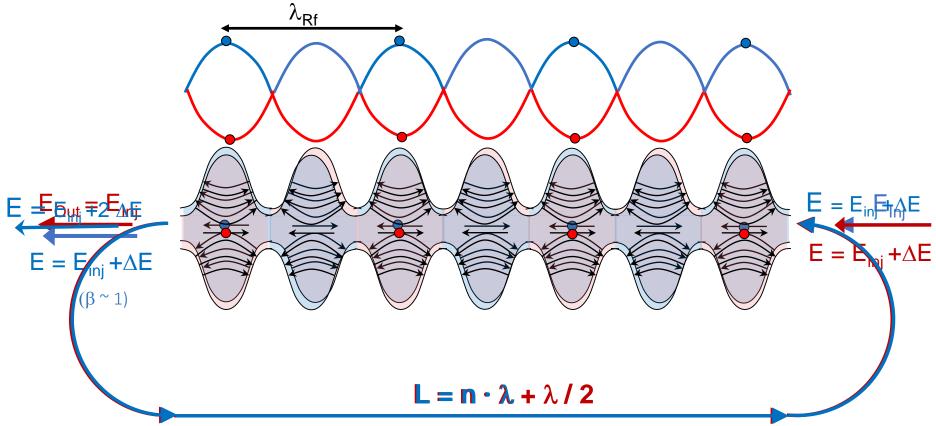
Electrons for the LHC: LHeC, FCC-eh and PERLE Workshop Chavannes de Bogis, 24-25 October 2019

PERLE : Status and Prospects

On behalf of PERLE Collaboration

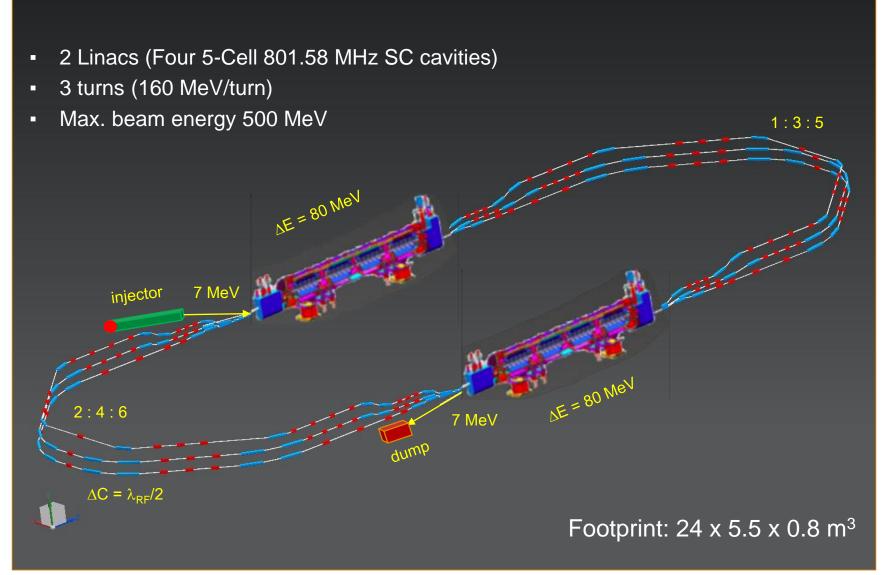
Walid Kaabi- LAL/CNRS



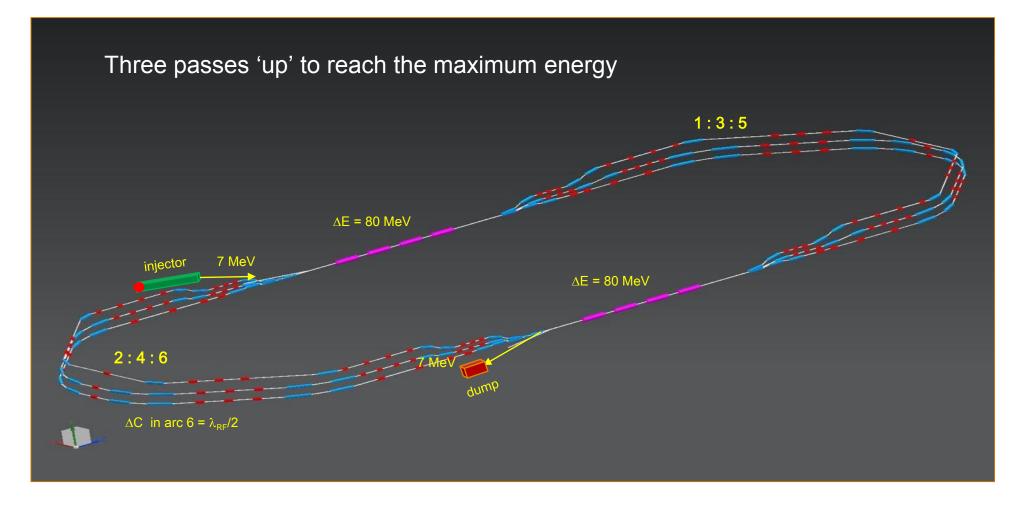
Introduction- Energy recovery in RF fields

- Energy supply \rightarrow acceleration
- Deceleration = "loss free" energy storage (in the beam) \rightarrow Energy recovery

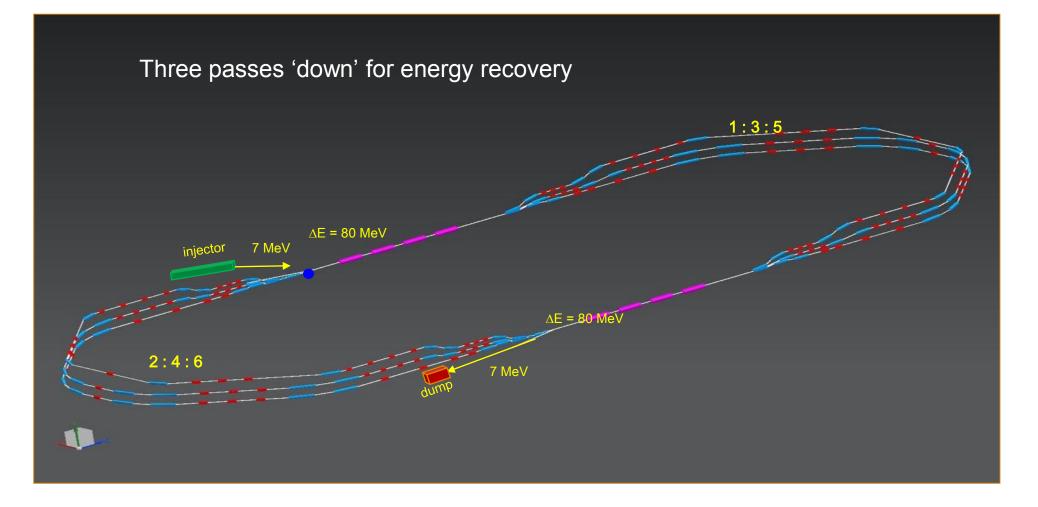
PERLE: A proposed 3 pass ERL based on SRF technology, to serve as testbed for studying, testing and validating a broad range of accelerator phenomena & technical choices for future projects.

