ATLAS Status Report

Bogdan Malaescu, on behalf of the ATLAS collaboration

LHCC open session – 11/09/2019

Introduction

Continuously improving data taking and data quality efficiency

Inner Tracker		Calorimeters		Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.5	99.9	99.7	99.6	99.7	99.8	99.6	100	100	99.8	98.8
Good for physics: 95.6% (139 fb ⁻¹) Full Run-2										

Month in Year

_____ 160

ATLAS

LHC Delivered

ATLAS Recorded

Good for Physics

√s = 13 TeV

Delivered: 156 fb

Recorded: 147 fb

Physics: 139 fb⁻¹

Jul'¹⁵Jan'¹⁶Jul'¹⁶Jan'¹⁷Jul'¹⁷Jan'¹⁸Jul'¹⁸

20 0 Jan'¹⁵

Reconstruction and Calibration Performance

 \rightarrow Benefit from excellent reconstruction and calibration performance up to very large pileup values (up to three times above design)

For example, reached (over a large p_T range): ~percent precision on small-/large-R jet energy scale ~percent uncertainty on b-tagging efficiency ~per-mil uncertainty on muon efficiency

Data-driven calibration of muon efficiency

Data-driven calibration of b-tagging efficiency

Higgs reconstruction @ ATLAS

EXPERIMENT

Combination of the $\gamma\gamma$ and 41 Higgs decay channels

Combination of the $\gamma\gamma$ and 41 Higgs decay channels

Statistical (likelihood-based) combination for total and differential cross section measurements extrapolated to the full phase space

Combined inclusive $pp \rightarrow H + X$ cross section (13 TeV):

 $\sigma(pp \to H) = 56.7 + 6.4_{-6.2}(\gamma\gamma), 54.4 + 5.6_{-5.4}(4\ell), 55.4 + 4.3_{-4.2}(\text{comb}) \text{ pb}$ SM: 55.6 ± 2.5 pb (NLO–3NLO QCD, NLO EW) (7.7%, stat./syst.~1)

Higgs Boson: µµ (ee) Decays

Next frontier: coupling to 2nd generation

- Challenging: small couplings in SM and large bkg. (pp $\rightarrow Z/\gamma^* \rightarrow \mu\mu$ dominant)
- Search performed using *event categorization* and *BDTs* for Signal/Background discrimination based on their expected features
- Background empirical modelling validated against "spurious signal" using large simulated samples
- $\sigma(obs) / \sigma(SM) = 0.5 \pm 0.7$, observed (expected) sensitivity: $0.8\sigma (1.5\sigma)$

Decay to 1st generation H \rightarrow ee, no sensitivity at LHC to SM couplings \rightarrow No significant excess Limit on branching ratio: 3.6 x10⁻⁴ (3.5 x10⁻⁴ exp.)

Full Run

Higgs boson: Lepton Flavour Violating Decays

Large sample of Higgs bosons in Run 2 allows for sensitive searches for non-SM decays: Lepton flavour violating Higgs decays: no significant excess;

limits on branching ratios significantly more stringent than from $\sqrt{s} = 8$ TeV

H→eµ Br limit: 6.1 x10⁻⁵ (5.8 x10⁻⁵ exp.) 700 Entries / GeV **ATLAS** Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 600 Data Background model 500 Signal (H \rightarrow eµ BF=0.05%) 400 300 200 100[60 Data - fit 150 155 160 45 m_{eu} [GeV] ATLAS-CONF-2019-037 LHCC Open Session 09/2019

B. Malaescu – ATLAS Status Report

Full Run-2

Observation of Vector Boson Scattering in ZZjj Full Run-2

Higgs boson regularizes the weak boson scattering cross section at high energies to ensure unitarity

- ZZjj analysis exploits decays to four charged leptons (*llll*) and ($ll\nu\nu$)
- Multivariate analysis to separate EW signal from backgrounds (e.g. QCD ZZ)

Observed (expected) significance for EW production: 5.5σ (4.3 σ) σ (EW) = 0.82 ± 0.21 fb SM pred.= 0.61 ± 0.03 fb

ATLAS already observed vector boson scattering at: 6.5σ in W±W±jj channel 5.3σ in WZjj channel

→ All VBS processes involving weak bosons observed by ATLAS → 4.1 σ evidence for Z(ll) γ jj

