

DATA ACQUISITION, DATA ANALYSIS AND SIMULATION TOOLS IN A TEST BENCH ENVIRONMENT

3RD AVA TOPICAL WORKSHOP – MACHINE EXPERIMENT INTERFACE 10 – 11 OCTOBER 2019, COSYLAB, LJUBLJANA, SLOVENIA

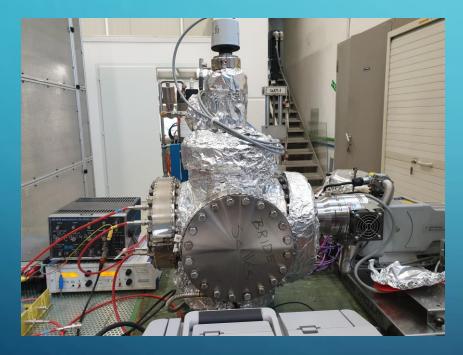
BRUNO GALANTE, CERN

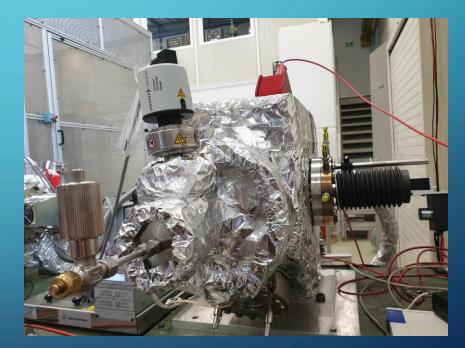
QUASAR

O

OUTLINE

- Introduction
- Data acquisition: LabView
- Data analysis: MATLAB
- Simulation tools: CST Particle Studio
- > Conclusions

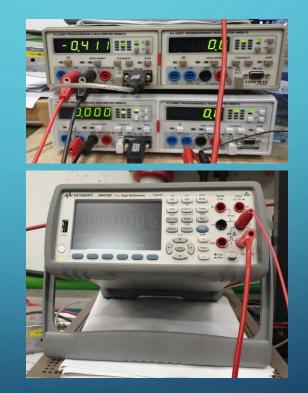




INTRODUCTION

- 2 Test benches for several different experiments
- Independent measurements

BRUNO.GALANTE@CERN.CH



INTRODUCTION

Power Supplies

Digital Multimeters

Vacuum DualGauge

UNIVERSITY OF

LIVERPOOL

CERN

3RD AVA TOPICAL WORKSHOP - MACHINE EXPERIMENT INTERFACE, COSYLAB

BRUNO.GALANTE@CERN.CH

DATA ACQUISITION: LABVIEW

Readout: Same program for readout from different Multimeters or readout from Power Supply

Hameg Readout + File.vi	-	×
File Edit View Project Operate Tools Window Help		
🐡 🗟 🔘 II		 ? 🚩
VISA resource name VISA resource name File Path Seconds to w Image: COM7 million Image: Git million Image: Git million Image: Git million read buffer Image: Git million Image: Git million Image: Git million Image: Git million -0.411 Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million Image: Output distribution Image: Git million Image: Git million Image: Git million Image: Git million	eit	,

Combination of instruments

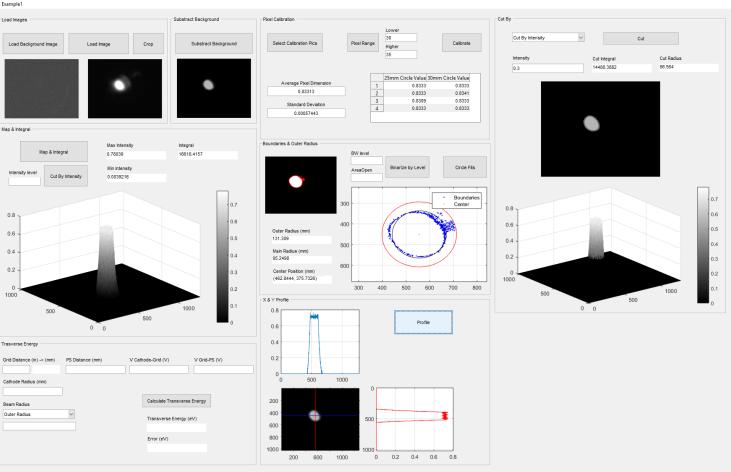
ISEG + HAMEG.vi Front Panel	-		×
ile Edit View Project Operate Tools Window Help		_ FT	
Voltage (V)	r) 2 code		
Time (Minutes)			~

Pressure readout, built on top of instrument own LabView program

🔁 gauge1_read_main Modified.vi Fr	ont Panel		-		×
File Edit View Project Operate				E	-
💠 🐼 🦲 🖬 🛛 15pt Appli	cation Font 🔻 🏭 🐨 🕮 🛛 🍫	Search	<u> </u>	? 🗖	
reference & pfeiffer236_virtualCOM4 Pressure (mbar)	File Path	Sec	conds to w	vait	Î
0.000E+0					