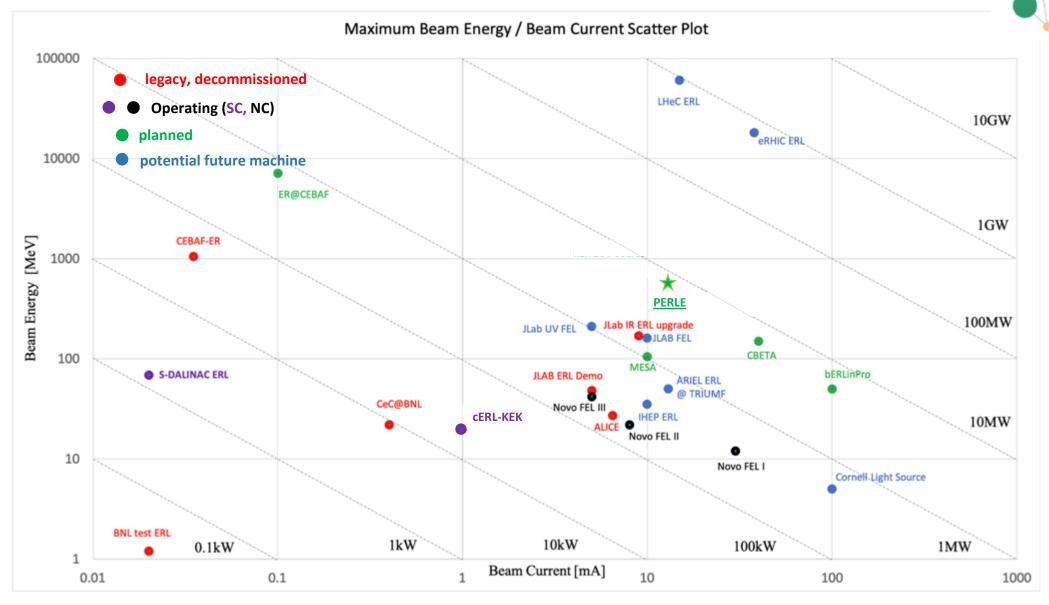

Particularly, design challenges and beam parameters are chosen to enable PERLE as the hub for technology development (especially on SRF) for the Large Hadron Electron Collider (LHeC)^[2]:

Target Parameter	Unit	Value
Injection energy	MeV	7
Electron beam energy	MeV	500
Normalised Emittance $\gamma \epsilon_{x,y}$	mm mrad	6
Average beam current	mA	20
Bunch charge	рС	500
Bunch length	mm	3
Bunch spacing	ns	25
RF frequency	MHz	801.58
Duty factor		CW

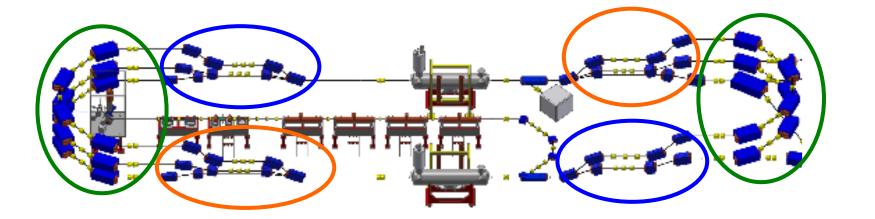

[2] J.L. Abelleira Fernandez et al, " A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector ", J.Phys. G39 (2012) 075001, <u>arXiv:1206.2913</u>

PERLE configuration:

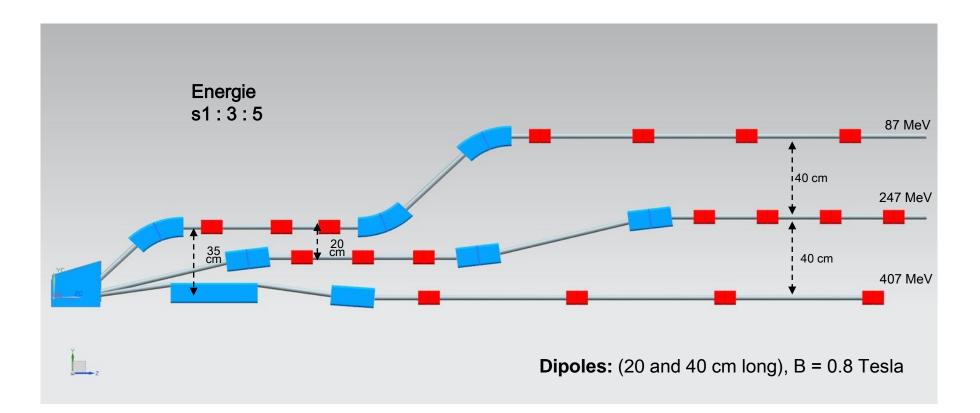




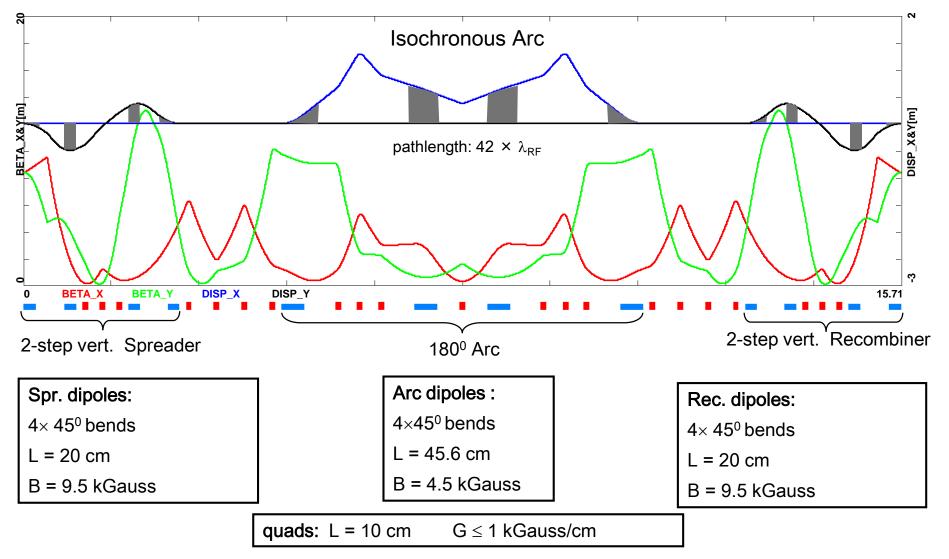
PERLE in the global landscape:


Electrons for the LHC: LHeC, FCC-eh and PERLE Workshop- Chavannes de Bogis, 24-25 October 2019

