
LHC CRAB CAVITIES

RAMA CALAGA 2ND ICFA DEFLECTING CAVITY WORKSHOP, SEP 1-3, 2010

- LHC Crab Crossing & Roadmap
- Technology & Machine Protection
- Toward First Validation with Protons in SPS

ON BEHALF OF THE LHC-CC COLLABORATION

LHC-CC10

Announcement of the 4th LHC-CC Workshop series Venue: CERN Date: Dec 15-17, 2010

Charge:

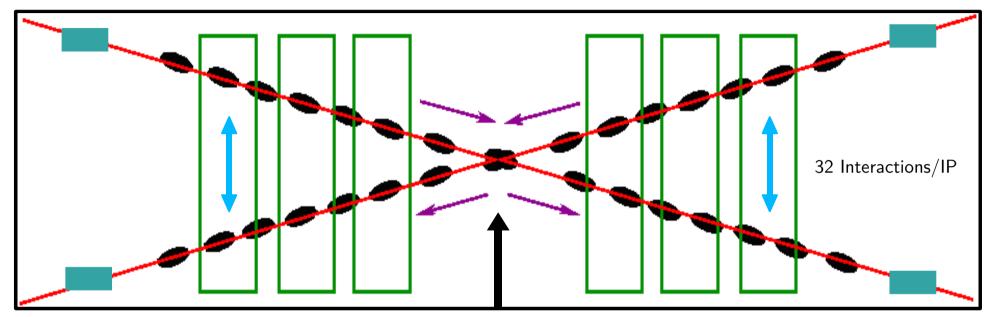
1. Can compact cavities for the LHC be realized and made robust with the complex damping schemes ?

- 2. Are crab cavities compatible with LHC machine protection, or can they be made to be so ?
- 3. Should a KEKB crab cavity be installed in the SPS for test purposes ?

http://indico.cern.ch/conferenceDisplay.py?confld=100672 (Available Soon)

"Upgrade Scenarios"

	Nominal	Ultimate +Crabs	Phase II +Crabs	Phase II +LPA
$N_{b} [\times 10^{11}]$	1.1	1.7- <mark>2.3</mark>	2.3	4.2
β* [cm]	55	30-55	14-25	25
$\theta_{_{c}}$ [µrad]	285	315-348	509	381
Pile Up	19	44-111	150	280

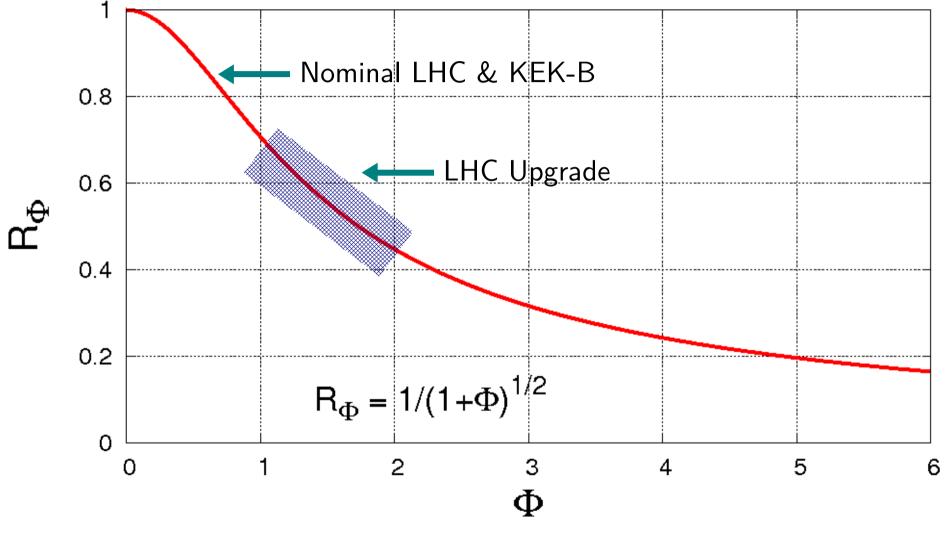

- All scenarios aim at x3-10 Luminosity increase
- Luminosity leveling vital \rightarrow constant luminosity
- Bunch intensity beneficial, NOT easily digestible in the injectors (safety!)

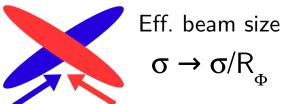
$$L = \frac{1}{4\pi} \frac{f_r n_b}{\beta^* (\gamma \epsilon)} N_b^2 R_{\phi}$$

