RECENT UPDATES IN HADRONICS

V. Ivanchenko CERN & Tomsk State University, Russia 24 July 2019

Outline

- General infrastructure update
- Hadron elastic scattering
- De-excitation module
- Summary and plans
- Item for discussion
- The main motivation of these efforts:
 - provide robust hadronic code for Geant4 10.6 which is expected to be the next CMS production release
 - Check cross sections
 - Check elastic and inelastic models
 - Optimize Physics List

General infrastructure update for 10.6beta

- Removed final state rotation both from elastic and inelastic processes
- Removed G4HadronicException and try/couch pattern from cross section sub-library and GetMeanFreePath() method, use only G4Exception
- Removed default GHEISHA cross sections
- Share cross section data between threads for XS and BGG classes
- Created new utility G4NuclearRadii with several parameterizations of nuclear radius
- Updated Starkov parameterizations for pions and kaons
- Added G4PARTICLEXS2.0 dataset

General infrastructure update after 10.6beta

- For 10.5ref07
 - Fixed problems for proton and pion x-sections introduced to 10.6beta
 - Fixed thread safety in BGG classes
 - Improved initialization in FermiBreakupVI model
 - In the case of one model for a hadronic process, drop checks on applicability of this model

Plan for 10.5ref08

- Fix kaon x-sections at low energies
- Fix G4NeutronCaptureXS for isotope cross sections without data
- Make initialization in XS and BGG cross section classes only for elements used in geometry and add lazy initialization as a backup
- Provide G4PARTICLEXS2.1, which should fix non-regularity at 20 MeV
- M.Novak has updated G4PhysicsVector and for log vectors offer maximally efficient code

Hadron elastic models

There is summer student contribution

- Alikhan Yeltokov was working for 8 weeks
- The main goal is to study performance of elastic scattering for pions and protons with energy up to 1 GeV
- See next talk
- G4HadronElastic based class for hadron elastic models
 - By default implements GHEISHA scattering function
 - Now tuned for pion data
- G4ElasticHadrNucleusHE based on Glauber approach, original author N. Starkov
 - There were technical problem and ineffective memory usage and initialization
 - Now data are shared between threads and no lazy initialization for pions (initialized before event loop)
 - Added parameterization for large angle scattering (was sharp cut)
- Diffuse elastic model (V.Grichine) and CHIPS models are also validated

De-excitation module in 10.6beta

G4FermiBreakUpVI

– Fixed Coulomb Barrier correction – may affect medical tests

G4PhotonEvaporation

- Fixed #2124 limit value for IC probability
- Fixed #2123 if no data for a given level make transition to the closest one

G4Evaporation

 Simplified method of integration of differential inverse cross section and sampling of final state

De-excitation module in 10.5ref08

- General clean-up of classes and addition of C++11 patterns is being performed
 - It was triggered by needs of the new GEM model and concerns from medical community
 - Any modification is validated using test30
- Introduced a possibility (optional), forcing final state after each evaporation to correspond to one of level for given isotope
 - There is a problem, which not allows making this option the default
 - This issue needs further study, may be activated together with Radioactive decay

Proton 22 MeV scattering of Fe

10.5

E (MeV)

New results have peaks, not supported by data

7/24/2019 V. Ivanchenko

E (MeV)

Proton 22 MeV scattering of Ni58

Summary and plans for 10.6

- Migration to git allows make several infrastructure modification
 - We need to be careful and fix problems created in these improvements
- Infrastructure modifications for 10.6 are nearly completed, only few things remains:
 - G4PARTICLEXS2.1
 - Kaon cross sections
 - Optimal initialization of data in BGG and XS
- Elastic model evaluation:
 - We may expect improvements for pions, extra validation required
- De-excitation module
 - We plan to add alternative GEM model
 - Tune parameters and options
 - Add gamma de-excitation to FermiBreakUpVI

Item for discussion

In the new user forum we have a thread:

- Illegal ion/mass number in binary cascade model "G4IonPhysicsPHP"
- There is joshua7317 receipt (likely correct):
 - What is your environmental variables for compiling and running?
 - I would suggests using DO_NOT_SET_PHP_AS_HP=1 when compiling, and DO_NOT_SET_PHP_AS_HP=1, G4PHP_DO_NOT_ADJUST_FINAL_STATE=1, G4PHP_DO_NOT_CHECK_DIFF_COEFF_REPR=1 when running.
- How a developer and/or expert can know and correctly define these environment?
 - There are many requests concerning AllHP Physics List crashes in the user forum