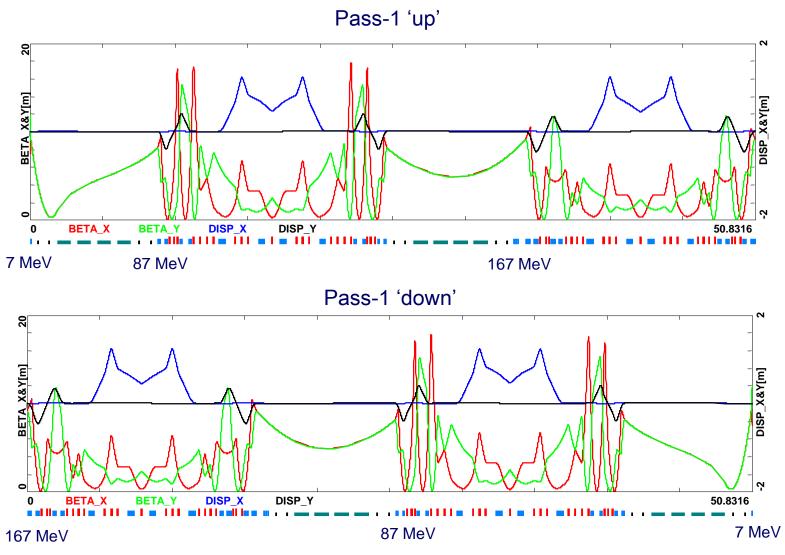
PERLE


Appropriate recirculation optics are of fundamental concern in a multi-pass machine to preserve beam quality. The design comprises different regions:

- The Spreader optics: The beams need to be directed into the appropriate energy dependent arc. Spreaders separate vertically beams and match optics functions to arcs.
- The Arc optics: Disturbing effects on beam space charge such as cumulative emittance and momentum growth have to be counteracted through a pertinent choice of the basic optics cell
- The Re-combiner optics: Re-combiners and spreader are mirror symmetric.

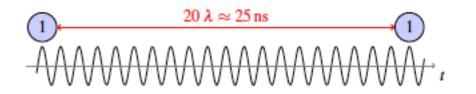

LAL/IPNo – JLAB Collaboration

Arc optics, Arc 1 (87 MeV) as example:

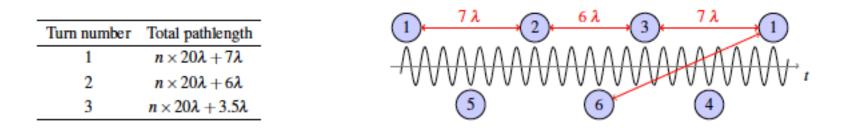

LAL/IPNo – JLAB Collaboration

1 pass up + 1 pass down optics:

LAL/IPNo – JLAB Collaboration



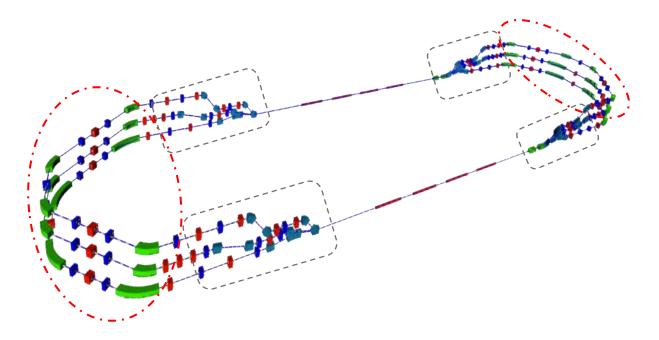
Bunch recombination pattern:

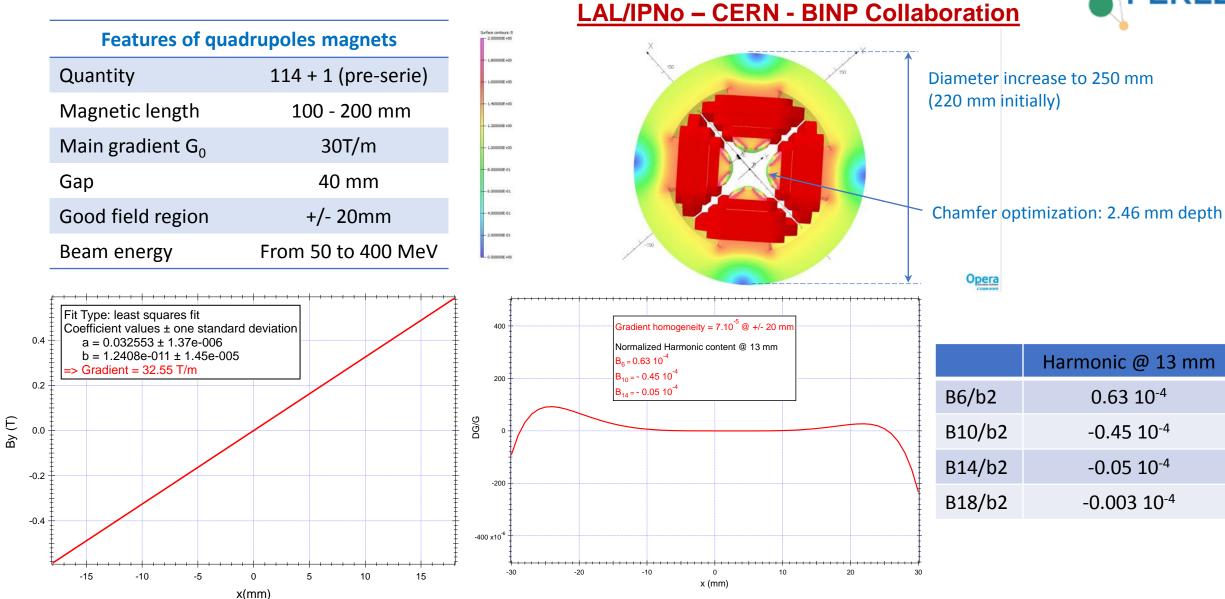


LAL/IPNo – JLAB Collaboration

Basic RF structure, without recirculation: Bunches are injected every 25 ns

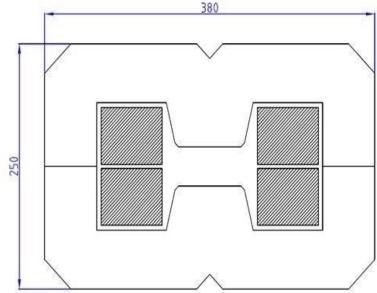
- When recirculation occurs \rightarrow bunches at different turns in the linacs:
 - \rightarrow Ovoid bunches in the same bucket
 - \rightarrow Recombination pattern adjusted by tuning returned arcs length of the required integer of λ


- Maximize the distance between the lowest energy bunches (1 & 6): ovoid reducing the BBU threshold current due to the influence of HOMs kicks
- > Achieve a nearly constant bunch spacing: minimize collective effects


