TEM - Type Cavities

Subashini De Silva Jean Delayen

Center for Accelerator Science
Old Dominion University
and
Thomas Jefferson National Accelerator Facility

ICFA Beam Dynamics Mini-Workshop on Deflecting/Crabbing Cavity Applications in Accelerators
1 - 3 September, 2010

TEM-Type Deflecting/Crabbing Cavities

 Normal Conducting

4 - Rod
Separator Cavity

Parallel Bar Cavity Applications

- Deflecting Cavity
- Jefferson Lab 12 GeV Upgrade (499 MHz) (DOE-NP, ODU-Niowave P1 STTR)
- Project-X (400 MHz) (ODU-Niowave P1 STTR)
- Crab Cavity
- LHC Luminosity Upgrade (400 MHz) (ODU-Niowave P2 STTR)
- Jefferson Lab ELIC (500 MHz) (ODU-Niowave P1 STTR)
- Design Properties
- Compact designs (Supports low frequencies)
- Fundamental deflecting / crabbing mode has the lowest frequency \rightarrow No LOMs
- Low surface fields and high shunt impedance

Parallel Bar Cavity Concept

- Compact design supports low frequencies
- For deflection and crabbing of particle bunches
- Cavity design - Two Fundamental TEM Modes
- 0 mode :- Accelerating mode
- π mode :- Deflecting or crabbing mode

Parallel Bar Cavity Concept

E field on mid plane (Along the beam line)

B field on top plane

Deflection is due to the interaction with the Electric Field

Separation of Modes by Curved Edges

Transverse Deflection

- Curved cavity edges introduce a small vertical magnetic field in the gaps

- Maximum change in transverse deflecting voltage $\sim 3 \% \rightarrow$ Resultant contribution to the net deflection is small

Parallel Bar Cross Sections

Optimizing condition - Obtain a higher deflection with lower surface fields

Peak Surface Fields

Design Structure	$\mathbf{E}_{\mathbf{P}} / \mathbf{E}_{\mathbf{T}}{ }^{*}$	$\mathbf{B}_{\mathbf{P}} / \mathbf{E}_{\mathbf{T}}{ }^{*}$ $(\mathbf{m T} / \mathbf{M V} / \mathbf{m})$
(a)	3.30	11.54
(b)	2.80	10.31
(c)	2.61	8.86
(d)	2.31	8.16
At $\mathrm{E}_{\mathrm{T}}{ }^{*}=1 \mathrm{MV} / \mathrm{m}$		

- Increasing effective deflecting length along the beam line increases net transverse deflection seen by the particle
- Racetrack shaped structure (d) has better performance with higher deflection for lower surface fields

Dimensional Constraints

499 MHz Deflecting Cavity for JLab Upgrade
400 MHz Crabbing Cavity for LHC

Global scheme :
Separation between beam pipes - 420 mm

No dimensional constraints in Project-X

Optimization of Bar Width - 499 MHz

Bar Width $=10 \mathrm{~mm}$

Bar Width $=50$ mm

Bar Width $=100$ mm

Jefferson Lab

Optimization of Bar and Cavity Length 499 MHz

- Increase bar and cavity length simultaneously with a constant rounded edge
- Increase in bar length and cavity length increases the net deflection
- Optimized bar length $\sim \lambda / 2$

$$
\begin{aligned}
& f=499 \mathrm{MHz} \\
& \lambda / 2=300.4 \mathrm{~mm}
\end{aligned}
$$

Optimized Cavity Geometry and Field Profiles - 499 MHz

Compact Design Dimensions	Value (mm)
Cavity reference length	394.4
Cavity height	304.8
Cavity width	290.0
Bar width	67.0
Bar length	284.0
Beam aperture	40.0

(6)

IJSA

Optimized Cavity Geometry and Field Profiles - 400 MHz

Compact Design Dimensions	Value (mm)
Cavity reference length	444.7
Cavity height	383.2
Cavity width	300.0
Bar width	55.0
Bar length	330.0
Beam aperture	84.0