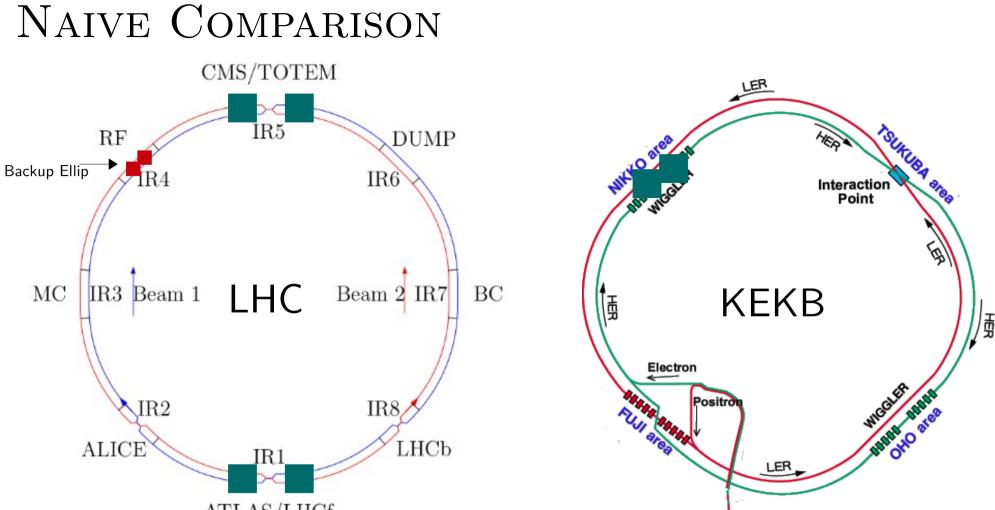
X-Angle & Crab X-ing

Long-Range Beam-Beam

(~10 σ Nominal Sep)




Head-On Beam-Beam (Limited by Max Tune Shift)


With crab crossing

- Increase peak luminosity with increasing x-angle due LR Beam-Beam
- Increase intensities and smaller emittances beyond head-on beam-beam limit
- Level luminosity (reduce Pile-up, radiation damage)

REDUCTION FACTOR

ATLAS/LHCf

	Energy [GeV]	Circumference [km]	Current [A]	ξ _{BB}	$\Phi_{_{Piwinski}}$	Crab Freq [MHz]	Crab Voltage [MV]
KEK-B	3.5-8.0	3	2.0	0.09	0.75	509	1.5
LHC	7000	27	0.5-0.85	< 0.01	0.6-1.4	400	5-10

LUMINOSITY GAIN, CRABS

Freq:	400	MHz.	Volt	<	10	MV.	ß	~5	km
		,					P	· · ·	

		7 TeV			
$\{E, {}^{max} \boldsymbol{\beta}_{crab}\}$	3.5 - 5 TeV Increase Peak Luminosity		Increase Int. Luminosity		
$\beta^* = 55 \text{ cm}$		10%	_		
$\beta^* = 30 \text{ cm}$		40%	19%		
$\beta^* = 25 \text{ cm}$	ε↓, Ν _b ↑	63%	22%		
$\beta^* = 14$ cm		190%	31%		

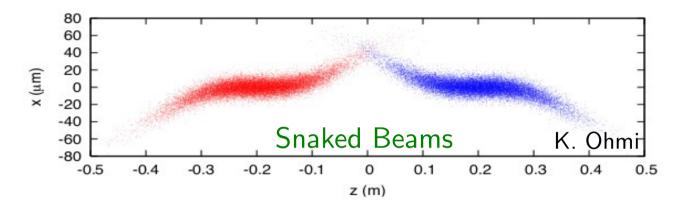
Integrated luminosities:

 $\mathsf{N}_{_{b}}=1.7\times10^{^{11}}$, $\beta^{*}=0.14$ cm, Run time =10 hrs, TAT =5 hrs

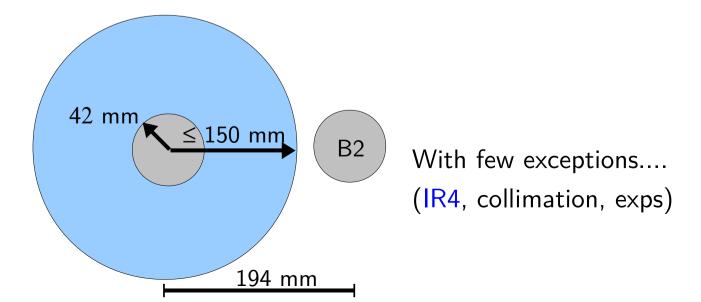
(Burn off, IBS, rest gas scattering)

Approx: 265 fb⁻¹/yr (217 fb⁻¹/yr w/o CCs) \rightarrow 2 yr reduction in run time (for 3000 fb⁻¹)

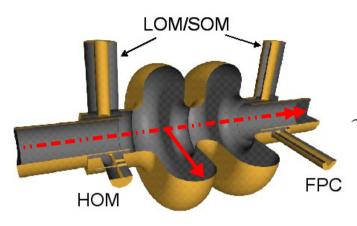
Int Luminosities: G. Sterbini


2 MAIN CHALLENGES, CRABS

SC Technology upgrade (factor 5 gradient or larger) New design strategy than conventional Validate new technology with beam

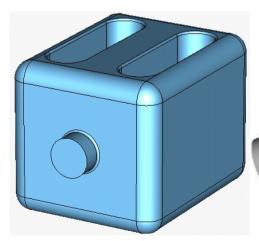

LHC machine protection (350 MJ stored energy) 5% of nominal bunch @7TeV is beyond damage threshold Fast failure detection to safely abort beam

LHC CONSTRAINTS


Bunch length: 7.55 cm (highest frequency 800 MHz)

