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Overview
• Back-of-the-envelope feasibility 

study for MHz data analysis 

• Numba as a way to write down and 
test array kernels fast 

• HiggsMuMu-VBFchannel proto 
analysis: implementation and 
performance 

• Good and bad points of GPUs for 
analysis
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Preprint with technical details:

https://arxiv.org/abs/1906.06242

https://arxiv.org/abs/1906.06242


Data flow parameters
• For Hmm Run 2: 800M skimmed events, ~70 branches: ~640GB of 

uncompressed skimmed binary data (4.8B ev, 4.8TB NanoAOD) 

• Supposing a modest SSD data read speed of 300MB/s, ~2000 
seconds, ~400 kHz (new NVMEs up to 10x faster) 

• Quick tests show ~100kHz ... 2 MHz of pure event processing rate 
easily achievable on data that is in memory on a multicore/GPU 
machine 

• Both SSD read and data processing are of a similar order of 
magnitude and can be tightly coupled in a threaded loop 

• A single multicore workstation machine could process local 
data at a sustained rate of 500 kHz, which can be further 
accelerated with a GPU for computationally heavy tasks
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Why Numba kernels?
• Originally, was planning to s/numpy/cupy/g in awkward 

• However, for minimal dependencies and maximal generality, 
awkward relies on complex numpy functions (reduce, 
reduceat), some of these are not implemented in cupy 

• Rather than commit to developing a very generic implementation 
upstream in cupy immediately, identify strengths and weaknesses 
of GPUs for a complete prototype Higgs analysis 

• Hence, end up implementing necessary kernels directly by hand 
in Numba, not so many after all 

• In addition, still remember my days of being constrained by 
MATLAB and needing everything to be expressable in just a few 
array ops... want to have freedom for explicit data manipulation
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Implicit vs explicit loops
• awkward-array and coffea offer tools to write all operations directly 

on arrays: pair_idx = charges.argchoose(2) 

• In some cases, it may be more natural (this is subjective) and faster 
to express an operation as a loop over the array contents via 
numba: os_mask = select_opposite_sign(mu_charges) 

• Such "custom kernels" can still be called on arrays in a functional 
style, without reverting to a big unfactorizable event loop 
(current typical analysis code) 

• End goal is to arrive at a simple, concise and fast primitives for 
most analysis ops, but not restrict physicists' freedom: https://
github.com/scikit-hep/awkward-array/issues/107 

 5

https://github.com/scikit-hep/awkward-array/issues/107
https://github.com/scikit-hep/awkward-array/issues/107


Necessary kernels
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- sum_in_offsets(content, offsets, mask_rows, mask_content, out) 
- max_in_offsets(content, offsets, mask_rows, mask_content, out) 
- min_in_offsets(content, offsets, mask_rows, mask_content, out) 
- get_in_offsets(content, offsets, indices, mask_rows, mask_content, out) 
- set_in_offsets(content, offsets, indices, target, mask_rows, mask_content) 

- get_bin_contents(values, edges, contents, out) 
- searchsorted_kernel(vals, arr, inds_out) 
- fill_histogram(data, weights, bins, out_w, out_w2) 

- select_opposite_sign(charges_content, charges_offsets, content_mask_in, 
content_mask_out) 

- mask_deltar_first(etas1, phis1, mask1, offsets1, etas2, phis2, mask2, 
offsets2, dr2, mask_out)

~ 250 lines of code total for GPU backend 
~210 lines for multithreaded CPU backend



Kernel benchmarks
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150k preloaded events, scaling with respect to the single-core 
baseline. 

For example, the kernel for computing ∆R masking runs at a speed of 
34 MHz on a single-core of the CPU and is sped up by about a factor 
x5 (x15) by multithreading using the CPU (GPU).
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@numba.njit(parallel=True, fastmath=True) 
def sum_in_offsets_kernel( 
  content, offsets, 
  mask_rows, mask_content, out): 

  for iev in numba.prange(offsets.shape[0]-1): 
    if not mask_rows[iev]: 
      continue 
    start = offsets[iev] 
    end = offsets[iev + 1] 
    for ielem in range(start, end): 
      if mask_content[ielem]: 
        out[iev] += content[ielem] 