LAL/IPNo – CERN - BINP Collaboration

Courtesy to Cynthia Vallerand

- 6 recirculation arcs, for different beam energies: 87, 167, 247, 327, 407 and 487 MeV.
- Each arc contains 4 dipoles, powered in series within the arc .
- **114 quadrupoles**, powered individually
- Number of sextupoles, correctors included and octupoles to be defined
- 46 dipoles in the spreader/combiner, powered individually



PERLE magnets design: Arc bending magnets

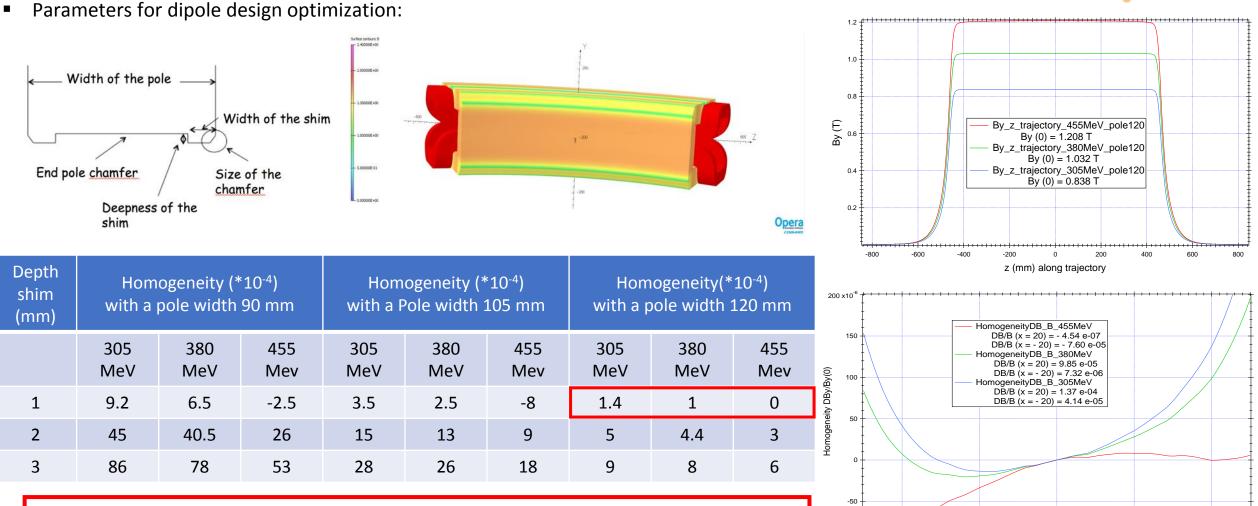
- Iron-dominated resistive magnets preferred for improving tunability
- Engineering current density of 7-8 A/mm²
- H design to reduce the height of magnet for stacking
- Homogeneous field as low as possible due to the use of one power supply by arc
- Cost optimization by coupling the design of arc magnets to studies of power converters, vacuum system and cooling as well as using one
 magnet per bend with a 45° deflection

Features of arc bending magnets				
Quantity	12 + 1 (pre-serie)	12 + 1 (pre-serie)		
Rotation angle	45°	45°		
Radius of curvature	1192 mm	596 mm		
Main field B ₀	1.25 - 1.3 T	1.25 - 1.3 T		
Gap	40 mm	40 mm		
Good field region	+/- 20mm	+/- 20mm		
Mechanical length	936 mm	468 mm		
Current max.	Not defined	Not defined		
Beam energy	305 to 455 MeV	80 MeV to 230 MeV		

Challenge to highlight : Very compact bending magnet while keeping a reasonable current density for 6 arcs and using the <u>same structure</u> for <u>Arc 1 up to 3</u> and <u>for Arc 4 up to 6</u>.

PERLE magnets design: Arc bending magnets

LAL/IPNo – CERN - BINP Collaboration


-20

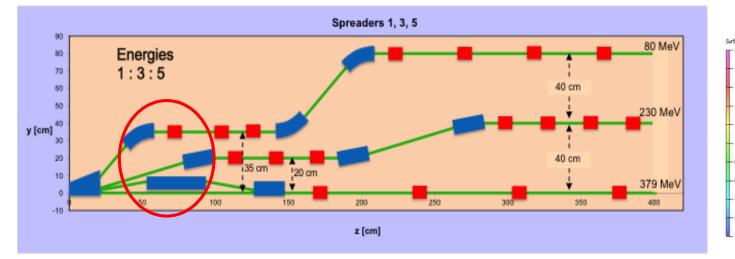
-10

0

x (mm)

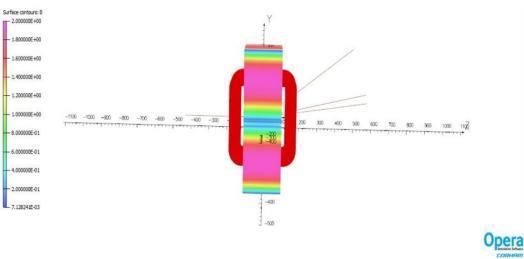
10

Shim is optimized for 3 energies to get a field homogeneity lower than 5. 10⁻⁴ Magnetic design is finished for the arc bending magnet R1192 mm


W. KAABI

Electrons for the LHC: LHeC, FCC-eh and PERLE Workshop- Chavannes de Bogis, 24-25 October 2019

20

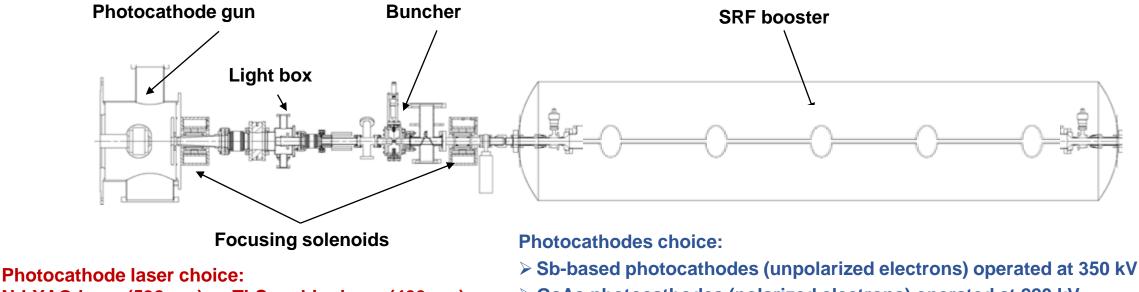

LAL/IPNo – CERN - BINP Collaboration

- H-magnet design was chosen for the dipoles in order to minimize stray fields given the close proximity of the beamlines.
- Maximum field restricted to 6 kG, to limit flux leakage out of central pole iron.

