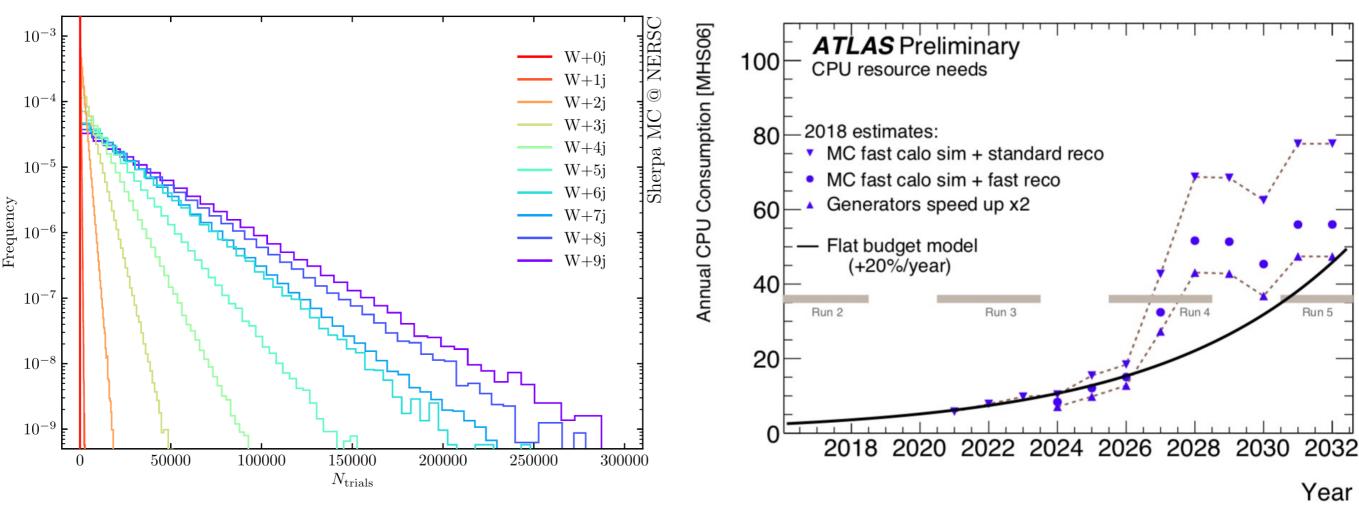


TIMO JANSSEN

Why?



arXiv:1905.05120 [hep-ph] S. Höche, S. Prestel, H. Schulz (2019)

Requirements

- Full phase space coverage
- Convergence to target distribution
- General method, lending itself to automation
- Produce uncorrelated events

Reminder: Importance Sampling

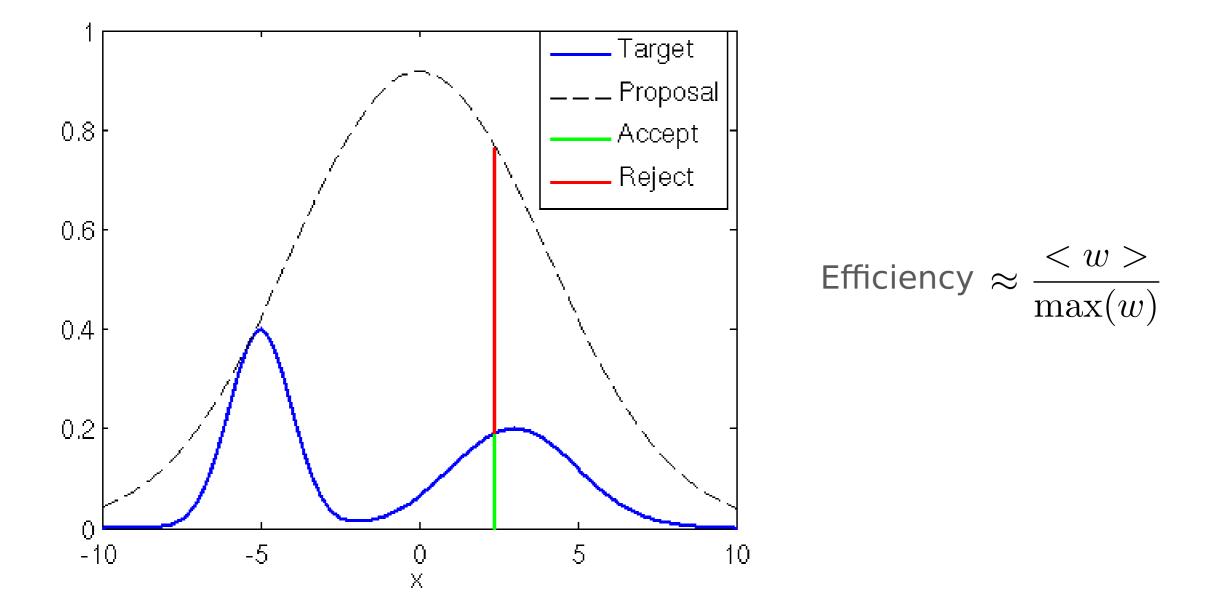
$$\int_{\Omega} f(x) dx = \int_{\Omega} \frac{f(x)}{g(x)} g(x) dx \approx V \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)}$$