LHCC Open Session 09/2019

Differential Measurement of Z(11)y

Distinguish signal / FSR: $m(\ell \ell) + m(\ell \ell \gamma) > 182 \text{ GeV}$

Data-driven studies of main backgrounds:

- Z+jets: 2D sideband (γ ID & γ isolation)
- "Pile-up bkg." with Z and γ from different vertices: *NEW type of pile-up* studied with converted γ fraction_{PU} = $2.1 \pm 2.1\%$ (conservative unc.)
- \rightarrow Measured several unfolded distributions

102

ATLAS-CONF-2019-034

10

ATLAS Preliminary

√s= 13 TeV, 139 fb⁻¹

ATLAS Preliminary

√s= 13 TeV, 139 fb⁻¹

ull Run-2

Top Physics: Cross Section, Mass, Width Measurements

Measure tt cross section, final state: $e\mu$ and >= 1 b-tagged jet; constraining b-tagging efficiency in-situ (1 b-tag & >= 2 b-tag categories)

σ_{tī} [pb] ATLAS Preliminary eu + b-tagged jets √s = 13 TeV, 36.1 fb⁻¹ √s = 8 TeV, 20.2 fb⁻¹ cro $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ nclusive tī NLO+NNLL (pp) Czakon, Fiedler, Mitov, PRL 110 (2013) 252004 m_i=172.5 GeV, PDF+α_c uncertainties from PDF4LHC PDF4LHC at 0.9 7 13 6 8 9 10 11 12 √s [TeV]

Total $\sigma_{t\bar{t}} = 826.4 \pm 3.6 \text{ (stat)} \pm 11.5 \text{ (syst)} \pm 15.7 \text{ (lumi)} \pm 1.9 \text{ (beam) pb} (2.4\%)$ NNLO+NNLL prediction: $832 \pm 35^{+20}_{-29} \text{ pb}$ Pole mass measurement: $m_t^{\text{pole}} = 173.1^{+2.0}_{-2.1} \text{ GeV}$

Direct measurement of Top quark width: $\Gamma_t = 1.94^{+0.52}_{-0.49}$ GeV

- Template fit of m_{lb} for $e\mu$ channel
- Uncertainties constrained through m_{bb} fit for ee and $\mu\mu$ modes

B. Malaescu – ATLAS Status Report

ATLAS-CONF-2019-038

Top Physics: Precision Cross Section Measurements

• Cross section ratios allow to cancel systematic uncertainties

ATLAS-CONF-2019-041

• Fiducial and (double-)differential cross sections also provided

Top Physics: Charge Asymmetry

• Measure asymmetry of top-antitop system using resolved and boosted top-quark decays in lepton+jets events

$$A_C^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} = 0.0060 \pm 0.0011_{\text{stat}} \pm 0.0010_{\text{sys}}$$

$$\Delta|y| = |y_t| - |y_{\bar{t}}|$$

- Asymmetry at LHC from higher order QCD effects from qqbar and qg initial states
- Measurement consistent with predictions from NNLO QCD with NLO EW corrections
- Significance of non-zero asymmetry at 4σ level

B. Malaescu – ATLAS Status Report

Full Run-2

Ultra Peripheral Pb-Pb Collisions in 2018 Data

Observation of *Light-by-Light* events (8.2 σ): Phys. Rev. Lett. 123 (2019) 052001

New: Two particle correlations in photo-nuclear events

- Two particle correlations in non-UPC Pb+Pb, p+Pb or pp collisions:
 - → Long-range azimuthal correlations ("ridge"), quantified via Fourier decomposition of yields in ϕ (v₂ is the leading term, called elliptic flow)
 - → Understanding collective behavior: quark-gluon plasma, described by relativistic hydrodynamics
- How to understand this in γ +Pb collisions?
 - $\rightarrow \text{Vector Meson Dominance}$ (photon fluctuates to vector meson) $\gamma + Pb \Leftrightarrow \rho + Pb$
- Ridge in small systems like p+Pb or pp still open to new interpretations and more experimental studies