	Energy (MeV)	Brho (T.m)	Angle (deg)	Bl (T.m)	Vertical coordinate of beam axis (mm) at z=400 (mm)/spreader	Distance between beams z=400 (mm)	Vertical coordinate of beam axis (mm) at z=500 (mm)/spreader	Distance between beams z=500	Vertical coordinate of beam axis (mm) at z=800 (mm)/spreader	Distance between beams z=800
Arc 1	80	0,269	41	0,19217	347,71		434,64		695,43	
Arc 3	230	0,769	14,32	0,19217	102,11	151,54	127,63	307,01	204,21	491,22
Arc 5	380	1,269	8,67	0,19217	61,03	43,90	76,29	51,35	122,06	82,15

Preliminary results for Spreader dipole:

- Trajectories at 80 MeV, 230 MeV and 380 MeV are correct.
- Feasibility is done but iron saturated.
- ⇒ Need to check if mechanical length can be increased.
- => Need to adjust magnetic length with mechanical length.


W. KAABI

Electron source and injector:

LAL/IPNo – STFC Daresbury- Univ. Liverpool Collaboration

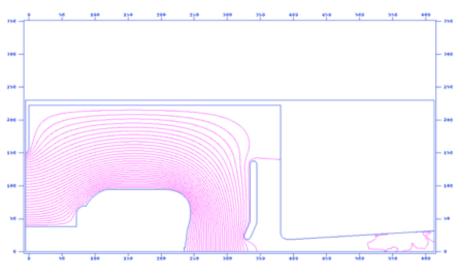
The PERLE injector consists of:

- A DC photoemission electron gun (The ALICE DC gun to be upgraded).
- A bunching and focusing section: 401 MHz normal conducting buncher cavity placed between two solenoid.
- A superconducting booster with five 802 MHz cavities individually feeded and controlled on amplitudes and phases.
- Merger to transport the beam into the main LINAC,
- Beam diagnostics to be placed between components.
- Spin manipulator for the polarised electrons option.

Nd:YAG laser (532 nm) or Ti:Sapphire laser (400 nm).

> GaAs photocathodes (polarized electrons) operated at 220 kV

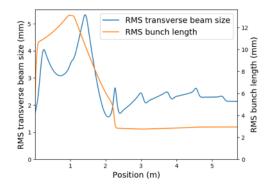
Electrons for the LHC: LHeC, FCC-eh and PERLE Workshop- Chavannes de Bogis, 24-25 October 2019

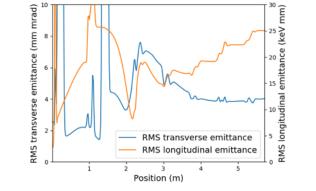

Courtesy to Ben Hounsell

LAL/IPNo – STFC Daresbury- Univ. Liverpool Collaboration

Studies on ALICE gun upgrade to operate at up to 500 pc (B. Hounsell PhD thesis):

- Optimisation of the electrode geometry, the laser pulse spatial and temporal profile and the field in the first solenoid to preserve the **emittance** in the gun and first solenoid section and to **reduce transverse beam size** in the focusing and bunching section.
- ✓ The electrode geometry optimisation was also performed so that the same electrode shape must be used for both voltages (350 and 220 kV) \rightarrow Use of a mlti-objective optimisation algorithm NSGAIII.
- Optimisation of the buncher frequency (401 MHz or 802 MHz) in order to minimise emittance growth.

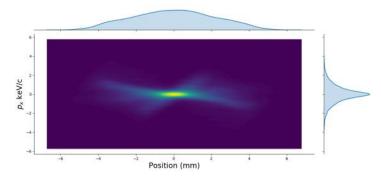




LAL/IPNo – STFC Daresbury- Univ. Liverpool Collaboration

PERLE injector (up to the booster exit) was optimised using NSGAIII: a many objective optimisation algorithm

- Variables: laser parameters, solenoid settings, buncher amplitude and phase, distances between elements and the booster cavity amplitudes and phases.
- **Constrains**: injection energy of 7 MeV & final bunch length of 3 mm
- ⇒ The objectives were all minimised at the point of the booster exit. They were rms transverse emittance, rms longitudinal emittance, rms energy spread, x halo parameter and z halo parameter.



The solution was not only selected for its **transverse emittance** but also the **shape of the bunch distributions**:

For more: See the poster B. Hounsell « Status of the PERLE injector optimisation » @ERL 2019

Achieved bunch parameters	
Transverse emittance/ mm mrad	4.0
Longitudinal emittance/ keV mm	25.1
Bunch length/ mm	3.0
Energy/ MeV	7.0

=> The PERLE injector is capable of achieving the specification at the booster exit. The possibility of **improving the bunch distributions** and **longitudinal phase space** will be investigated (linearizing the longitudinal phase space) 20

LAL/IPNo – STFC Daresbury- Univ. Liverpool Collaboration

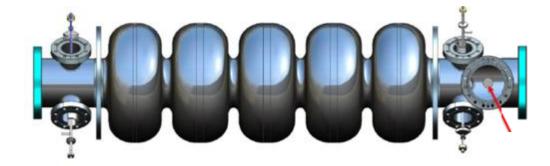
□ Still to be done:

- > The final step towards a complete injector design is **the merger**=> Work is ongoing.
- A 'first ' start-to-end simulation: Tracking initial particle distribution, as defined by the injector and using magnet error tolerances would validate beam transport through the entire ERL complex.
- > Studies on the **tolerances** required for the injector.
- > The possible **options for a polarised beam injection** will be considered.
- ➤ Relatively short lifetimes of the photocathode impose their frequent replacement (on a daily basis for GaAs and weekly for Alkali antimonides) →
 Need of preparation and transfer chambers for each photocathode material.
 For GaAs photocathodes an existing design of photocathode preparation facility produced for ALICE could be easily implemented.

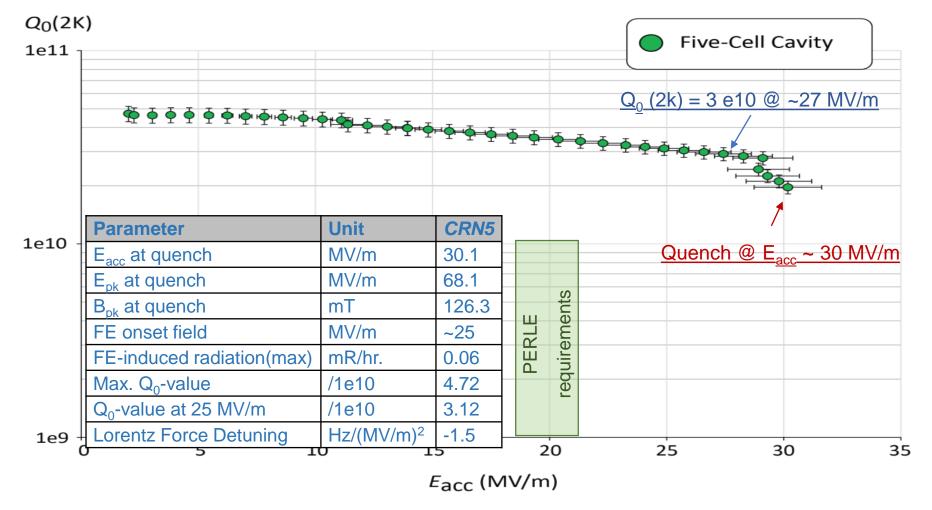
Electron source and injector:

LAL/IPNo – STFC Daresbury- Univ. Liverpool Collaboration

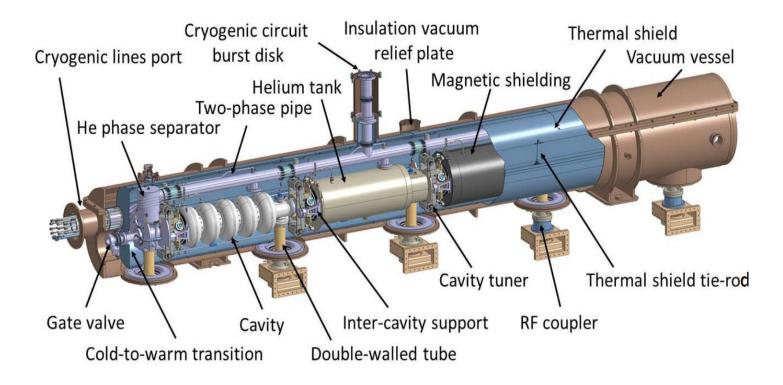
ALICE DC-Gun and equipment transferred from Daresbury to LAL on May 9 & 10, 2019



Courtesy to Frank Marhauser


Parameter	Unit	Value
Frequency	MHz	801.58
Number of cells		5
Iris/tube ID	mm	130
L _{act}	mm	917.9
$R/Q = V_{eff} / (\omega \cdot W)$	Ohm	524
G	Ohm	274.7
R/Q·G/cell		143940
$\kappa_{ }$ (2mm rms bunch length)	V/pC	2.74
E _{pk} /E _{acc}		2.26
B _{pk} /E _{acc}	mT/(MV/m)	4.20
k _{cc}	%	3.21

The first Nb 802 MHz 5-Cell cavity fabricated October 2017 at JLAB


For more details: F. Marhauser's talk in the FCC Week, April 2018, Amsterdam, Netherland

LAL/IPNo – CERN Collaboration

Courtesy to Gilles Olivier

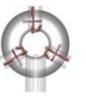
IPN-Orsay & CERN are studying the SPL cryomodule adaptation for PERLE.

SPL cryomodule: designed to integrate 4 elliptical 5-cells 704 MHz cavities

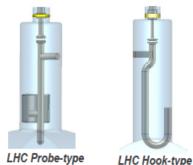
LAL/IPNo – CERN Collaboration

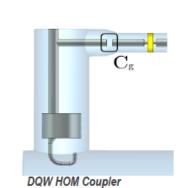
First results:

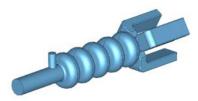
- Thermal and magnetic shielding are well sized for PERLE operation parameters. Their design could be modified if needed.
- Vacuum vessel could be reused without refurbishing
- Input coupler designed for SPL cavity could be easily adapted to meet PERLE requirement
- ✓ Further studies will define if Cryogenic lines have to be adapted
- ✓ Space liberated due to cavity frequency difference give a little margin for auxiliaries integration.


Ongoing studies:

- HOM coupler study to address the following questions:
 - → How many extraction ports: Risk of interference between CTS and HOM dampers
 - → What kind of damper (waveguide, loop coupling)?
 - → Power to extract: W, tens of W, more?
 - → Active helium cooling needed? or only thermalization by copper braids.



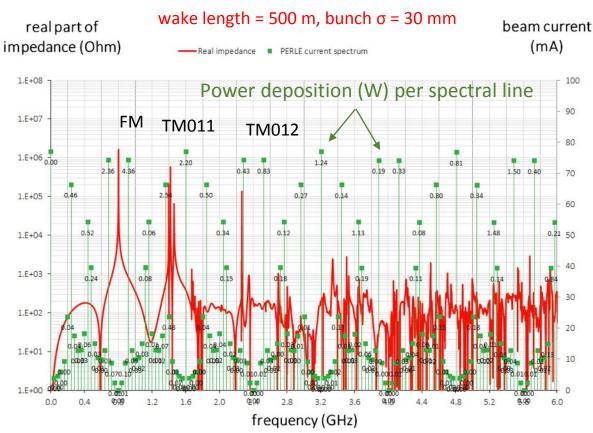

Several HOM coupler types were investigated for adaptation to the new cavity :

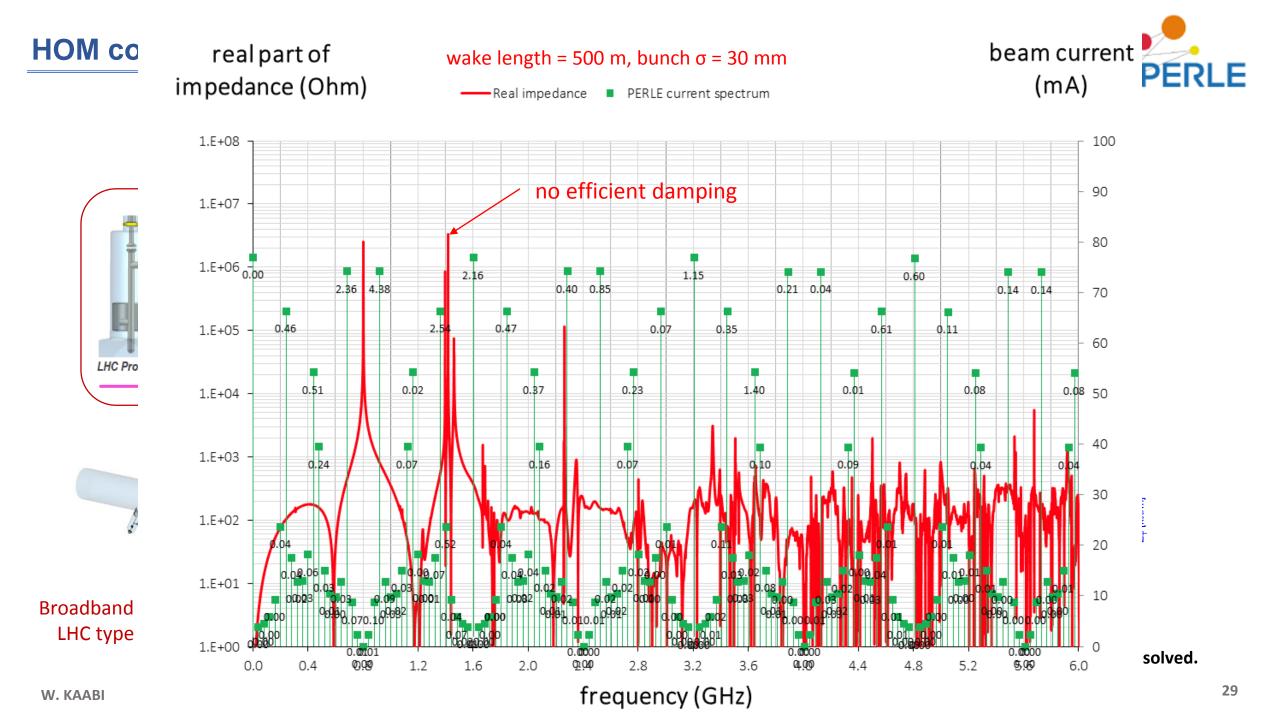

HOM 'Y' end-group with 3 coaxial couplers (here with scaled TESLA-type couplers)