A T

Choose g(x) similar to f(x)g(x) needs to be invertible

Multi-channel: $g(x) = \sum_{i} \alpha_i g_i(x)$ Channel weights can be adapted automatically (Kleiss, Pittau (1994))

Unweighting: Hit or Miss Algorithm



VEGAS Algorithm

Lepage (1978)

Adaptive importance sampling

- •Uses a piecewise constant function
- Partition every dimension into n_d bins

The bin widths are adapted automatically in order to minimize the overall variance

→ use many thin bins where integrand has peaks and few wide bins where it is flat

•Use factorised distribution to avoid curse of dimensionality:

$$g(x_1, x_2, \ldots) = g(x_1)g(x_2)\cdots$$

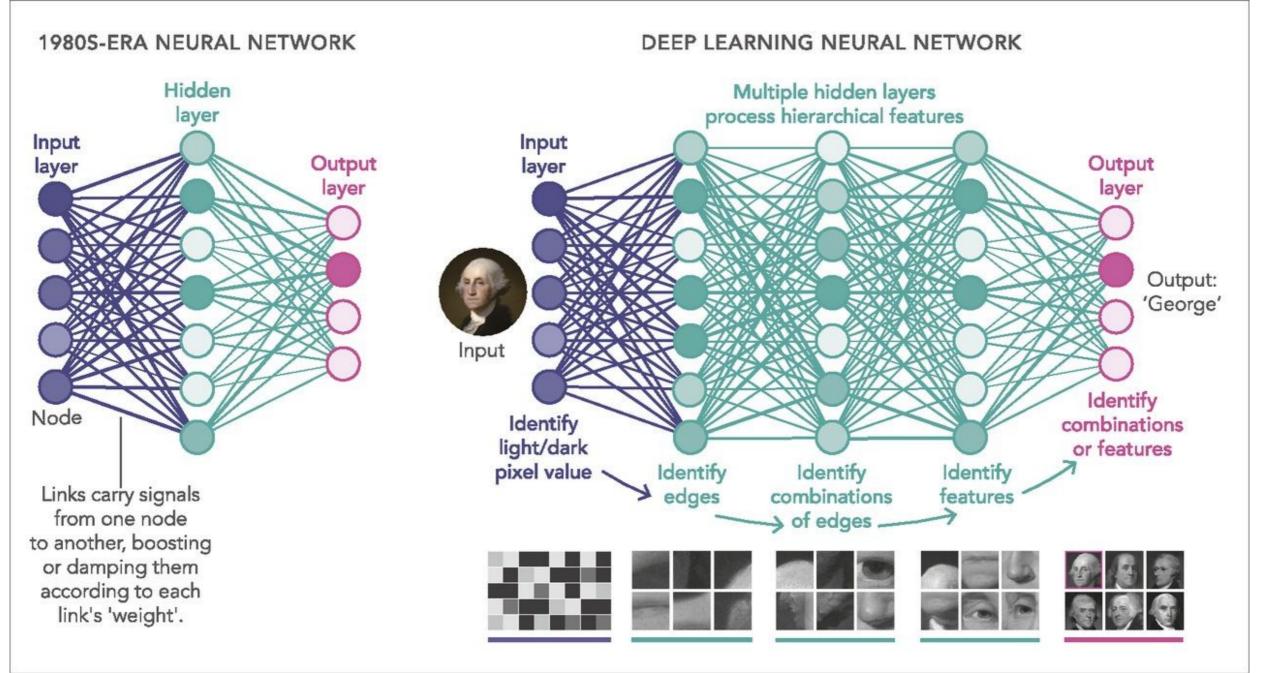
Phase Space Sampling in HEP – State of the Art