ATLAS-CONF-2019-022 **ATLAS** Preliminary 0.16 $\downarrow p+Pb \sqrt{s_{NN}}=5.02 \text{ TeV}$ $0.14 - N_{ch}^{rec} \ge 60$ 0.12 0.1 0.08 0.06 Pb+Pb 2018, 1.73 nb⁻¹ 0.04 $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}, 0 \text{nXn}$ $\Sigma_{\gamma}\Delta\eta$ >2.5, $\Sigma_{\Delta}\Delta\eta$ <3 0.02 • photo-nuclear, $20 < N_{ch}^{rec} \le 60$ 2 3 5 6 $p_{_{\rm T}}$ [GeV]

Highest-mass Central Dijet Event of 8.0 TeV Selected in Resonance Search

BSM Searches: Di-(b)jet Resonances

- New search for particles decaying to two b-tagged jets
- Benefits of significant improvement of b-tagging at high-p_T

Full Run-2

CERN-EP-2019-162

SUSY: Strong Production of Squarks and Gluinos

• Sensitive searches for squarks and gluinos in R-parity conserving scenarios with neutralino as LSP (no leptons)

 \rightarrow High mass reach

- Many different scenarios investigated with cut-based multi-bin(MB) analyses and boosted decision trees(BDT)
- Effective Mass variable used for some searches
 - M_{eff} = scalar sum p_T of jets ($p_T > 50$ GeV) and missing p_T

LHCC Open Session 09/2019

SUSY: Strong Production

Use simplified scenarios

• Here squark or gluino decaying to quark(s) and neutralino

• Significant improvement over previous limits

ATLAS-CONF-2019-040

LHCC Open Session 09/2019

Full Run-2

SUSY: Electroweak Production

If squarks and gluinos are very heavy, then electroweak production of SUSY particles could dominate \rightarrow much lower cross sections, challenging phase space to explore

Direct slepton production excluded up to 700 GeV mass (arXiv:1908.08215)

LHCC Open Session 09/2019

Computing and Software

\rightarrow Providing crucial continuous support to the physics program

Computing usage in the past six months: running job slots

Main developments for Run 3:

- Software framework upgraded to *multi-threading* → more flexible; more efficient memory use
- FastCaloSimV2 for fast simulation (~50% MC events) \rightarrow same CPU use, better physics performance
- New analysis model: streamlined analysis formats, reduced AOD size, on-demand recall of AOD from tape to reduce disk footprint
 - \rightarrow aim to reduce disk usage by at least 30%

LHCC Open Session 09/2019

LS2 Schedule

- Planning adapted to allow for late installation of NSW-A (August-September '20)
- Updates since last LHCC meeting: period and sequence of calorimeter work; closing Barrel Area C

edms id. 2031011 - doc. ATC-OS-SC-0009

Inner Detector Status

- Pixel optoboards refurbishment: Production Readiness Review passed, will be sent for production
- Replacement of the 272 boards scheduled for the first half of 2020
- Reduced concern for the *Transition Radiation Tracker* (TRT) Front-End cooling leak, but 2 sectors are likely to be off (*attempts to fix leaks still ongoing*)

TRT Leak Old Status (leaking sectors)

• The TRT Barrel will be operated with Ar; Xe used for most of the End-Cap

Maintenance and Upgrade - LAr

- Main activity: upgrade of the Front-End and Back-End electronics
 - \rightarrow finished for Barrel C
 - \rightarrow End-Cap A will converge in few weeks

LHCC Open Session 09/2019

Maintenance and Upgrade - Tile

- Refurbishment of the Front-End electronics cooling (connectors replacement: 190 / 256 done)
- Standard Front-End electronics maintenance well advanced; taking regular calibration runs
- Phase-II demonstrator installed, under commissioning
- Replacement of Phase-I crack counters done on side C; ongoing for MBTS counters

Maintenance and Upgrade – Muon system

- Fixed one leaky sector for Cathode Strip Chambers Front-End cooling
- Resistive Plate Chambers (RPC) gas leak fixes: ongoing (see plot)
- Installation of new RPC gas racks to minimize the pressure difference between sectors: should hopefully reduce the development of new leaks in the future

Number of fixed RPC gas leaks in LS2

16-Dec-18 4-Feb-19 26-Mar-1915-May-19 4-Jul-19 23-Aug-19 12-Oct-19

Muon New Small Wheel

- NSW structure ready to be assembled with detectors
- small-strip Thin Gap Chambers (sTGC):
 - production on schedule: 51/96x2 chambers ready
 - 9/32x2 wedges completed; electronics integration ongoing
- Micromegas (MM):
 - good(~slow) rate for small (large) sector chambers
 - 4/16x2 double wedges fully integrated with electronics
- Electronics: 100% ASIC (VMM) received; packaged 50%; Testing ongoing
- First sectors are coming together; ongoing tests for one full sector → important input for decision to be taken in Nov.