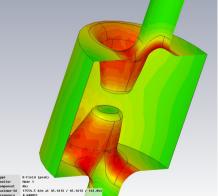
B1-to-B2 separation: 194 mm (PB 800 MHz ~ 250mm radius)

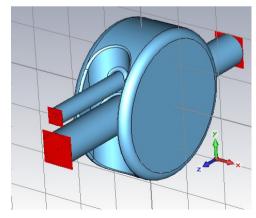
CONVENTIONAL TO COMPACT



 ${\sim}250~\text{mm}$ outer radius

(Not compatible in most of the LHC ring)


Compact cavities aiming at small footprint (150 mm) & 400 MHz, 5-10 MV/cavity



HWSR, SLAC-LARP

Rotated Pillbox, KEK

Performance Chart

Kick Voltage: 5 MV, 400 MHz

		HWDR (J. Delayen)	HWSR (Z. Li)	4-Rod (G. Burt)	Rotated Pillbox (N. Kota)
etrica	Cavity Radius [mm]	200	140	150	150
Geometrical	Cavity Height [mm]	382	194	169	668
	Beam Pipe [mm]	50	45	45	75
	Peak E-Field	29	65	103	85
RF	Peak B-Field	94	135	113	328
	R _T /Q	319	275	667(?)	_

[†]Exact voltage depends on cavity placement & optics

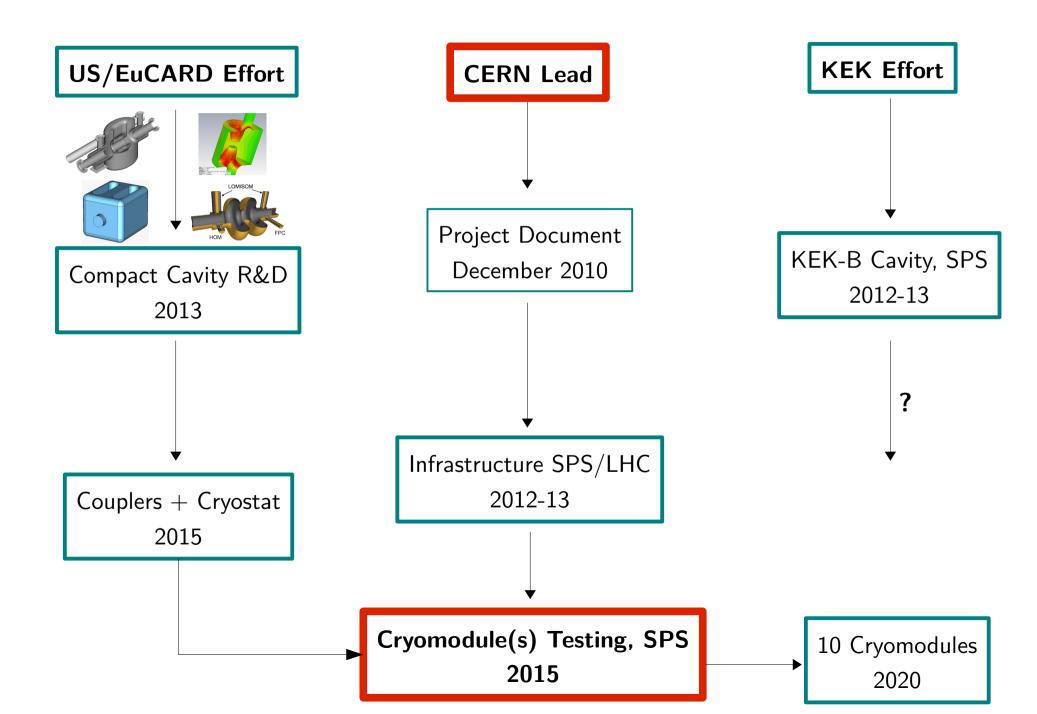
[†]Cavity parameters are evolving

NEW ROADMAP, HL-LHC

One LHC upgrade for the interaction foreseen for 2021

Nb3Sn for large aperture high gradient inner triplets

Crab cavities to realize the full potential of the IR region upgrade


Detailed project report for crabs to outline R&D and construction (under preparation)

Focus on R&D of compact cavities, technology choice ~2015

Mitigate all machine protection issues

Potential use of SPS-dogleg as a testbed

ROADMAP FOR CRABS

BASELINE COMPACT-CC TIMELINE

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
LHC operation			Splice Consol	lid.		C	ollim. , prep (cc			IT upgrade,	CC
EuCARD												
DS HL-LHC				PDR	Т	DR						
Project Document												
Compact Crab Cavity												
Validation												
Cavity RF Design												
Design of Couplers												
Thermal/Mechnical A	Analysis											
Order Nb & Long-lead	d Items											
Fabrication Drawings	s & Tooling											
Fabrication (Cu & Nb	Models)											
Surface Treatment												
VTF Testing												
Milestone	Com	pact Cavity	Fechnology v	validation								
Technical Design												
Conceptual Cryostat												
He-Tank & Tuner Des	-											
Cryostat Structural A												
Fabrication Drawings	& Tooling											
Material Orders												
Fabrication & Assem	-											
Test Facility Preparat												
Pre-Series Module Te												
Milestone	Decision	on implem	entation: Loc	al scheme w	ith Compact	cc						
Construction												
Preparation for Cons												
Final Fabrication Dra	wings											
Material Orders												
Fabrication of Cavity												
Fabrication of Cryost												
Surface Treatment &	-											
Assembly & Quality A	1											
Delivery & Installatio	on I											
Commissioning												
RF/Cryo Commission	ing											
Beam commissioning	8											
Operation												
Infrastructure LHC												
Planning												
Prepare IR1 & IR5												
Infrastructure SPS												
Planning												
Preparation (Coldex)												
Beam test Compact												

