Introduction

G4ParticleHP rely in ENDF-6 format databases

Information in the ENDF-6 format databases (XS+FS) is presented in a format not prepared to preserve energy and momentum event-by-event, but on average.

For many applications (simulations of detectors) it is almost necessary to preserve energy and momentum event-by-event,

INISTERIO E CIENCIA, INNOVACIÓN UNIVERSIDADES

Emilio Mendoza Cembranos

Present status

By default G4ParticleHP tries to conserve energy event by event

Does it work? \rightarrow sometimes yes. In general, no. In addition, in some cases the energy is no longer conserved on average.

 \rightarrow One of the difficulties is that it tries to conserve the energy and at the same time it tries to reproduce the ENDF-6 energy distributions

This can be disabled (highly recommended, in my opinion) with:

- export G4NEUTRONHP_DO_NOT_ADJUST_FINAL_STATE=1
- export G4PHP_DO_NOT_ADJUST_FINAL_STATE=1

MINISTERIO DE CIENCIA, INNOVACIO Y UNIVERSIDADES

What I propose

1- Define only one environmental variable to decide what to do concerning energy conservation. This variable can take different values \rightarrow G4ParticleHP_EnergyConservationFlag.

2- For the moment, at least two options:

G4ParticleHP_EnergyConservationFlag = 1 \rightarrow ENDF-6 like mode, i.e. no energy conservation event by event.

G4ParticleHP_EnergyConservationFlag = 2 \rightarrow Energy and momentum is "always" conserved event-by-event. No ENDF-6 info is used for the FS, but a model.

Do you agree? Other suggestions?

Question: I have some idea about how to implement the "energy and momentum" conservation model, but if you have suggestions, they are very welcome.