3RD AVA TOPICAL WORKSHOP - MACHINE EXPERIMENT INTERFACE, COSYLAB

BRUNO.GALANTE@CERN.CH



o x

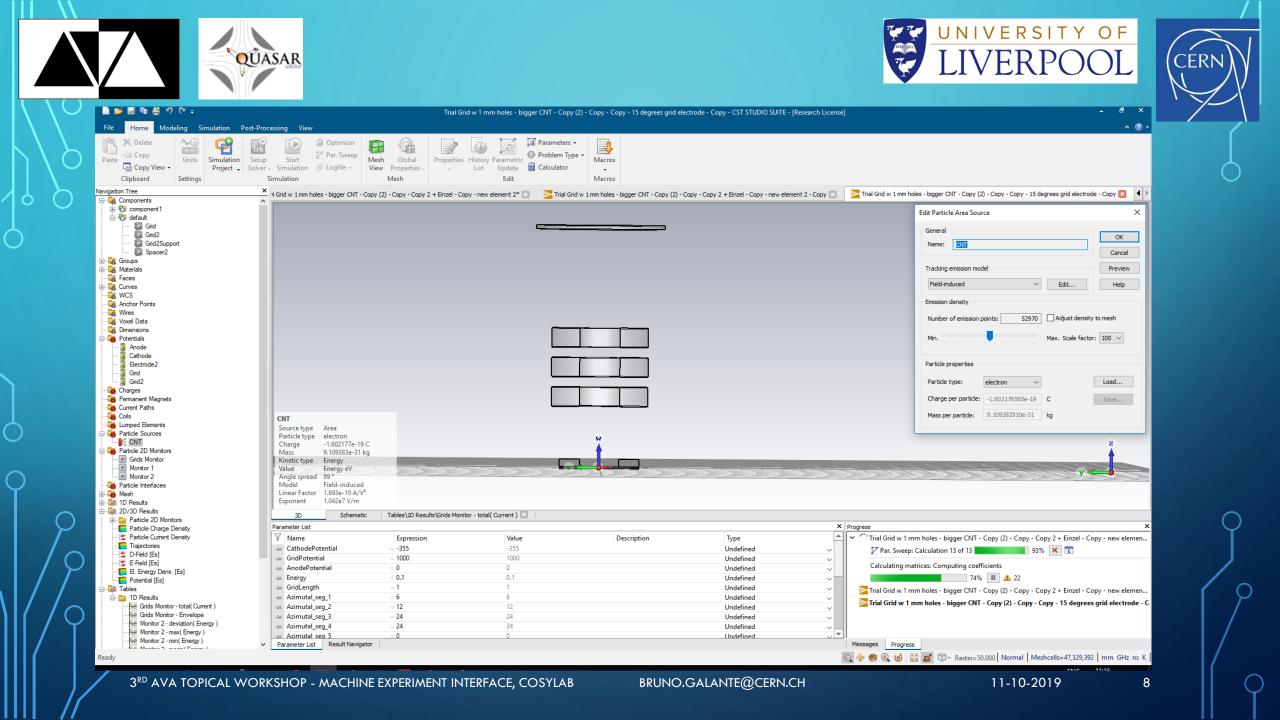
DATA ANALYSIS: MATLAB

 LabView program save data on a file. MATLAB analyzes data importing from file.

Image Analysis

3RD AVA TOPICAL WORKSHOP - MACHINE EXPERIMENT INTERFACE, COSYLAB

BRUNO.GALANTE@CERN.CH



SIMULATION TOOL: CST PARTICLE STUDIO

Among all the simulation software the choice is CST because of:

built-in field emission module

straightforward particle tracking module.