Post RF-Design

- Cavity fabrication, stiffening (?), Helium-vessel
- Surface treatment (BCP, EP ?) & assembly
- Optical inspection & thermal mapping
- Cavity testing (2K/4K), instrumentation & field validation
- Cryomodule (generic or specific)
 - Vertical couplers & access points
 - Tuning system (compression or bellows)
- RF power and controls
- Horizontal RF testing & CERN test stand (SM18) \rightarrow SPS Tests

SIMULATIONS

Machine protection

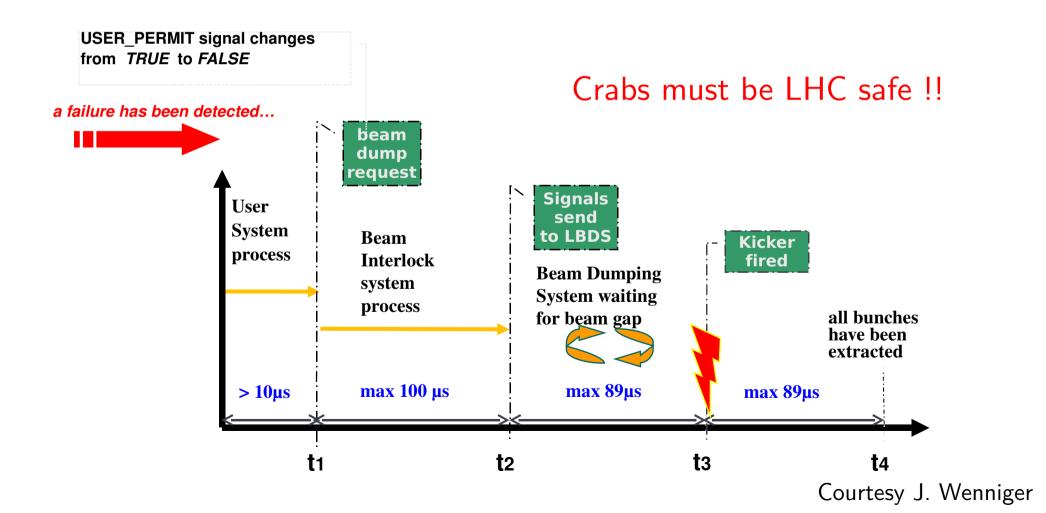
Problem identified (LHC-CC09), 3 turn window Loss map simulations underway for failure scenarios Mitigation of fast failures required (detection & feedback)

Collimation efficiency & hierarchy

Additional 0.5σ aperture, suppression of synchro-betatron resonances Hierarchy preserved (primary, secondary, tertiary)

Crab induced noise, Beam-Beam (measured, 30 Hz - 32 kHz) BB simulations: Weak-strong $\leq 0.1\sigma$, Strong-strong BB $\leq 0.02\sigma$.(τ) Resume dedicated simulations between sigma-pi mode

Additional machine impedance


 $\begin{array}{l} \mbox{Longitudinal: $\sim 60 \ k\Omega \ nominal, $\sim 20 \ k\Omega \ upgrade} \\ \mbox{Transverse: $\sim 2.5 \ M\Omega/m \ nominal, $\sim 0.8 \ M\Omega/m \ upgrade \ (Norm - $\beta/\langle\beta\rangle)} \\ \mbox{Detailed studies for individual cavity design modes required} \end{array}$

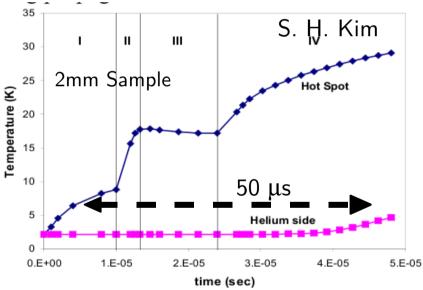
MACHINE PROTECTION, 350 MJ !!

100's of interlock systems \rightarrow complex

Best/worst case scenario:

Detection - $40\mu s$ (½ turn), response - 3 turns

Some Failure Scenarios

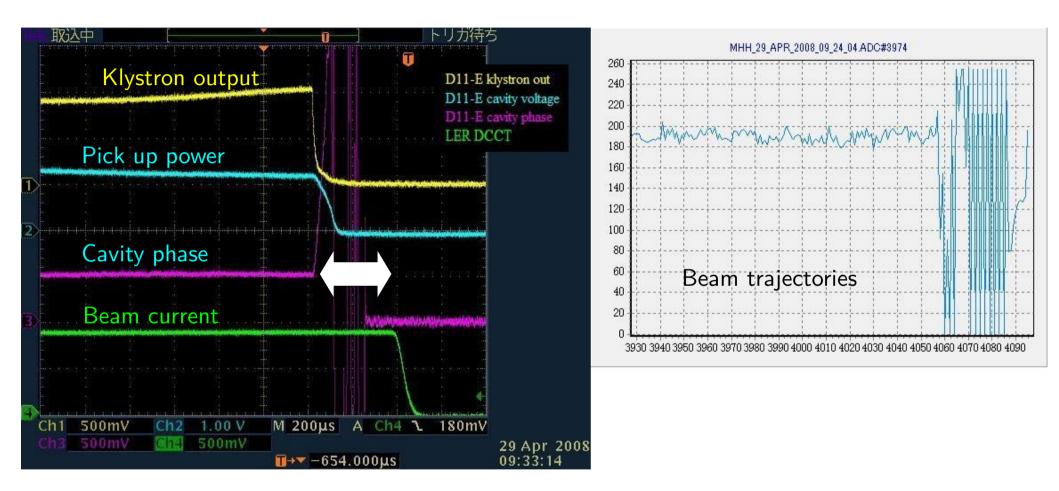

Time scales:

Power supply trips (50-300 Hz >7 ms) \rightarrow greater than 300 turns

RF arcing (few $\mu s) \rightarrow$ Response of cavity voltage/phase slower

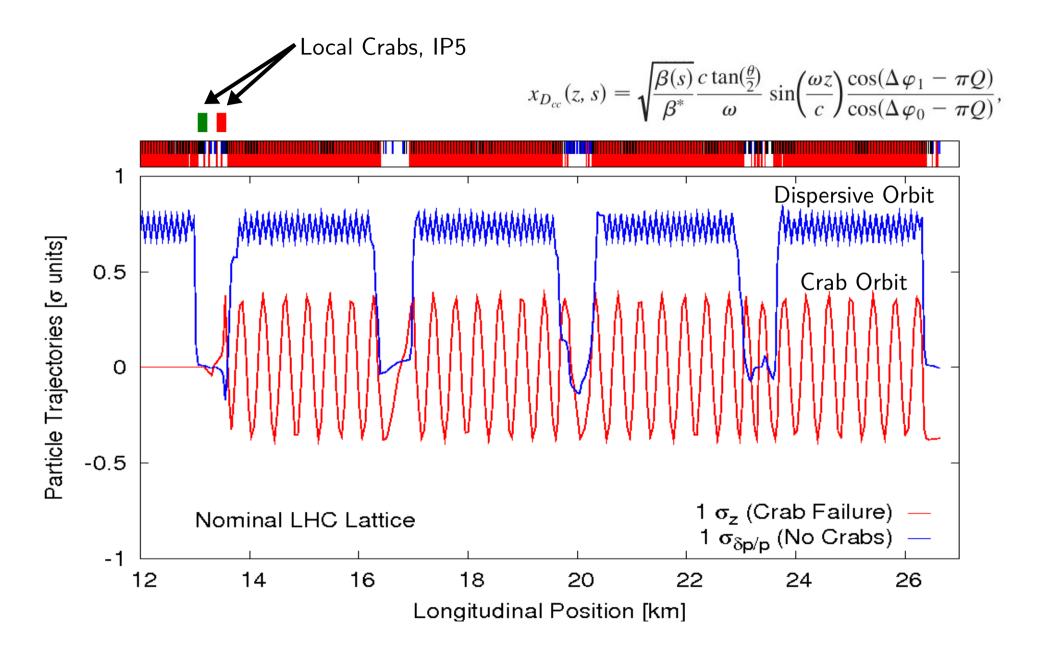
Mechanical changes (100's of ms) \rightarrow high Q SC cavity

Quench, abrupt amplitude or phase changes


No passive way to guarantee machine protection

Qext may not help for beam driven failure time constant

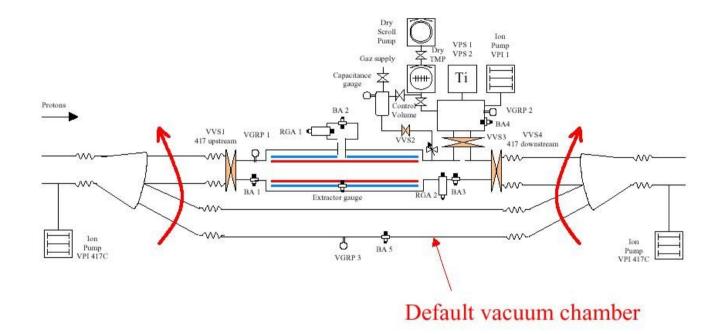
Voltage slope determined by unchangeable constants (R/Q, Δx , I...)