JLAB High current (HC) WG HOM coupler type

- Waveguide couplers could be 'overkill' for PERLE since 3-pass peak beam current is comparably small (< 100 mA)

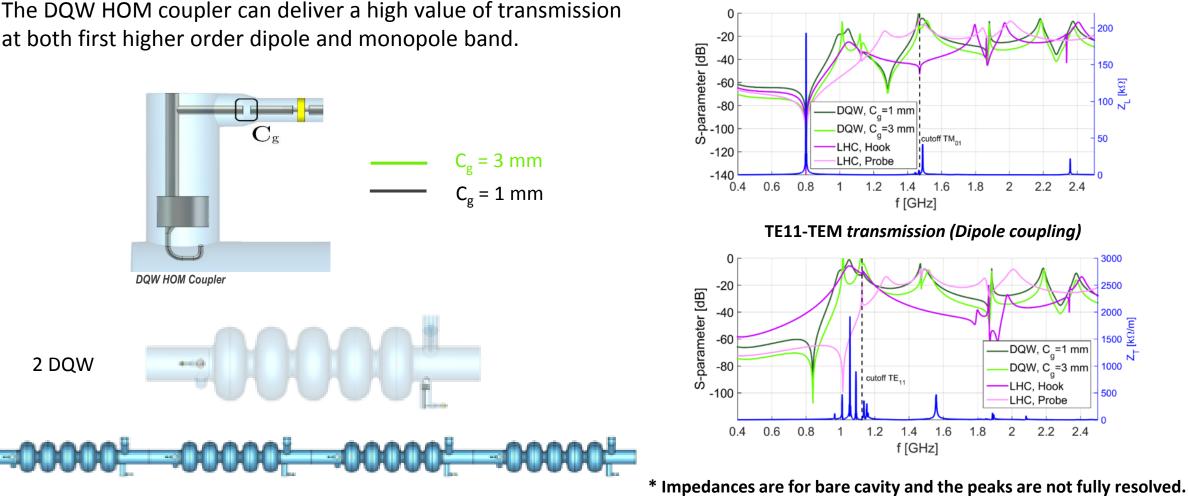
- Yet, trapped *TE*111 and *TM*110 dipole modes with high impedances could be better captured with coaxial couplers (cf. Supercond. Sci. Technol. 30 (2017) 063002)

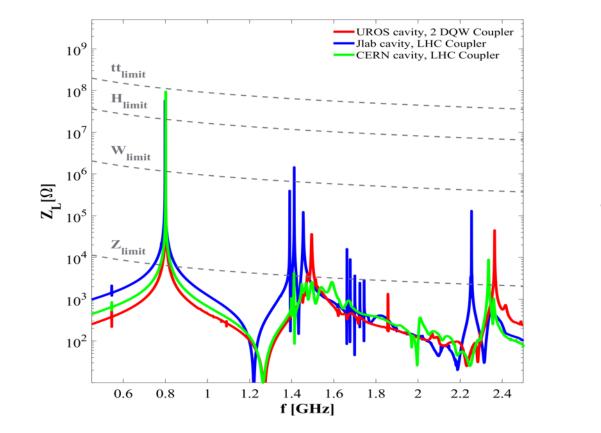

Scaled DESY/TESLA-type HOM couplers with Y configuration

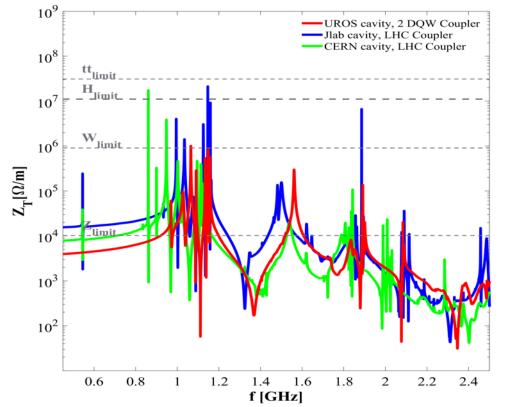

Benefit of 'Y' end-group:

- Minimizes/eliminates dependency on transverse mode polarization
- Monopole power deposition to each coupler quasi identical

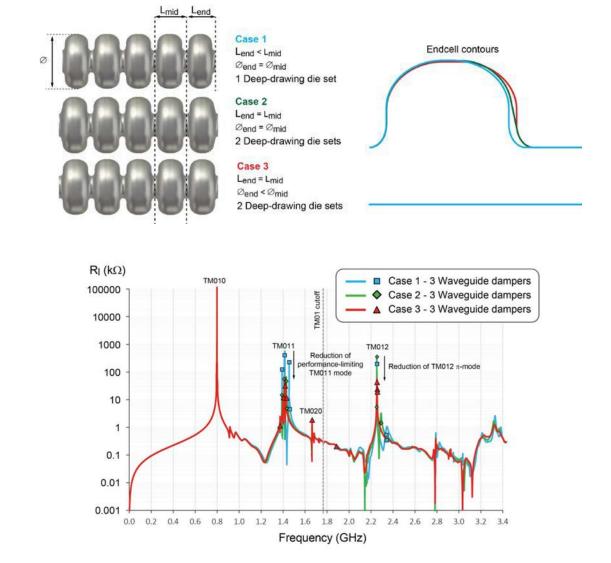
Disadvantage:

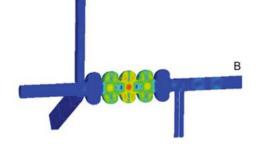

Space occupied in the Cryomodule and risk of interference with cavity tuning system

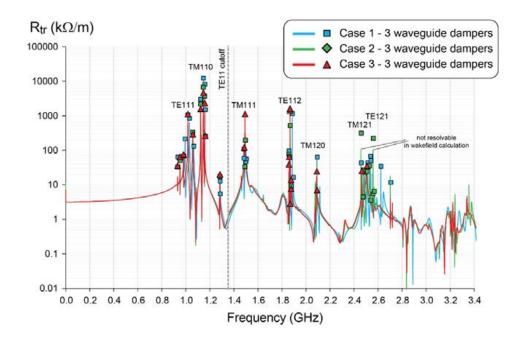



TM01-TEM transmission (Monopole coupling)

W. KAABI






HOM coupler studies

LAL/IPNo – CERN and JLAB Collaboration

Main conclusions of the HOM workshop:

- Regarding SPL cryomodule constrain (space available for HOM couplers), using 2 DQW HOM couplers seems to be the most convenient solution. However, more in deep studies are required taking into account the specifications of PERLE cavity, the beam parameters and bunch recombination pattern.
- Any new HOM coupler version should consider 3D multipacting analyses Just scaling from existing design can be dangerous due to potential MP.
- Regarding the power dumped in the HOM couplers, active cooling is necessary and should be integrated during cryomodule design.
- Cavity end cells shape could be optimised for a better efficiency of HOMs extraction.
- PERLE project requires dedicated coupler design studies for given cavity→ this will be done during the 2nd cryomodule design optimisation.