Fully equipped Micromegas double wedge

Sector assembly

Muon New Small Wheel

- NSW Trigger Processor
 - → Pre-production modules available; ongoing firmware and software development for testing trigger path in slice test
 - \rightarrow Production Readiness Review scheduled for beginning of October

Lots of work ongoing, but installing NSW-A during LS2 remains a challenge

Maintenance and Upgrade – TDAQ

L1Calo:

- Prototype boards exist for all the FEXs. eFEX pre-production delayed by problem in PCB manufacturing. One board is populated for tests that do not require high power. Pre-production (eFEX delayed, jFEX, TREX); Production (ROD, L1Topo); Produced (gFEX, Hub, FOX)
- Baseline algorithms established for all FEXs
- Results from latency tests are within envelopes

L1Muon:

• Endcap Muon Sector Logic instalation largely completed

FrontEnd Link Interface eXchange (FELIX)

- Pre-production of 20 boards tested All fine.
 PRR passed.
- Production launched
- Instalation Q4 2019 until Q1 2020 (Q2 2020 for eFEX)

Where we started

Where we are

What we are preparing for

ATLAS Phase-II Upgrade

- 5 Memoranda of Understanding completed
- Lots of work ongoing: progress in all areas

LHCC Open Session 09/2019

Example of recent progress: ITk-Strips

- Sensors are advancing toward pre-production
 → Contract with HPK signed on Aug. 23rd
- Modules prototype available and performing as expected (eg. noise)
 - \rightarrow Preparing for Final Design Review
- Short-strip staves assembled to test full readout chain (5 modules, power boards and end-of-stave cards)

Summary and conclusions

- Lots of exciting physics results: 27 (20) papers (conference notes) made public by ATLAS since June LHCC meeting
- Large amount of work ongoing during LS2, for detector refurbishment, for the Phase 1 and towards the Phase 2 upgrades

Many thanks to the CERN accelerator and support teams and World-wide computing facilities for making all this possible !!!

Backup

Standard Model Production Cross Sections

Good agreement with measurements for many processes, over 15 orders of magnitude

LHCC Open Session 09/2019

Standard Model Production Cross Sections

Good agreement with measurements for many processes, at different collision energies

Higgs $\rightarrow \mu\mu$

	11	D		0
141	111	- R	\mathbf{n}	1-7
T	111		uI.	

	Selection				
	Primary vertex				
	Two opposite-charge muons				
Common	Muons: $ \eta < 2.7, p_{\rm T}^{\rm lead} > 27 GeV, p_{\rm T}^{\rm sublead} > 15 GeV$				
	No b -tagged jets				
Z region	$76 < m_{\mu\mu} < 106 GeV$				
Sideband region	$110 < m_{\mu\mu} < 120 GeV$ or $130 < m_{\mu\mu} < 180 GeV$				
Fit region	$110 < m_{\mu\mu} < 160 GeV$				
Iota	$p_{\mathrm{T}} > 25 GeV$ and $ \eta < 2.5$				
JC05	or with $p_{\rm T} > 30 GeV$ and $2.5 < \eta < 4.5$				

