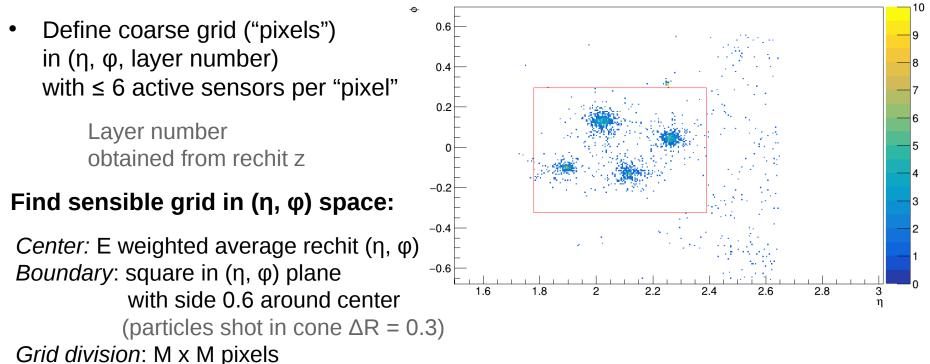
Gerrit


7th Patatrack Hackathon Day 4 3 Oct 2019

CNN in offline reconstruction

Goal: train Convolutional Neural Network (CNN) prototype for clustering and energy regression

→ Useful as baseline for later studies of graph networks (GNN)

Achieved: preprocessing input for CNN

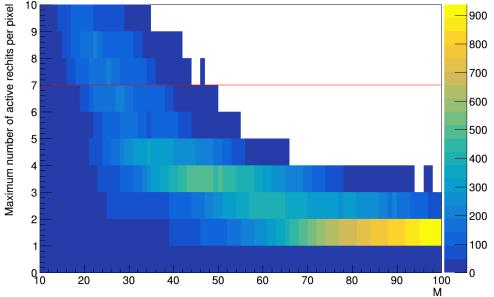
Gerrit

7th Patatrack Hackathon Day 4 3 Oct 2019

CNN in offline reconstruction

Goal: train Convolutional Neural Network (CNN) prototype for clustering and energy regression

 \rightarrow Useful as baseline for later studies of graph networks (GNN)


Achieved: preprocessing input for CNN

 Define coarse grid ("pixels") in (η, φ, layer number) with ≤ 6 active sensors per "pixel"

Layer number obtained from rechit z

Find sensible grid in (η, ϕ) space:

Center: E weighted average rechit (η , ϕ) Boundary: square in (η , ϕ) plane with side 0.6 around center (particles shot in cone $\Delta R = 0.3$) Grid division: M x M pixels

Grid of 50 x 50 pixels in (η , ϕ) seems OK

Gerrit

7th Patatrack Hackathon Day 4 3 Oct 2019

CNN in offline reconstruction

- **Goal**: train Convolutional Neural Network (CNN) prototype for clustering and energy regression
 - → Useful as baseline for later studies of graph networks (GNN)
- Achieved: preprocessing input for CNN
 - Converted sensor information to suitable CNN input
 - Grid info as nested vector of pixels
 - Pixel info as vector(rechit1_info, rechit2_info, ..., rechit6_info) complete with zeroes if < 6 sensors
 - **Rechit info**: list of relevant features E, η , ϕ , θ , R, t with relative positions of sensors within pixel

Outlook: convert larger dataset and train CNN