Active orbit and RF feedback a requirement (cavity to cavity across IR $\sim 1 \mu s$)

RF TRIP: ANOTHER CASE (KEKB)

Intentional/non-intentional phase changes \rightarrow corresponding orbit changes and beam losses Approx time scale \rightarrow 400 ms (4 turns)

LEFT-RIGHT VOLTAGE FAILURE



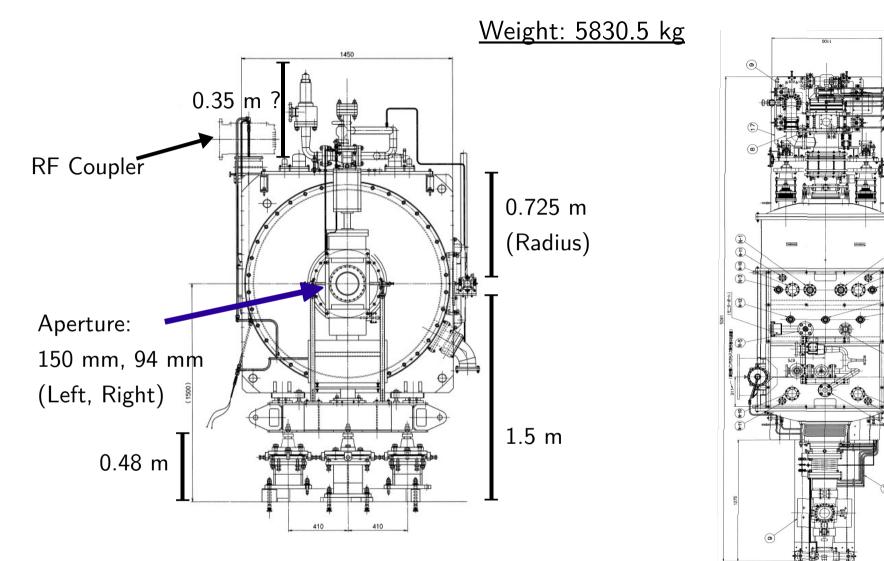
Tracking loss maps needed to determine exact impact

SPS Tests

Crabs potentially in SPS is at COLDEX.41737 (4020 m, LSS4)

Crab Bypass similar to COLDEX to move it out of the way during high intensity operation

SPS beam tests, 2010 to check lifetime @55GeV coast with $2\mu m$ norm emittance


Machine protection

Setup with 2 collimators: No effect at 1st & full crab effect at 2nd second collimator Primary goal is beam measurement (No implementation of interlocks, BPMs-fast & RF-slow) Failure scenarios (for example: abrupt voltage/phase changes, RF trips etc..)

Details: http://emetral.web.cern.ch/emetral/CCinS/CCinS.htm

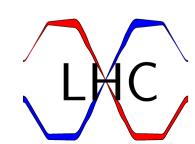
Courtesy E. Metral

KEKB CRYOSTAT

5 m

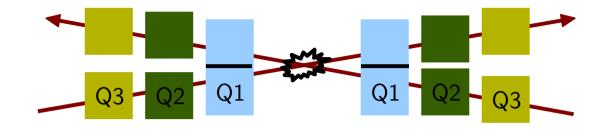
Crab voltage: {HER, LER} - 1.6 MV, 1.5 MV (design: 1.44 MV) Operational voltage: {HER, LER} - 1.4 MV, 0.9 MV Trip rate: Average 1/day (HER), 0 for LER (from up to 25) Potentially available in end of 2012 (major modifications required)

Courtesy KEK-B


PROS/CONS OF DIFF CAVITIES, SPS TESTS

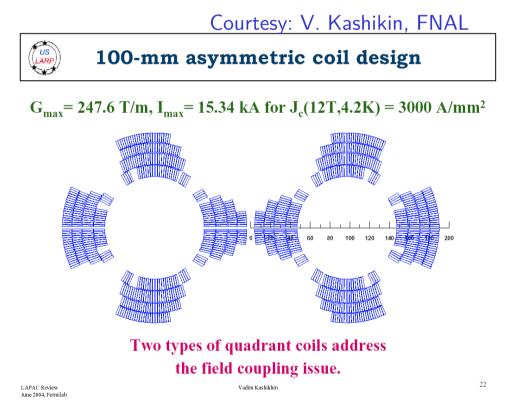
	800 MHz Ellip Cavity	400 MHz Compact	509 MHz KEKB Cavity	
Frequency	N/A	N/A	2 MHz static tuning	
Voltage	2.5 MV	5.0 MV	1.5 MV	
Temperature	2K	2-4 K	4K	
Qext	1x1	10 ⁶	2x10 ⁵	
Helium Volume	~50-1	100 L	400L	
Heat Load	-	-	S :10 W, D: 50 W	
Cavity Tuner	-	-	1 kHz/s (200 kHz max)	
Module Weight	< 2 Tons	< 2 Tons	5 Tons	
Module Length	~2 m	~1 m	5 m	
Module Height	< 1 m	< 1 m	1.5 m	

Table is only preliminary


CONCLUSIONS

- Key motivation & challenges
 - Luminosity gain & leveling with reducing β^{*} at the beam-beam limit
 - Technical challenge to develop and validate compact cavities
 - Ensure machine protection under abrupt cavity failure modes
- Crab program under HL-LHC
 - Establish a complete resource loaded compact R&D and construction
 - Pursue backup options in parallel
- SPS tests
 - Validate differences between protons & electrons
 - KEK-B cavity (2012), LHC compact/elliptical cavity (2015-16)

Many thanks to all the LHC-CC collaborators


A1: Possible Future

Proposed in 2006 but was abandoned due to large x-angle (5 mrad ?) + Flat Beams ?

