbon-loaded Kapton
- E-field range: 0.0 to 1.5 kV/cm
- 0 (1) GΩ/sq
 - maintain field-strength
 - keep power consumption low
- Tested with crossing muons

Cosmic muon crossing resistive shell TPC at 1.0kV/cm, July 2018.

Resistive Shell TPC Results

SLAC has taken on the responsibility of developing the resistive shell TPC.

UNIVERSITÄT BERN ALBERT EINSTEIN CENTER

Traditional projective wire readouts do **not** have a **flat response** as a function of angle, and the need for full waveforms also lead to **very large data rates**. An alternative was needed.

Luckily, Bern had an EXO group, which was working on an pixel readout for gaseous Xe. This formed the basis of our first **pixel readout**.

Patrick Koller

NNN19 Medellín – Nov. 7th 2019

Pixelated Anode Plane

2016 Pixel demonstration TPC in Bern (arXiv:1801.08884)

- 1008 pixels
- 64 channels
- 60 cm drift
- LARASIC4*

Unfortunately, LARASIC4* is designed for wire planes, providing only cold amplification. Signals had to be **multiplexed** then digitised in warm.

NNN19 Medellín – Nov. 7th 2019

Low-power cold amplification and digitisation of every pixel is required for true 3D readout.

This was enabled by the **LArPix ASIC**, developed by Dan Dwyer at LBNL. Power consumption per pixel: 62 μ W (37 μ W digital).

O (0.5) MB/s/m² for 1 m drift in surface cosmic flux.

LArPix ASIC block diagram. JINST 13 (2018) no.10, P10007.

True Unambiguous Charge Readout

60 cm drift test TPC, prototype pixel anode, and unfiltered 3D information from a cosmic muon. JINST 13 (2018) no.10, P10007.

NNN19 Medellín – Nov. 7th 2019

Pixels Front-End Electronics (Prototype)

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Digilent **Arty-Z7 FPGA** evaluation module and a custom-designed mezzanine.

- 4 LArPix daisy-chains per unit
- 256 LArPix per daisy-chain
- 64 pixels per LArPix
- 66k pixels (1 m² @ 4 mm pitch)

Signals from severals units into single **Gigabit optical link**.

Digilent Arty-Z7 FPGA & mezzanine board.

10 kHz rate limit at each daisy-chain (80 kB/s).

Maximum per unit 320 kB/s << on-board Gigabit Ethernet controller limit.

Two complementary **dielectric light readout systems** have been developed:

- Bern's ArCLight and JINR's Light Collection Module (LCM).
- Both use **SiPMs** and **TPB** to convert from 128 nm to 425 nm.
- ArCLight uses sheets of WLS plastic an dichroic mirrors. LCM uses WLS fibres.
- ArCLight has better position resolution, while LCM has higher efficiency.

Prototype ArCLight tile.

JINR's Prototype LCM.

Cross section of an ArCLight prototype. Instruments 2 (2018), no.1, 3.

NNN19 Medellín – Nov. 7th 2019

ArgonCube Module Construction

b

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Light & Charge R/O, half detector

Resistive shell

Naked detector

Module bucket

Module

Patrick Koller

NNN19 Medellín – Nov. 7th 2019

The ArgonCube Module

- 1. Central cathode: splits module into 2 TPCs
- 2. Pixelated anode plane
- 3. Dielectric light readout within TPCs

4. G10 structure:

- good dielectric **shielding**
- comparable radiation length to LAr
- comparable hadronic interaction length to LAr
- **opaque** to scintillation light

ArgonCube 2x2 Demonstrator

- Vacuum insulated LN₂-cooled cryostat
- **Configuration**: 2x2 modules
- Module dimension: 67 cm x 67 cm x 140 cm (LWH)
- Total active LAr volume: ~2.4 t
- Applied E-field: 0.5 1.0 kV/cm

U

UNIVERSITÄT BERN AEC

ALBERT EINSTEIN CENTER

ArgonCube 2x2 in DUNE

In spring of 2020, the 2x2 will be moved into the MINOS-ND hall at Fermilab (**ProtoDUNE-ND**).

MINOS-ND hall at Fermilab.

ArgonCube 2x2 cryostat being operated with a single module at the University of Bern, August 2019.

Patrick Koller

Detector Physics Goals of 2x2 in ProtoDUNE-ND

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- Combining light and charge signals
- Combining fast and slow detector responses
- Reconstruction in a modular environment
- Electric field calibration using through-going muons

O (1E6) events/t/year

(NuMI on-axis ν)

Patrick Koller

An Application of ArgonCube in DUNE

In June 2019 the LBNC recommended **ArgonCube** as the core component of the near detector.

- 35 modules, 70 TPCs
- 3 m tall, 7 m wide, 5 m in beam
- Optimised for:
 - hadronic shower containment
 - side-going muons
 - momentum from spectrometer
- 67 t FV \rightarrow 11 v/s

ArgonCube

DUNE ND complex by R. Flight, University of Rochester.

The ArgonCube Collaboration

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Backup

- Sample the **unoscillated beam** using the same target material as the FD. ٠ \rightarrow Essential in order to constrain uncertainties on neutrino cross sections.
- Major **uncertainties** (event topology, secondary interactions) are primarily common near ٠ to far.

 \rightarrow Hight multiplicity at near site necessitates differences in design.

The energy and angular resolution and the target mass is sufficient to extract high-• statistics sample of **neutrino-electron elastic scattering events**, which have a known cross section.

 \rightarrow Can be used to constrain the flux to better than 2% (MINERvA arXiv:1906.00111).

- Constrain electron neutrino contamination. •
 - \rightarrow Use e/y separation to reduce NC background.

UNIVERSITÄT BERN

LAr is transparent to its own scintillation light, which is used to fix the 3rd spatial component.

25

What is a Liquid Argon Time Projection Chamber?

A detector that provides both **precise tracking and calorimetry**, with a high target density.

ALBERT FINSTEIN CENTER

Module of Opportunity

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Module of Opportunity DUNE EXPERIMENT

November 12-13, 2019

Location: Brookhaven National Laboratory https://www.bnl.gov/dmo2019/

The DUNE Collaboration invites the broader community to explore opportunities for novel detector technologies for the fourth DUNE far detector module. Advanced liquid-argon (or alternate technology) detector concepts that can satisfy and expand DUNE physics goals are encouraged. Workshop topics include:

• High voltage

• Data-acquisition

- Tracking
- Photon detection
- Electronics
- New ideas!

