
Building Key4HEP with Spack
Summer project with Hobbs Willet(t)
hobbs.arthur.willett@cern.ch

Supervisors: Graeme Stewart, Javier Cervantes Villanueva

mailto:hobbs.arthur.willett@cern.ch

Key4HEP

Provide one large, ready to use stack of software to future experiments, as a modernisation of the LCG

releases.

Easier to maintain, improves reproducibility and allows the whole community to share the progress made

to its construction.

Minimal setup by the end user and maximum amount of software ready to run ‘out of the box’.

Execution of Key4HEP

This system uses current

infrastructure.

Doesn’t require end users

to know about Spack.

3

My Project

● Reproduce a prototype LCG stack with Spack
● Investigate the stack at runtime
● Distribute the stack

4

The Stack Prototype
Constructed from above and below.

key4hep installs nothing but lists dependencies

Combined they replicate the behaviour of an LCG

release

Sun Wukong

$ spack install key4hep

5

Internal or External compilers

Internal

● Configuration file specifies a compiler.

● If compiler not available in the system spack

will install it (from scratch or from an

available binary repository).

-> Went with this one in the stack, as it is ‘closed’

system and does not have LCG as a dependency.

External

● An LCG compiler used from CVMFS.

● Requires manual configuration to find all

necessary libraries.

6

Runtime environments

Modulefiles:

Adaptable and scriptable system for dynamically

loading and unloading environment variables.

Spack can generate these automatically.

Common in HPC

Filesystem Views:

A directory structure with (sym/hard)links to the

package and its dependencies.

Manually prepend to your environment variables.

Common in HEP

7

Filesystem View Issues

1. Merge conflicts:

Spack attempts to merge all the expectations of

where packages look for dependents. For a view

of ROOT, it fails on libffi/share/info/dir

 2. Manual setup

All environment variables (e.g PATH, ROOTSYS,

PYTHONPATH) will have to be set manually (or by

a script)

Modulefile Issues
Leads to long environment variables ~ e.g. 61

directories for Key4HEP. These load all necessary

environment variables using the recipe

Requires users to use modulefile infrastructure e.g

Lmod, environment-modules

8

Use Cases

Experiment runtime:

A small number of software applications will be

run by each experiment

(simulation,reconstruction, analysis) using the

packages.

A short PATH needed for large scale efficiency.

Unclear how to consistently set up all variables

Package development:

Developers need very specific control over loaded

environment.

→ Modulefiles

These are complementary approaches, we are
evaluating which one is the best technical solution.

9

Distribution Test Suite

To examine Spacks behaviour when making, pushing to

and pulling from binary repositories.

To do this we have two Spack instances on one

machine that do not know of each other:

1. Transmitter

2. Receiver

And a binary repository that they share.

10

Spack-environments

Spack-environments are relatively new, and work like conda environments. The allow a subset of the

packages to be seen.

In addition a spack-env can be replicated exactly (or approximately) in Spack using a environment file in a

non-human readable format. For transfer or preservation.

The spack-env file also replicates the behaviour of a packages.yaml, it will search the buildcache by the

correctly concretised packages.

Entire stack can be replicated between machines using single small file.

11

Work to do

● Put the stack on CVMFS for experiments to use
● Construct complementary version of the stack between FS views

and Modulefiles

12