No parasitic collisions

Independent & easy IR optics

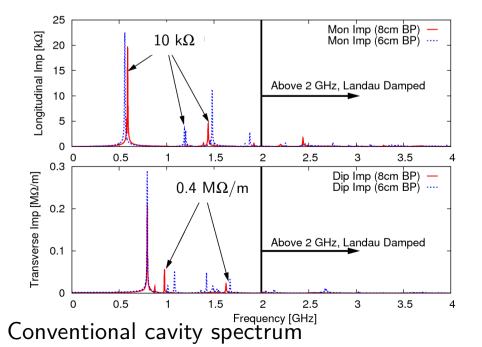
R. Gupta, BNL & Crab Team

A2: LHC APERTURE SPECS

	Magnet	Aper-H [mm]	Beam-to-Beam	Max Outer	L [m]	
ecs			Separation [mm]	Radius [mm]		
Sp	D ₃	69	420	395	9.45	bal
IR4	Crabs	84	220 (300)	195	10	Glo
	$D_{_{4}} + Q5$	73	194	169	15.5	

S	Magnet	Aper-H	Beam-to-Beam	Max Outer	L [m]	
oec		[mm]	Separation [mm]	Radius [mm]		
5 SI	D ₁	134	_	_	10	cal
ک 1/5	Crabs	84	194	150	10	Г С
	D ₂	69	-	-	10	

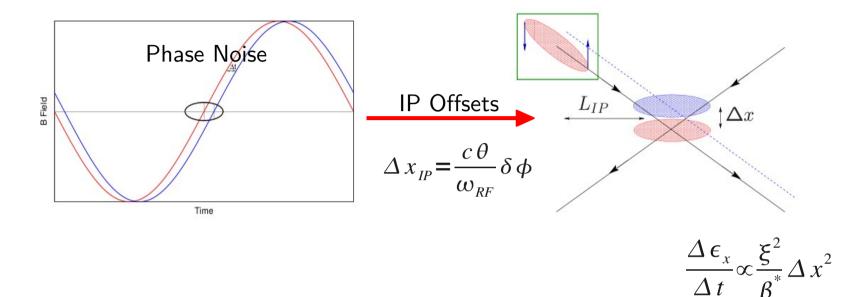
 $^\dagger 2^{\text{nd}}$ beam pipe inside He vessel


A3: IMPEDANCE REQUIREMENTS

Longitudinal criteria:

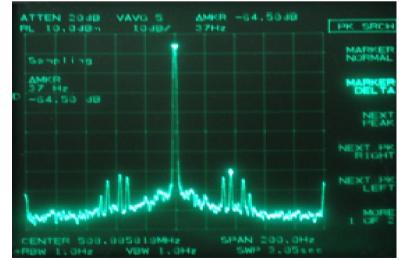
Nominal intensity, 450 GeV: ~60 k Ω (determined by 200 MHz cavities) Upgrade intensity: ~10 k Ω – two cavities

Transverse criteria:

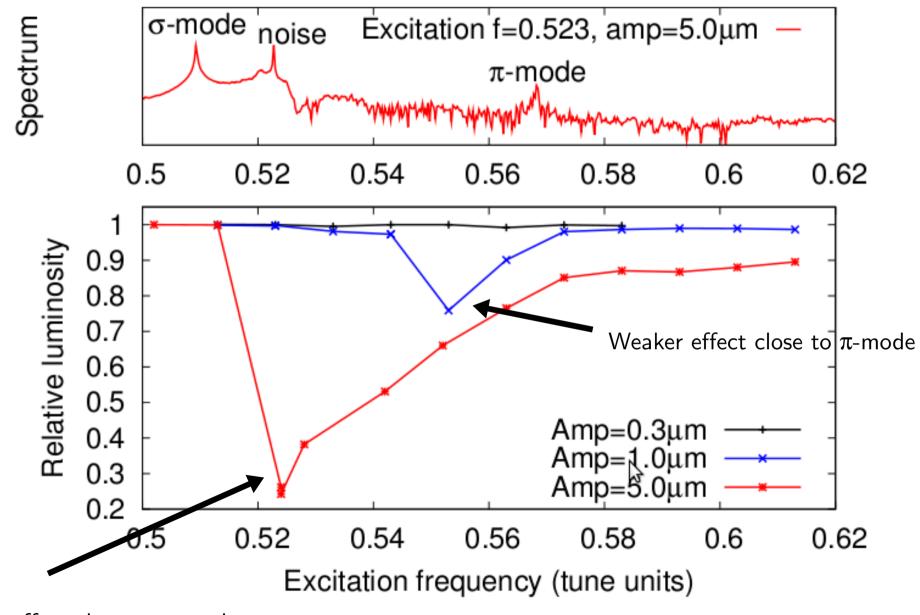

Nominal intensity, 450 GeV: ~2.5 M Ω /m – single cavity Upgrade intensity: ~0.4 M Ω /m – two cavities (additional factor of $\beta/\langle\beta\rangle$)

	Freq [GHz]	R/Q [Ω]	Q _{ext}
Mananala	0.54	35.17	~10-100
Monopole	0.69	194.52	~10-100
	0.80	117.26	10 ⁶
Dipole	0.81	0.46	
Проје	0.89	93.4	~10 ² -10 ³
	0.90	6.79	