@cuda.jit 
def sum_in_offsets_cudakernel( 
  content, offsets, 
  mask_rows, mask_content, out): 

  xi = cuda.grid(1) 
  xstride = cuda.gridsize(1) 

  for iev in range(xi, offsets.shape[0]-1, xstride): 
    if not mask_rows[iev]: 
      continue 
       
    start = offsets[iev] 
    end = offsets[iev + 1] 
    for ielem in range(start, end): 
      if mask_content[ielem]: 
        out[iev] += content[ielem] 

masked loop over rows/events

masked loop over cols/objects

multithreaded CPU

GPU/CUDA
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@cuda.jit 
def select_opposite_sign_muons_cudakernel( 
  muon_charges_content, muon_charges_offsets, 
  content_mask_in, content_mask_out): 

  xi = cuda.grid(1) 
  xstride = cuda.gridsize(1) 
   
  for iev in range(xi, muon_charges_offsets.shape[0]-1, xstride): 
    start = np.uint64(muon_charges_offsets[iev]) 
    end = np.uint64(muon_charges_offsets[iev + 1]) 
     
    ch1 = np.int32(0) 
    idx1 = np.uint64(0) 
    ch2 = np.int32(0) 
    idx2 = np.uint64(0) 
     
    for imuon in range(start, end): 
      if not content_mask_in[imuon]: 
        continue 
         
      if idx1 == 0 and idx2 == 0: 
        ch1 = muon_charges_content[imuon] 
        idx1 = imuon 
        continue 
      else: 
        ch2 = muon_charges_content[imuon] 
        if (ch2 != ch1): 
          idx2 = imuon 
          content_mask_out[idx1] = 1 
          content_mask_out[idx2] = 1 
          break 

loop over 
muons in event

loop over events 
with threads

mask muons of 
opposite 
charge
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def get_selected_muons( 
    muons, trigobj, mask_events, 
    mu_pt_cut_leading, mu_pt_cut_subleading, 
    mu_aeta_cut, mu_iso_cut, muon_id_type, 
    muon_trig_match_dr): 
     
    muons_passing_os = ha.select_muons_opposite_sign( 
        muons, muons_passing_id & passes_subleading_pt) 

    events_passes_os = ha.sum_in_offsets( 
        muons, muons_passing_os, mask_events, 
        muons.masks["all"], NUMPY_LIB.int32) == 2 

.... 

ret_mu = get_selected_muons( 
    muons, trigobj, mask_events, 
    parameters["muon_pt_leading"], 
    parameters["muon_pt"], parameters["muon_eta"], 
    parameters["muon_iso"], parameters["muon_id"], 
    parameters["muon_trigger_match_dr"] 
    )

Create mask of chosen muons

Analysis will be functions operating on arrays, 
producing the desired results: histograms, ntuples.



Hmm analysis
This proto-analysis implements the following:
☑ muon selection: pT leading and subleading, eta, ID, isolation, opposite charge, 

matching to trigger objects 
☑ jet selection: pt, eta, ID & PU ID, remove jets dR-matched to leptons 
☑ jet-lepton gen-level cleaning, gen-level  
☑ event selection: MET filters, trigger, primary vertex quality cuts, two opposite sign 

muons 
☑ high-level variables: dimuon invariant mass 
☑ PU and gen weight computation 
☑ on the fly luminosity calculation, golden JSON lumi filtering (via coffea/FNAL tools) 
☑ weighted histograms of muon, jet and event variables 
☑ muon momentum Rochester corrections: CMS code + OpenMP 
☑ lepton scale factors: simple histogram lookup: CMS code + OpenMP 
☑ JES/JER/MET correction reappliaction: via coffea + cupy 
☑ evaluation of signal-to-bkg discriminators (tensorflow, GBRForest) 

Not yet implemented:
☐ on-the-fly kinematic fits 
☐ ME discriminator: don't see major issues with standalone madgraph amplitudes
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ROOT ntuples
4.8 TB, 4.8 billion ev.

column cache
640 GB, 800 million ev.

decompress and skim
physics analysis code

physics results
~10-100MB

batched data 

CPU 
kernels

GPU 
kernels

Stage 1 
runtime: ~3-4 hours

Stage 2 
runtime: ~30 minutes

Cache regenerated only 
when new columns need 

to be accessed.
• histograms: fits 

• ntuples: DNN training

Analysis flow

 12

All code run on a single machine from a single 
multithreaded python job using ThreadPoolExecutor. 