Transverse E Field

B Field

Surface Fields

499 MHz
Surface E Field

Surface B Field

Jefferson Lab

400 MHz
Surface E Field

14

Cavity Properties

Parameter	$\begin{aligned} & 499 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 400 \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} 400 \\ \text { MHz } \end{gathered}$	KEK Cavity ${ }^{\text {F }}$	Unit
Frequency of π mode	499.2	400.7	400.0	501.7	MHz
$\lambda / 2$ of π mode	300.4	374.7	374.7	299.8	mm
Frequency of 0 mode	517.8	413.05	411.0	~ 700	MHz
Cavity reference length	394.4	456.7	444.7	299.8	mm
Cavity width	290.0	400.0	300.0	866.0	mm
Cavity height	304.8	384.4	383.2	483.0	mm
Bars length	284.0	332.0	330.0	-	mm
Bars width	67.0	85.0	55.0	-	mm
Aperture diameter	40.0	100.0	84.0	130.0	mm
Deflecting voltage ($V_{T}{ }^{*}$)	0.3	0.375	0.375	0.3	MV
Peak electric field ($E_{P}{ }^{*}$)	1.85	2.18	2.2	4.32	MV/m
Peak magnetic field ($B_{P}{ }^{*}$)	6.69	7.5	7.9	12.45	mT
$B_{P}{ }^{*} / E_{P}^{*}$	3.62	3.44	3.6	2.88	$\begin{gathered} \mathrm{mT} / \\ (\mathrm{MV} / \mathrm{m}) \\ \hline \end{gathered}$
Geometrical factor ($G=Q R_{S}$)	67.96	83.9	74.09	220	Ω
$[R / Q]_{T}$	933.98	317.92	413.34	46.7	Ω
$R_{T} R_{S}$	6.310^{4}	2.6710^{4}	2.0610^{4}	1.0310^{4}	Ω^{2}
\# For Current LHC Specifications					

${ }^{\mp}$ K. Hosoyama et al, "Crab cavity for KEKB", Proc. of the 7th Workshop on RF

Cavity Requirements

- Required net deflection
- JLab - 499 MHz : 5.6 MV
- LHC - 400 MHz : 8.0 MV
- \quad At $\mathrm{E}_{\mathrm{T}}=1 \mathrm{MV} / \mathrm{m}$
- JLab - 499 MHz geometry $\mathrm{V}_{\mathrm{T}}=0.3 \mathrm{~V}$

- LHC - 400 MHz geometry $\mathrm{V}_{\mathrm{T}}=0.375 \mathrm{~V}$
- Achievable transverse deflection per cavity,

Geometry	$\mathrm{E}_{\mathrm{P}} / \mathrm{E}_{\mathrm{T}}$	$\mathrm{B}_{\mathrm{P}} / \mathrm{E}_{\mathrm{T}}$ $\mathrm{mT} /$ $(\mathrm{MV} / \mathrm{m})$	$\mathrm{V}_{\mathrm{T}}(\mathrm{MV})$	
		$@ \mathrm{E}_{\mathrm{P}}=$ $35 \mathrm{MV} / \mathrm{m}$	$@ \mathrm{~B}_{\mathrm{P}}=$ 80 mT	
499 MHz	1.85	6.69	5.7	3.6
400 MHz	2.2	7.9	6.0	3.8