The site:

PERLE footprint: 24 x 5.5 x 0.8 m³

Administrative classification of PERLE:

According to French safety regulation (Code de l'environnement L593-2, Décret n°2007-830 du 11 mai 2007), an electron accelerator is considered as Basis Nuclear Installation (INB) when these two criteria are reached simultaneously:

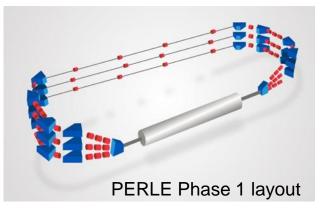
- Beam energy > 50 MeV
- Beam power > 1 kW

In case of PERLE:

Parameters	Values	
Bunch charge	500 pC	
Bunch spacing	25 ns	
Average current	20 mA	
Beam energy	7 to 500 MeV	
Beam power	140 kW to 10 MW	

The « INB » administrative regime **would not be applicable** to PERLE if it is proven that **beam losses of power > 1 kW could not be maintained for relatively long time (>1s)** in all cases (exploitation or accidental beam loss scenario).

Types de pertes	Puissance perdue	Durée du obénomène	Phénomènes physiques limitant le phénomène
	Pertes d'exp	oltation	
Perte continue sur le piège à faisceau d'exploitation	75 kW	Continue	Énergie des électrons de 7 MeV
Perte continue en exploitation normale le long de l'accélérateur	Inférieure à 1 kW	Continue si pas de systèmes de protection, machine (MPS) Avec MPS, durés inférieure às second	Échauffement des en ments par interaction subc le faisceau primaire d'électrons
Perte instantanée sur un piège à faisceau d'urgence	Puissance crête : 16 MW - 30 MW Puissance moyenne : 5 W	175	\$
Pertes de faisceau sur les cavités supraconductrices	Pertes accid Inférieure à 1kW	0 y µs	Quench dù à Lechauffement local des parois des cavités supraconductrices
Pertes de faisceau sur les arcs de recirculation ou un collimateur	Inférieure à 1 kW	Numbre Acide : 2,4 ms - 1 m Mác 270 collimat - 26 ms	Fusion locale du matériai entraînant la dégradation de la qualité du vide
	P des virt	huelle and a	
Perte sur cible épaisse - cavité supraconductrices et chambre à vide amont/aval	Puissance office : Inférieure à 1 kW	1 a - 24 ms	Fusion locale du matéria entraînant la dégradation de la qualité du vide
Perte sur cible épaisse - Arc de recirculation 1-5	Pursance crête - movers vavant arr to resupération	875 ns	Fusion locale de la cible entraînant la dégradation de la qualité du vide
	Parsance crête apris site du phéromène d'récupération 17 MW - 11 NW Inférieure 3 1 KW	11 ms - 24 ms	
Perte sur cible ér dss Arc de recirculati	Infe? Lee à 1 kW	10 ms	Fusion locale de la cible entraînant la dégradation de la qualité du vide
Perte sur cibio Nince au niveau d'ar cavité supracondu triti ou une chaubro vide smot avai	ti veure à 1 kW	Variable suivant le matériau : 2 ms -7 ms	Fusion locale de la cible entraînant la dégradation de la qualité du vide
Perte e mince a niveau d'un arc d recirculation 1	Si perte d'énergie inférieure à 25 keV : inférieure à 1 kW	Continue	Fusion locale de la cible entraînant la dégradation de la qualité du vide
	Inférieure à 1 kW	Inférieure à 1 seconde	
Perte sur cible mince au niveau d'un arc de recirculation 6	Si perte d'énergie inférieure à 50 keV : inférieure à 1 kW	Continue	Fusion locale de la cible entraînant la dégradation de la qualité du vide
	Inférieure à 1 kW	Inférieure à 1	



The PERLE configuration entails the possibility to construct PERLE in stages. We propose in the following two main phases to attend the final configuration.

Phase 1: Installation of a single cryomodule in the first straight and three beam

lines in the second (consideration motivated by the SPL cryomodule availability)

- \rightarrow To allow a rather rapid realisation of a 250 MeV machine.
- \rightarrow To test with beam the various SRF components.
- \rightarrow To prove the multi-turn ERL operation.
- \rightarrow to gain essential operation experience.
- Phase 2: Realisation of PERLE at its design parameters as a 10MW machine:
- \rightarrow Upgrade of the e- gun
- \rightarrow Installation of the 2nd Spreader and recombinar
- \rightarrow Installation of the second cryomodule in the second straight.

Phase 1 is divided in two sub-stages:

- Studies and prototyping stage: Mainly for design completion of the main sub-systems, the beam dynamics studies and the prototyping of the main components (cavity, power coupler, HOM, dipoles...). All the outcomes will be included in the PERLE Technical Design Report.
- Assembly, test and installation stage: of all the subsystems according to their final design (injection line most likely without the upgrade of the DC gun, the SPL cryomodule, the 6 arcs, a spreader & a recombiner), leading to PERLE-Phase 1 configuration.

It is foreseen that phase 1 includes also the realisation of infrastructure work and the installation of equipment sized as for their final use (beam dump, cryogenics, cooling circuit, shielding, electrical power, etc.).

Project staging strategy:

Milestones, Timeline & Collaborator Involvement

	-			
	Milestone	Targeted date	Collaborator(s) Involvement	
-	Dressed cavity design completion	Oct 2019	CERN-JLAB	
ping	SPL cryomodule design completion	May 2020	CERN	
toty	Injection line design completion	Mid 2020	STFC-Univ. Liverpool	
k pro	Final design cavity fabrication and V. test	Mid 2020	JLAB-CERN	
Studies & prototyping	Arc and switchyard dipole prototypes	End 2020	BINP Novosibirsk	
Stud	Booster cryomodule design completion	End 2021	-	
	Technical Design Report	End 2021	All	
Ę	DC gun installation ⁽¹⁾	Early 2021	STFC	
latio	Booster assembly & RF test (2)	Mid 2023	STFC	
nstal	Injector installation & commisionning ⁽³⁾	End 2023	STFC	
Ass., test & installation	SPL cryomodule assembly and RF test ⁽²⁾	Early 2024	CERN	
is., te	Sequential installation at Orsay (4)	End 2024	-	
As	Phase 1 operation	2025	Open to all	
Milestere		Targeted	Collaborator(s)	
	Milestone		Involvement	
DC g	gun upgrade	2026	STFC	
Seco	ond cryomodule completion	2027	CERN	
PER	LE phase 2 operation	2028	Open to all	

Phase 2

Thank you for your attention