** Main RF cavities, $Q_{_{ext}} \sim 10^2$ - 10^3


A4: CRAB PHASE NOISE

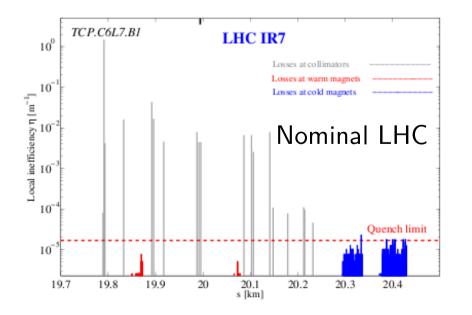
Modulated noise (measured, 30 Hz - 32 kHz)

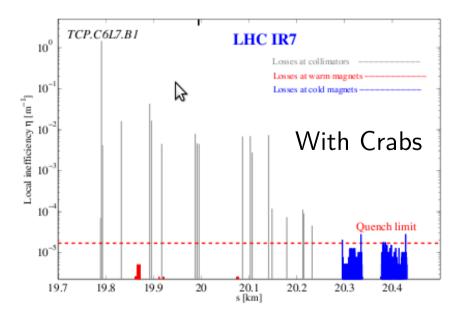

Prelim BB simulations $\leq 0.1\sigma (10\%/hr)$ Tolerance relaxed in the case of lumi-leveling

White noise (extremely pessimistic) Ohmi: Strong-strong $BB \le 0.02\sigma.(\tau)$ KEK-B measured spectrum (K. Akai et al.)

correlation time

A5: Noise Exps, KEKB




Strong effect close to $\sigma\text{-mode}$

A6: COLLIMATION (GLOBAL SCHEME)

- Loss maps with crabs similar to nominal LHC
 - Additional 0.5σ aperture
 - Hierarchy preserved (primary, secondary, tertiary)
- Maximum DA decrease $\sim 1\sigma$ (13 σ nominal)
 - Suppression of synchro-betatron resonances

Y. Sun et al. PRST-AB 12, 101002 (2009)

A7: SPS TEST OBJECTIVES, PROTONS

Safe beam operation (low intensity) & reliability

Tests, measurements (orbits, tunes emittances, optics, noise)

Voltage ramping & adiabaticity

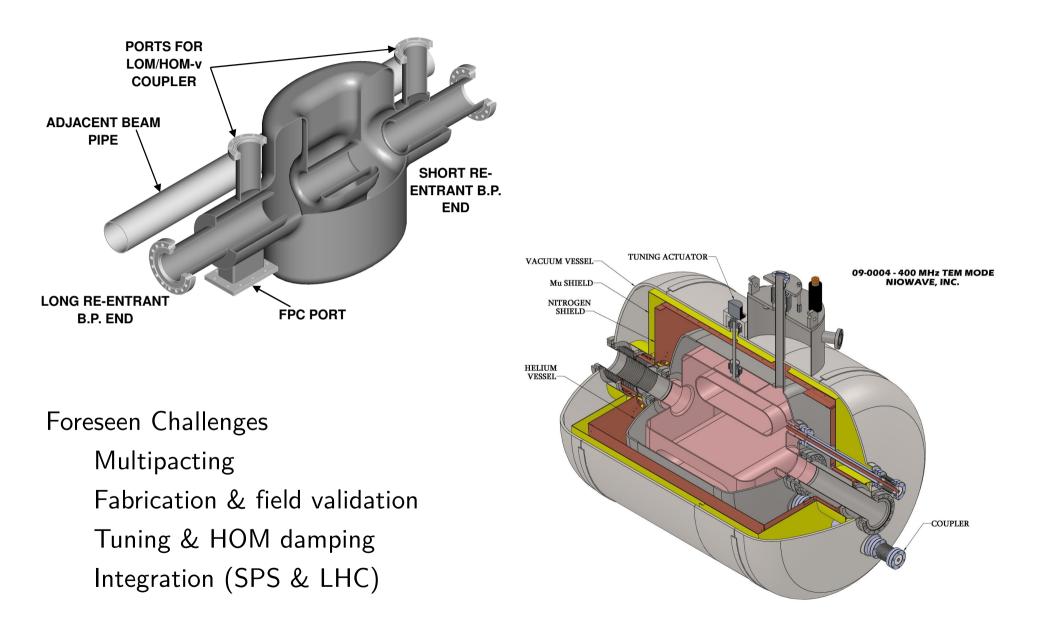
Collimation, scrapers to reduction of physical aperture with & w/o crabs

DA measurements (possible ?)

Intensity dependent measurements (emittance blow-up, impedance) Coherent tune shift and impedance Instabilities Beam-beam effects (BBLR – tune scan, current scan) Other non-linearities (octupoles)

Operational scenarios

Accumulation of beam with crab-on & crab off


Beam loading with & w/o RF feedback & orbit control

RF trips and effects on the beam

Energy dependent effects

Long term effects with crab-on, coasting 120 GeV

NEW TECHNOLOGY CHALLENGES

[†]Courtesy AES, Niowave