Transverse Deflecting Voltage along Beam Line Cross Section

499 MHz
$\mathrm{R}=20 \mathrm{~mm}$

\cos

Higher Order Modes

- Longitudinal [R/Q]
$\left[\frac{R}{Q}\right]=\frac{\left|V_{z}\right|^{2}}{\omega U}=\frac{\left|\int_{-\infty}^{+\infty} \vec{E}_{z} \quad z, x=0 e^{\frac{j \omega z}{c}} d z\right|^{2}}{\omega U}$
- Transverse [R/Q]
- Direct Integral Method

$$
\left.\left[\frac{R}{Q}\right]_{T}=\frac{\left|V_{T}\right|^{2}}{\omega U}=\frac{\mid \int_{-\infty}^{+\infty}\left[\vec{E}_{x}\right.}{} \quad z, x=0+j \vec{v} \times \vec{B}_{y} \quad z, x=0 \quad{ }_{T}\right]\left.e^{-\frac{j \omega z}{c}} d z\right|^{2}
$$

- Using Panofsky Wenzel Theorem ($x_{0}=5 \mathrm{~mm}$)
$\left[\frac{R}{Q}\right]_{T}=\frac{\left|V_{Z}\left(x=x_{0}\right)\right|^{2}}{\omega U} \frac{1}{k x_{0}{ }^{2}}=\frac{\left|\int_{-\infty}^{+\infty} E_{z} z, x=x_{0} e^{\frac{j \omega z}{c}} d z\right|^{2}}{k x_{0}{ }^{2} \omega U}, \quad k=\frac{\omega}{c}$
- Values are < 1% in agreement

Field on Beam Axis	Type of Mode
$\mathrm{E}_{\mathrm{x}}, \mathrm{H}_{\mathrm{y}}$	Deflecting
E_{z}	Accelerating
$\mathrm{E}_{\mathrm{y}}, \mathrm{H}_{\mathrm{x}}$	Deflecting
H_{z}	Does not couple to the beam

Modes of Interest - 400 MHz

Fundamental Power Coupler - 499 MHz

- 50Ω coaxial variable input coupler on the side wall
- Impedance
- Longitudinal modes: $Z_{Z}=\left[\frac{R}{Q}\right] Q_{L, n}$
- Transverse modes: $z_{T}=\frac{\omega}{c}\left[\frac{R}{Q}\right]_{T} \varrho_{L, n}$
- $\mathrm{E}_{\mathrm{y}}, \mathrm{H}_{\mathrm{x}}$ (vertical deflecting) modes do not couple to the input coupler

Jefferson Lab

Asymmetry Study - 499 MHz

- Mixing in transverse and longitudinal modes caused by the asymmetries in,
- Width of the bars
- Length of the bars
- Separation between the bars
- Asymmetry in separation between the bars results a higher longitudinal field
- Change in frequency separation of the fundamental modes $<1 \mathrm{MHz}$

Preliminary Multipacting Analysis

- Multipacting was analyzed for the fundamental deflecting mode
- Gaps in the mid plane of the cavity were analyzed for possible Two Point Multipacting
- Gap Voltage: $V_{n}=\frac{m \omega^{2} D^{2}}{(2 n-1) \pi e} \quad$ Impact Energy: $K_{n}=\frac{2 m \omega^{2} D^{2}}{(2 n-1)^{2} \pi^{2}}$

	Gap Width (cm)	$\mathbf{1}^{\text {st }}$ Order Resonance (kV)	Impact Energy (keV)
D_{1}	4.0	28.5	18.1
D_{2}	5.8	59.8	38.1
D_{3}	5.52	54.2	34.5

- Impact energies for the gaps >> 1 keV

- A detailed MP analysis will be done using Track3P in SLAC - ACE3P suite

Transverse Displacement

Displacement in the transverse direction is analyzed for the 499 MHz design

- Displacement for Halls A and C are symmetric
- Hall B has a small offset of $50 \mu \mathrm{~m}$

Cylindrical Parallel-Bar Cavity

Cavity Properties - Cylindrical Design

Parameter	Rectangular Shaped	Cylindrical Shaped	Unit
Frequency of π mode	499.2	499.3	MHz
$\lambda / 2$ of π mode	300.4	300.4	mm
Frequency of 0 mode	517.8	815.1	MHz
Nearest mode to π mode	517.8	720.1	MHz
Cavity reference length	394.4	394.0	mm
Cavity width / diameter	290.0	267.0	mm