ATI AS Preliminary	Hotal Stat Syst — SM	Category	Data	S_{GM}	S	В	S/\sqrt{B}	S/B [%]
$H \rightarrow u \mu$ $\sqrt{s} = 13 \text{ TeV}$. 139 fb ⁻¹			Data	$\sim SM$	~	D	\sim / \sqrt{D}	S/B [70]
VBF High	$\begin{array}{c ccccc} I \text{ otal } & \text{Stat. Syst.} \\ \hline 0.5 & {}^{+1.6}_{-1.4} & ({}^{+1.5}_{-1.4} & {}^{+0.3}_{-0.2} &) \end{array}$	VBF High	40	4.5	2.3	34	0.39	6.6
VBF Medium	$\begin{array}{cccc} 4.1 & + & 2.5 \\ - & 2.4 & (& - & 2.3 \\ - & 2.3 & - & 0.3 \\ \end{array} \right)$	VBF Medium	109	5.5	2.8	100	0.28	2.8
2-jet High	$\begin{array}{c} 4.8 \begin{array}{c} \cdot & \cdot \\ 2.9 \end{array} \left(\begin{array}{c} \pm 2.9 \\ -2.7 \end{array} \right) \left(\begin{array}{c} \pm 2.9 \\ -1.9 \end{array} \right) \left(\begin{array}{c} \pm 2.9 \\ -1.9 \end{array} \right) \left(\begin{array}{c} \pm 2.9 \\ -1.9 \end{array} \right) \left(\begin{array}{c} \pm 0.3 \\ -1.9 \end{array} \right)$	VBF Low	450	9.6	4.9	420	0.24	1.2
2-jet Medium	1.3 \pm 2.6 (\pm 2.5 , $\frac{+}{-}$ 0.8)	2-iet High	3400	38	19	3440	0.33	0.6
2-jet Low	$\begin{array}{ccc} -5.8 & \begin{smallmatrix} -4.8 \\ -4.8 \\ \end{array} & (\pm 4.0 \\ , \begin{smallmatrix} -2.8 \\ -2.8 \\ \end{array}) \\ 0.6 & \pm 2.1 \\ (\pm 2.1 \\ , \begin{smallmatrix} +0.4 \\ -2.8 \\ -2.8 \\ \end{array})$	2-iet Medium	13938	70	35	13910	0.30	0.3
1-jet Medium	$0.9 \pm 2.1 (\pm 2.1, \pm 0.4)$	2-jet Low	40747	75	38	40860	0.19	0.1
1-jet Low	-2.6 + 3.1 + 2.3	2 jet How 1-jet High	2885	32	16	2830	0.10	0.1
0-jet Medium	$1.3 \begin{array}{c} + 2.7 \\ + 2.6 \\ + 2.6 \\ + 2.6 \\ + 2.6 \\ + 2.6 \\ + 0.6 \\ + 0.6 \\ + 0.4 \\ \end{array} \right)$	1 jet Medium	2000	107	54	2000	0.01	0.0
0-jet Low	$- 5.0 + 4.4 (+ 4.2 + 1.5) \\ - 4.2 (- 4.1 , - 0.9)$	i-jet medium	24919	107	54	24890	0.50	0.2
Combined 😝	$0.5 \pm 0.7 (\pm 0.7 , ^{+ 0.2}_{- 0.1})$	1-jet Low	77482	134	68	77670	0.24	0.1
-20 -10 0	10 20 30	0-jet High	24777	85	43	24740	0.27	0.2
	Signal strength	0-jet Medium	85281	155	79	85000	0.27	0.1
		0-jet Low	180478	144	73	180000	0.17	< 0.1

ATLAS-CONF-2019-028

LHCC Open Session 09/2019

Constraining the VVHH coupling

$HH \rightarrow 4b$ selection

Full Run-2

	1					
VBF topology	At least two jets	Two highest- $p_{\rm T}$ jets with opposite sign η				
	with $p_{\rm T} > 30$, $ \eta > 2.0$	$ \Delta\eta_{jj}^{\rm VBF} \!>5.0$ and $m_{jj}^{\rm VBF}\!>1000$				
	At least 4 <i>b</i> -tagged jets with $p_{\rm T}$ > 40, $ \eta $ <2.0					
	If <i>m</i> _{4<i>b</i>} < 1250	$\frac{360}{m_{4b}} - 0.5 < \Delta R_{bb}^{\text{lead}} < \frac{653}{m_{4b}} + 0.475$				
		$\frac{235}{m_{4b}} < \Delta R_{bb}^{\text{subl}} < \frac{875}{m_{4b}} + 0.35$				
Signal topology	If $m_{4b} \ge 1250$	$\Delta R_{bb}^{\text{lead}} < 1$				
		$\Delta R_{bb}^{\mathrm{subl}} < 1$				
	Pairs with minimum					
	$D_{HH} = \sqrt{(m_{2b}^{\text{lead}})^2 + (m_{2b}^{\text{subl}})^2} \left \sin\left(\tan^{-1}\left(\frac{m_{2b}^{\text{subl}}}{m_{2b}^{\text{lead}}}\right) - \tan^{-1}\left(\frac{116.5}{123.7}\right) \right) \right $					
		$ \Delta \eta_{HH} < 1.5$				
	Multijet	$ \Sigma_i \vec{p_{T_i}} < 60$, where i = <i>b</i> -jets and VBF-jets				
Background rejection	Wullijet	$p_{\mathrm{T},H}^{\mathrm{lead}} > 0.5 m_{4b} - 103$				
		$p_{\mathrm{T},H}^{\mathrm{subl}} > 0.33m_{4b} - 73$				
	tī	$X_{Wt} = \sqrt{\left(\frac{m_W - 80.4}{0.1m_W}\right)^2 + \left(\frac{m_t - 172.5}{0.1m_t}\right)^2} > 1.5$				
	Signal region (SR)	$X_{HH} = \sqrt{\left(\frac{m_{2b}^{\text{lead}} - 123.7}{11.55}\right)^2 + \left(\frac{m_{2b}^{\text{subl}} - 116.5}{18.05}\right)^2} < 1.6$				
Region definition	Validation region (excluding SR)	$\sqrt{\left(m_{2b}^{\text{lead}} - 123.7\right)^2 + \left(m_{2b}^{\text{subl}} - 116.5\right)^2} < 30$				
	Sideband region (excluding SR, VR)	$\sqrt{\left(m_{2b}^{\text{lead}} - 123.7\right)^2 + \left(m_{2b}^{\text{subl}} - 116.5\right)^2} < 45$				