Automatically generate process-specific channels based on Feynman diagrams / recursion relations

Automatically optimize channel weights

•Use VEGAS to remap individual channels

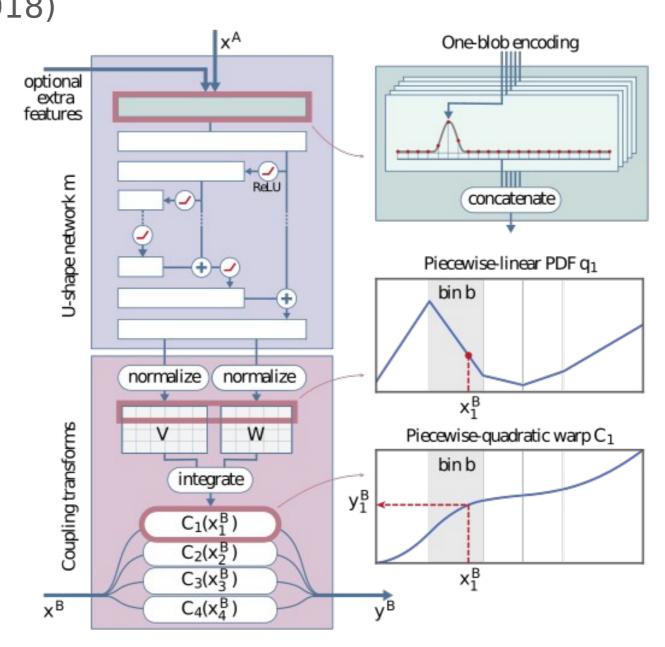
Deep Learning



Neural Importance Sampling Müller et al. (2018)

- Developed for light transport simulation (image rendering)
- Based on an invertible DL model (normalizing flows)
- Provides a mapping $[0,1]^d \rightarrow [0,1]^d$
- \rightarrow can replace VEGAS in our setup

Neural Importance Sampling Müller et al. (2018)



Setup

Standalone Python implementation using Tensorflow
Use Sherpa's Python API to get matrix elements from AMEGIC

Two test cases:

$$e^+e^- \to t[be^+\nu]\bar{t}[\bar{b}e^-\bar{\nu}]$$

Single channel

No cuts

 Importance sampler based on Breit-Wigner $gg \to ng$

Multi-channel

Phase space cuts necessary

 \rightarrow holes in phase space

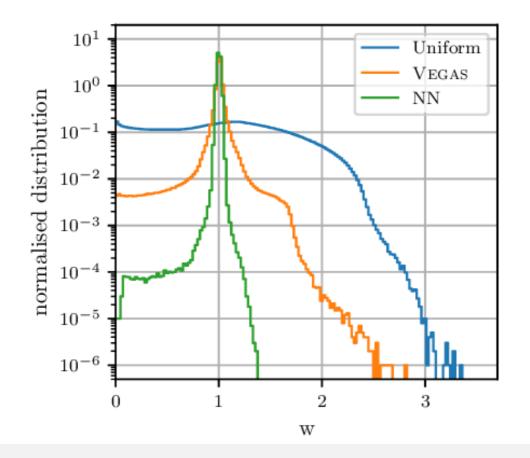
HAAG as importance sampler

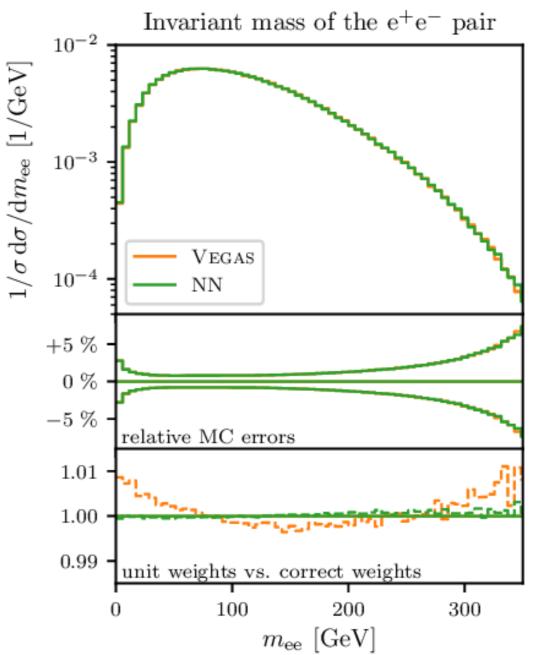
Results

01/07/2020

$e^+ e^- \rightarrow t[b e^+ v] tb[bb e^- vb]$

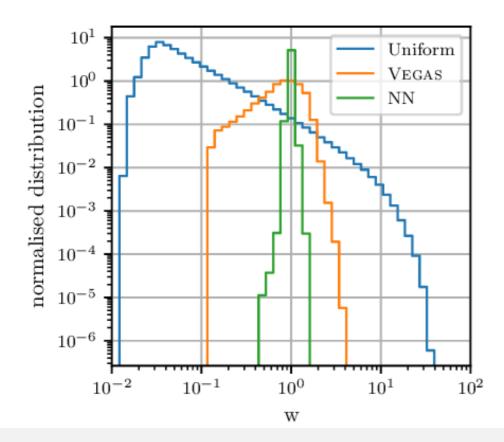
Sample	Unweighting Efficiency	σ [fb]
Uniform	35 %	1.5254(8)
VEGAS	40 %	1.5251(1)
NN	78 %	1.52531(2)

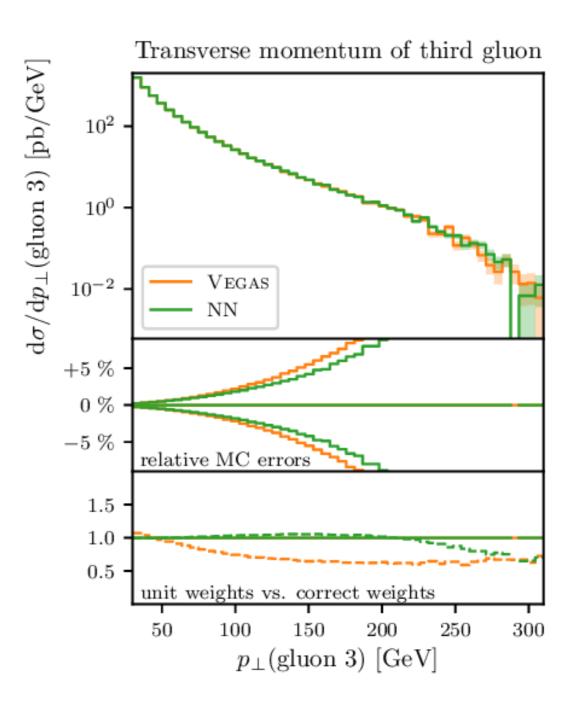




$g g \rightarrow 3 g$

Sample	Unweighting Efficiency	σ [pb]
Uniform	3.0 %	24806(55)
VEGAS	27.7 %	24813(23)
NN	64.3 %	24847(21)





Conclusions

Proof of concept for this technique
Impressive results for simple processes
For higher multiplicities not much gain over VEGAS
Training cost is still rather high

Outlook

There are many other DL models that could be used

- Handle cuts better
- Deal with multi-channel differently
- Implement interface to Sherpa's sampler to have access to arbitrary processes

THANK YOU

01/07/2020