This script can also be wrapped in a batch job and run 
either using one or multiple threads and optionally a GPU.



Performance
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• Extrapolated performance based on 
processing 1B unskimmed events: 
~0.5h on CPU or GPU 

• This analysis is computationally 
simple: emulate complexity by 
rerunning the same analysis with 
variated parameters in memory 

• CPU time ~3.5h, GPU time ~1.2h 

• Caveat: these benchmarks are 
already a few months old - analysis 
has matured, but conclusions stay 
roughly the same

Can iterate on complete analysis with systematics with full 
Run2 dataset in a matter of a few hours on one server!



Performance discussion
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• To get MHz speeds, I skip the ROOT decompression as it is not 
strictly needed at every iteration 

• My main goal is to implement a complete analysis and get feature-
complete fast, rather than have a perfect framework 

• Seek to find limitations of the GPU-analysis approach 

• This said, in my experience, the slow part is often producing 
hundreds-thousands of variated histograms, and various IO-
dominated ntuplization steps (YMMV)



When does it work?
• If we don't want to be constrained by decompression speed, need to 

uncompress branches: shouldn't use too many branches 

• Need to bring data as close as possible to the processor/GPU to take 
full advantage of their speed: ideally local disk, local RAM, less ideally 
access T2 storage / EOS, xrootd probably does not make sense 

• When data processing is relatively simple, no reliance on e.g. complicated 
RooStats/CMSSW modules 

• When you don't need data from earlier stages that would need remote 
access 

• Not everything has to be on the GPU! For example, LumiMask application, 
lepton SF, Rochester corrections are run on the CPU, transferring only the 
needed arrays
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Potential limitations
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• Several kernels are very similar, some duplicated code (but only a few 
hundred lines of kernel code in total right now - most is in defining the 
analysis flow) 

• Need to carefully propagate and keep track of event/object masks, 
possibly a dataframe-type abstraction would be more user-friendly 

• For a real analysis with many variations, allocation of temporary arrays 
during computation can become costly (e.g. 50 JEC variations) 

• Memory management in python can get confusing, multi-hour jobs 
suffer currently suffer hard-to-trace leaks and excessive context 
switching 

• Possibly RDataFrame will mature fast enough and allow direct use of 
ROOT fitting functions and other familiar tools on a GPU backend: I will 
be a happy user in this case



Reproducibility
• You should be able to try this on any CentOS7 machine and 

uproot-accessible to NanoAOD LFN-s, best if stored on local SSD 

• ETH colleagues have already given a try and seems to be working 
for them for the ttH(bb) analysis 

• Can get started on CPU-only, GPU acceleration can be 
turned on as an option 

• Main goal is to be able to run most of the analysis without 
relying on external servers 

• I also provide a singularity image, but lxplus does not support suid 
singularity, so have not gotten it to work on lxplus yet
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Generalizability
• What I have experienced in the past: top mass, single-top, ttH, 

Hmumu, btag optimization and calibration 

• All these SM analyses use mostly the same objects (jets, leptons, 
MET), don't see any reason why cannot implement all 

• More exotic things that probably don't make sense in this approach: 

• specialized jet reclustering or vertexing, not feasible from reduced 
event formats, likely need "Big Data" approaches  

• External HEP-only thread-unsafe libraries might be tricky to use: 
kinematic fits, TMVA BDT-s (actually it's fine using GBRForest), 
MEM/madgraph
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What next?
• This is mostly an experiment to find the limitations: most expensive seem to be 

interpolations for JEC variations and histogram filling 

• Simplicity > performance: we don't aim to max out the hardware at the cost of 
usability, this could be investigated separately 

• e.g. could further improve threading and data loading and streaming, GPU 
kernel efficiency 

• Decouple analysis description and execution: compile for any backend, e.g. 
https://github.com/arizzi/nail 

• Need common, portable, simple data structures for vectorized python codes: 
JaggedStruct, Lorentz stuff, Histograms  

• Long term, aim to contribute accelerated kernels upstream to array analysis 
libraries (awkward, coffea, RDataFrame, cupy...) 