	JASAR						LIVERSITY OF	
		Trial Gr	id w 1 mm holes - bigger CNT - Cop	y (2) - Copy - Copy - 15 degrees grid e	ectrode - Copy - CST STUDIO SUITE -	[Research License]	- 8 ×	
	tup Start Z Par. Sweep	Mesh Global View Properties Mesh	History Parametric List Update Edit	/pe • Macros			^ ®	
Navigation Tree	X Grid w 1 mm holes - bigger CNT - Co	py (2) - Copy - Copy 2 + Einzel - Co	opy - new element 2* 🔟 🛛 🔰 Trial (Grid w 1 mm holes - bigger CNT - Copy (2)	Copy - Copy 2 + Einzel - Copy - new eler	nent 2 - Copy 🗵 📄 Trial Grid v	w 1 mm holes - bigger CNT - Copy (2) - Copy - Copy - 15 degrees grid electrode - Copy 🔀 🔰	Þ
Component 1 Component	CNT Source type Area Particle type electron Charge -1.602177e-19 C Mass 9.109338-31 kg Kinetic type Energy eV Angle spread 89 Model Field-induced Linear Factor 1.6392-10 A/V ²						Edit Particle Area Source	
⊕	Exponent 1.042e7 V/m							
🗄 🗁 Particle 2D Monitors	3D Schematic	Tables\1D Results\Grids Moni	tor - totai(Current) 🔝 🛛			× Progress		×
Particle Charge Density Particle Current Density Particle Current Density Projectories Particle State Particle State Par	Variantet Est Variantet Est Variantet Est Variantet Variantet AnodePotential AnodePotential AnodePotential AnodePotential Arimutal_seg_1 Arimutal_seg_2 Arimutal_seg_4 Arimutal_seg_4 Arimutal_seg_4 Arimutal_seg_5 Parameter List	Expression = -355 = 1000 = 0 = 0.1 = 1 = 6 = 12 = 24 = 24 = 0 r	Value -335 1000 0 0.1 1 6 12 24 24 0	Description	Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined	× ∵ Trial Gi	rid w 1 mm holes - bigger CNT - Copy (2) - Copy 2 + Einzel - Copy - new elemen. r. Sweep: Calculation 13 of 13 93% 🗶 🗊 lating matrices: Computing coefficients 75% III 🛆 22 rid w 1 mm holes - bigger CNT - Copy (2) - Copy - Copy 2 + Einzel - Copy - new elemen. irid w 1 mm holes - bigger CNT - Copy (2) - Copy - Copy - 15 degrees grid electrode - Progress V III 🗘 22 rid Safe - Soloto Normal Meshcells=47,329,392 mm GHz ns l	 - C

■ # # # # * * *		Trial G	id w 1 mm holes - bigger CNT - Co	py (2) - Copy - Copy - 15 degrees grid ele	ctrode - Copy - CST STUDIO SUITE - [- [Research License] - 🗗 🗙
Paste Copy View - Clipboard Status	olver - Simulation @ Logfile - Simulation	View Properties	History Parametric List Update Edit	ype Macros Macros		~ @ •
Navigation Tree Components Components Component 1 Component 1 Component 1 Component 1 Component 1 Component 1 Cond 2 Cond 2	CNT Source type Area Particle type electron Charge -1.602177e-19 C Mass 9.109383e-31 kg Kinetic type Energy eV Angle spread 95 *			Grid w 1 mm holes - bigger CNT - Copy (2) - 4	opy - Copy 2 + Einzel - Copy - new elem	ment 2 - Copy Trial Grid w 1 mm holes - bigger CNT - Copy (2) - Copy - 15 degrees grid electrode - Copy (2) Edit Particle Area Source Field Induced Emission Settings General Kinetic Settings Field Induced Emission Settings Variation Field Induced Emission Settings Variation Field Induced Emission Settings Variation Variation
Article Interfaces Article Interfaces Article Interfaces Article Interfaces Article Interfaces Article 2D Monitors Article 2D Monitors Article 2D Monitors Article Charge Density Article Charge Density Article Charge Density Dried [Es] B. Energy Dens. [Es] Articles Dieseuits Dieseuits Dieseuits Dieseuits Grids Monitor - Envelope	Arigue Space 65 Model Field-induced Linear Factor 1.693e-10 A/V ² Exponent 1.042e7 V/m 3D Schematic Parameter List V V Name	Tables\1D Results\Grids Mon Expression = -355 = 1000 = 0 = 0.1 = 1 = 6 = 12 = 24	tor - total(Current) Value -355 1000 0 0 0 0 1 1 6 12 24	Description	Type Undefined Undefined Undefined Undefined Undefined Undefined Undefined	 Progress Trial Grid w 1 mm holes - bigger CNT - Copy (2) - Copy - Copy 2 + Einzel - Copy - new elemen Par. Sweep: Calculation 13 of 13 93% X : Calculating matrices: Computing coefficients Trial Grid w 1 mm holes - bigger CNT - Copy (2) - Copy - Copy 2 + Einzel - Copy - new elemen Trial Grid w 1 mm holes - bigger CNT - Copy (2) - Copy - Copy - 15 degrees grid electrode - C

CONCLUSIONS

- The choice of such a variety of tools is strictly related to the necessity to make several independent things.
 Furthermore, being in a test bench environment with a relatively small quantity of data and the possibility to do many things by hand, it seemed too time-consuming develop a full range software.
- For what concerns the simulation part the possibility to add a simulation in COMSOL (or other) is being investigated in order to have a comparison.

THANK YOU

"AVA has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559."

3RD AVA TOPICAL WORKSHOP - MACHINE EXPERIMENT INTERFACE, COSYLAB

BRUNO.GALANTE@CERN.CH