ATLAS-CONF-2019-030

LHCC Open Session 09/2019

Evidence of Vector Boson Scattering in Z(ll)yjj

Measure Zγjj electroweak production, involves SM quartic ZγWW diagram

Data-driven estimates of backgrounds

Use BDT with 13 variables to discriminate S/B

Dedicated centrality variable used in BDT

 $W/Z/\gamma$

LHCC Open Session 09/2019

 $W/Z/\gamma$

Differential Measurement of Z(11)y - Event Selection

ATLAS-CONF-2019-034

Non-prompt γ/l removed: isolation cuts

Distinguish signal / FSR: $m(\ell \ell) + m(\ell \ell \gamma) > 182 \text{ GeV}$

Measurement of the Lund Jet Plane

In(1/z)

UE/MPI

noniper

soft-

collinear

- Recluster track constituents of jets with C/A ٠
- Decluster following the harder branch and plot emissions in the plane
- \rightarrow Using tracks allows to have precise measurements for small angle splittings
- Unfolded to charged particle level and compared with several theoretical predictions

B. Malaescu – ATLAS Status Report

Regions of the

Lund jet plane

zE

lelle

(1-z)E

 $P(\square) \sim \frac{\mathrm{d}z}{z} \frac{\mathrm{d}\Delta R}{\Delta R}$

Top Physics: Precision Cross Section Measurements

• Cross section ratios allow to cancel systematic uncertainties

ATLAS-CONF-2019-041

• Fiducial and (double-)differential cross sections also provided

Top Physics: Direct Width Measurement

Data / Pred.

Data / Fit

Direct measurement of Top quark width:

- Template fit of m_{lb} for eµ channel
- Uncertainties constraint through m_{bb}fit ٠ for ee and µµ modes

ATLAS-CONF-2019-038

LHCC Open Session 09/2019

Top Physics: Direct Width Measurement

Source	Impact on Γ_t [GeV]
et reconstruction	±0.24
nal and bkg. modelling	±0.19
C statistics	± 0.14
lavour tagging	±0.13
T reconstruction	± 0.09
e-up and luminosity	± 0.09
ectron reconstruction	± 0.07
)F	± 0.04
normalisation	±0.03
uon reconstruction	± 0.02
ake-lepton modelling	± 0.01

ATLAS-CONF-2019-038

	$m_t = 172 \text{ GeV}$		$m_t = 172$	2.5 GeV	$m_t = 173 \text{ GeV}$		
	Mean [GeV]	Unc. [GeV]	Mean [GeV]	Unc. [GeV]	Mean [GeV]	Unc. [GeV]	
Measured	2.01	+0.53 -0.50	1.94	+0.52 -0.49	1.90	+0.52 -0.48	
Theory	1.306	< 1%	1.322	< 1%	1.333	< 1%	