• Ultra long term: jagged functionality in cuDF, be a code user rather than developer 
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https://github.com/arizzi/nail


Final words
• I'm solving a scoped problem I faced during my last years in HEP, for which 

no out of the box tool worked so far, I'm hoping this will change in the 
future 

• However, you may have had a different experience and you should use the 
tools that are suitable for you 

• Largely, I'm expanding on ideas put in place by others using existing tools to 
solve a specific task - do Higgs studies fast 🙂 

• Not aiming to compete on framework development, it's better to 
develop a small set of common tools 

• Preliminary prototype library for kernels here, but will be refactored as ideas 
and needs develop: https://github.com/jpata/hepaccelerate 

• CMS-specific vectorized code, including Rochester corrections, lepton SF, 
threaded GBRForest  + Hmm analysis: https://github.com/jpata/
hepaccelerate-cms
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https://github.com/jpata/hepaccelerate
https://github.com/jpata/hepaccelerate-cms
https://github.com/jpata/hepaccelerate-cms


Bonus slides
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Throughput
• Cache branches from ROOT files on fast local disk 

• Investigated blosc/lzma of arrays, but speed/size tradeoff was not 
favorable 

• Multi-user situation? Likely want to share uncompressed caches or 
possibly do ROOT decompression on GPU 

• Besides that, main limitation seems to be SSD → memory data 
transfer 

• Various DMA approaches possible with engineering effort 

• GPU processing bandwidth seems not to be a major issue
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NVidia profiling
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GPU computation

transfer to GPU



Disclaimer
• I'm not offering to solve CERN/HL-LHC computing problems in perpetuity - 

but rather showing a practical method for numerical data analysis that 
can take advantage of CPU and GPU architectures, directly from python 

• Perhaps free up shared clusters from low-efficiency analysis jobs? 

• I'm not in any way inventing anything new - it's a question of using 
ideas that already exist in the world (including at CERN) and adapting them 
to our use case 

• I'm not suggesting CERN to completely adopt a new paradigm or to throw 
out all Tier2 resources and replace them with something else: I'm 
suggesting methods how to do analyses on local data, on local 
machines with a fast turnaround-time, with the resources that you 
have, without needing extensive scaleout infrastructure 

• Does not rely on NanoAOD or other particular *AOD format - but it 
can make use of it
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• How does this relate to the awkward-array project? We use the jagged structure provided 
by the awkward arrays, but implement common HEP functions such as deltaR matching 
as loops or 'kernels' running directly over the array contents, taking into account the 
event structure. We make these loops fast with Numba, but allow you to debug them by 
going back to standard python when disabling the compilation.

• Why don't you use the array operations (JaggedArray.sum, argcross etc) 
implemented in awkward-array? They are great! However, in order to easily use the same 
code on either the CPU or GPU, we chose to implement the most common operations 
explicitly, rather than relying on numpy/cupy to do it internally. This also seems to be 
faster, at the moment.

• What if I don't have access to a GPU? You should still be able to see event processing 
speeds in the hundreds of kHz to a few MHz for common analysis tasks.

• How do I plot my histograms that are saved in the JSON? Load the JSON contents and 
use the edges (left bin edges, plus last rightmost edge), contents (weighted bin 
contents) and contents_w2 (bin contents with squared weights, useful for error 
calculation) to access the data directly.

• I'm a GPU programming expert, and I worry your CUDA kernels are not optimized. Can 
you comment? Good question! At the moment, they are indeed not very optimized, as we 
do a lot of control flow (if statements) in them. However, the GPU analysis is still about 
2x faster than a pure CPU analysis, as the CPU is more free to work on loading the data, 
and this gap is expected to increase as the analysis becomes more complicated (more 
systematics, more templates). At the moment, we see pure GPU processing speeds of 
about 8-10 MHz for in-memory data, and data loading from cache at about 4-6 MHz. 
Have a look at the nvidia profiler results nvprof1, nvprof2 to see what's going on under 
the hood. Please give us a hand to make it even better!

• What about running this code on multiple machines? You can do that, currently just using 
usual batch tools, but we are looking at other ways (dask, joblib, spark) to distribute the 
analysis across multiple machines.

https://github.com/jpata/hepaccelerate/blob/master/profiling/nvprof1.png
https://github.com/jpata/hepaccelerate/blob/master/profiling/nvprof2.png