- Surface electric and magnetic fields are well balanced for $\mathrm{E}_{\mathrm{P}}<35 \mathrm{MV} / \mathrm{m}$ and $\mathrm{B}_{\mathrm{P}}<80 \mathrm{mT}$

$$
\left(B_{P} / E_{P}=2.3 \mathrm{mT} /(\mathrm{MV} / \mathrm{m})\right)
$$

- Surface magnetic fields have improved by 20\%
- Frequency separation of the first two modes ~ 220 MHz compared to 18 MHz in the rectangular design
- Reduced cavity width and no large flat surfaces (Reduce stresses)
- Higher shunt impedance

At $E_{T}{ }^{*}=1 \mathrm{MV} / \mathrm{m}$
(20) $x^{55 A}$

25

Higher Order Modes - 499 MHz

Fewer low frequency modes compared to the rectangular design with larger separation of modes

Jefferson Lab

(2) FJSA

26

Elliptical Parallel-Bar Cavity

400 MHz

(2)

Els
27

Cavity Properties - Elliptical Design

Parameter	Rectangular Shaped	Elliptical Shaped	Unit
Frequency of π mode	400.0	400.1	MHz
$\lambda / 2$ of π mode	374.7	374.7	mm
Frequency of 0 mode	411.0	677.1	MHz
Nearest mode to π mode	411.0	609.2	MHz
Cavity reference length	444.7	445.0	mm
Cavity width / diameter	300.0	295.0	mm
Cavity height	383.2	406.0	mm
Bars length	330.0	330.0	mm
Bars width	55.0	60.0	mm
Aperture diameter	84.0	84.0	mm
Deflecting voltage $\left(V_{T}{ }^{*}\right)$	0.375	0.375	MV
Peak electric field $\left(E_{P}{ }^{*}\right)$	2.2	2.7	MV / m
Peak magnetic field $\left(B_{P}{ }^{*}\right)$	7.9	6.03	mT
$B_{P}{ }^{*} / E_{P}{ }^{*}$	3.6	2.23	$\mathrm{mT} /$
$(\mathrm{MV} / \mathrm{m})$			
Geometrical factor $\left(G=Q R_{S}\right)$	74.1	108.9	Ω
$R R / Q]_{T}$	413.34	262.63	Ω
$R_{T} R_{S}$	3.110^{4}	2.710^{4}	$\Omega{ }^{2}$
$\boldsymbol{A t} E_{T}{ }^{*}=1 \mathrm{MV} / \mathrm{m}$			

- Surface magnetic fields have improved by 24\%
- Frequency separation of the first two modes ~ 209 MHz compared to 11 MHz in the rectangular design
- Reduced cavity width to meet the LHC crab cavity specifications
-JSA
28

Higher Order Modes - 400 MHz

Summary

- Both 499 MHz and 400 MHz designs have been improved to meet the
- Required deflection
- Dimensional constraints
- Low surface fields

		$B_{\mathrm{P}} / \mathrm{E}_{\mathrm{T}}$	$\mathrm{V}_{\mathrm{T}}(\mathrm{MV})$	
Geometry	$\mathrm{E}_{\mathrm{P}} / \mathrm{E}_{\mathrm{T}}$		$@ \mathrm{E}_{\mathrm{P}}=$ $35 \mathrm{MV} / \mathrm{m}$	$@ \mathrm{~B}_{\mathrm{P}}=$ 80 mT
499 MHz (Cylindrical)	2.4	5.3	4.4	4.5
400 MHz (Elliptical)	2.7	6.0	4.9	5.0

- Properties of HOMs analyzed to determine damping thresholds
- Detail study of HOM damping with coupler ports under way
- Preliminary multipacting analysis was completed
- Cylindrical and elliptical geometries with curved parallel bars look promising
- Further optimization for both designs on going