Ultra Peripheral Pb-Pb Collisions in 2018 Data

- New: 2-particle correlations in photo-nuclear ultra-peripheral Pb-Pb collisions
- \rightarrow Energy deposit in exclusively one zero-degree calorimeter
- $\rightarrow\eta$ gaps for calo' clusters and tracks in the photon- / nucleus-going directions
- \rightarrow Measure two-(charged)particle correlations; remove non-flow effects and extract flow coefficients: template fit on events with low multiplicity (15 $\leq N_{ch}^{rec} \leq 20$) and high multiplicity

$$Y(\Delta\phi) = \int_{|\Delta\eta|=2.0}^{|\Delta\eta|=5.0} Y(\Delta\phi, |\Delta\eta|) \, \mathrm{d}|\Delta\eta|$$

$$Y^{\text{HM}}(\Delta\phi) = FY^{\text{LM}}(\Delta\phi) + G\left\{1 + 2\sum_{n=2}^{3} v_{n,n}\cos(n\Delta\phi)\right\}$$
$$v_{n,n}(p_{\text{T}}^{a}, p_{\text{T}}^{b}) = v_{n}(p_{\text{T}}^{a})v_{n}(p_{\text{T}}^{b})$$

Ridge ($v_n \neq 0$) *observed in photo-nuclear collisions*

SUSY: Strong Production

Use simplified scenarios

 Here squark or gluino decaying to quark(s), W boson and neutralino

 $\widetilde{q}\widetilde{q} \text{ production}, \ B(\widetilde{q} \rightarrow q \ \widetilde{\chi}^{\pm}_{,} \rightarrow q \ W^{\pm} \ \widetilde{\chi}^{0}_{,}) = 100\%, \ m(\widetilde{\chi}^{\pm}_{,}) = (m(\widetilde{q}) + m(\widetilde{\chi}^{0}_{,}))/2$ $m(\widetilde{\chi}_1^0)$ [GeV] 1800 r Exp. limit ($\pm 1 \sigma_{exp}$ ATLAS Preliminary Obs. limit (±1 σ^{SUSY} 1600 √s=13 TeV. 139 fb⁻¹ Exp. limits MB 0-leptons, 2-6 jets Exp. limits BDT 1400 0L obs. 36 fb⁻¹ [arXiv:1712.02332] All limits at 95 % CL 1200 1000 800 600 400 200 0 600 800 1000 1200 1400 1600 1800 2000 m(q̃) [GeV] $\widetilde{g}\widetilde{g}$ production, $B(\widetilde{g} \to qq \ \widetilde{\chi}_1^{\pm} \to qq \ W^{\pm} \ \widetilde{\chi}_1^0) = 100\%, \ m(\widetilde{\chi}_1^{\pm}) = (m(\widetilde{g}) + m(\widetilde{\chi}_1^0))/2$ $m(\widetilde{\chi}_1^0)$ [GeV] 1800 -----Exp. limit ($\pm 1 \sigma_{exp}$ ATLAS Preliminary Obs. limit (±1 σ^{SUSY}_{theory}) 1600 √s=13 TeV, 139 fb⁻¹ Exp. limits MB 0-leptons, 2-6 jets 1400 Exp. limits BDT 0L obs. 36 fb⁻¹ [arXiv:1712.02332] All limits at 95 % C 1200 1000 800 600 400 200 1600 1800 2000 2200 2400 2600 1000 1200 1400 m(g) [GeV]

Significant improvement over previous limits ATLAS-CONF-2019-040

LHCC Open Session 09/2019

Full Run-2

Maintenance and Upgrade – Forward detectors

- Lucid (key input for luminosity determination) :
- various problems observed with photomultiplier functionning during running
- now cable arrives to the base through a connector allowing easy maintenance / replacement during YETS
- AFP:

- qualifying PMTs for TOF detector to work under vacuum: one OK after long term test, a 2nd one showed problems and is re-tested

- also new technique with PMs outside vacuum is being developed (signal through quartz window)

Example of Recent Progress on Upgrade Projects

- ITk-Pixels:
- → First results with GBCR equalizer ASIC at the end of the data transmission cables (Flex and Twinax)
- → 3D sensors samples with 25x100 µm pixel geometry (possible use in layer-0 and layer-1) will be tested in Sep/October → Final Design Review in October

Stepper

- → LAr Analog Front-end ASICs ready for fab submission next week, ADC prototype submitted end of August
- → LAr Front-end board pre-prototype and Tile full prototype (FENICS) available and being characterized

