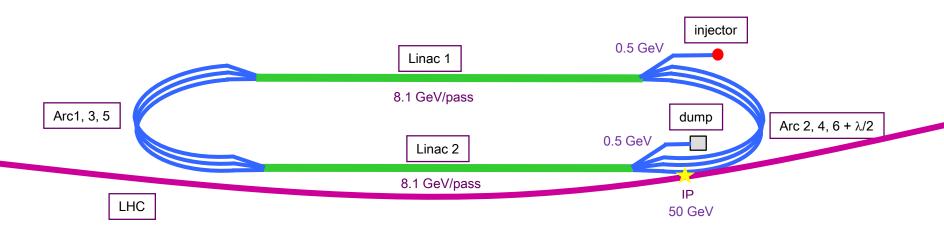
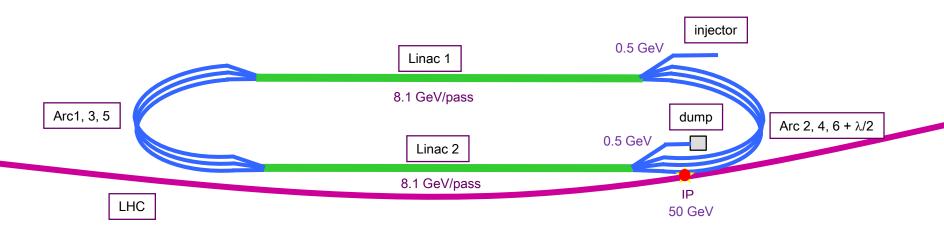
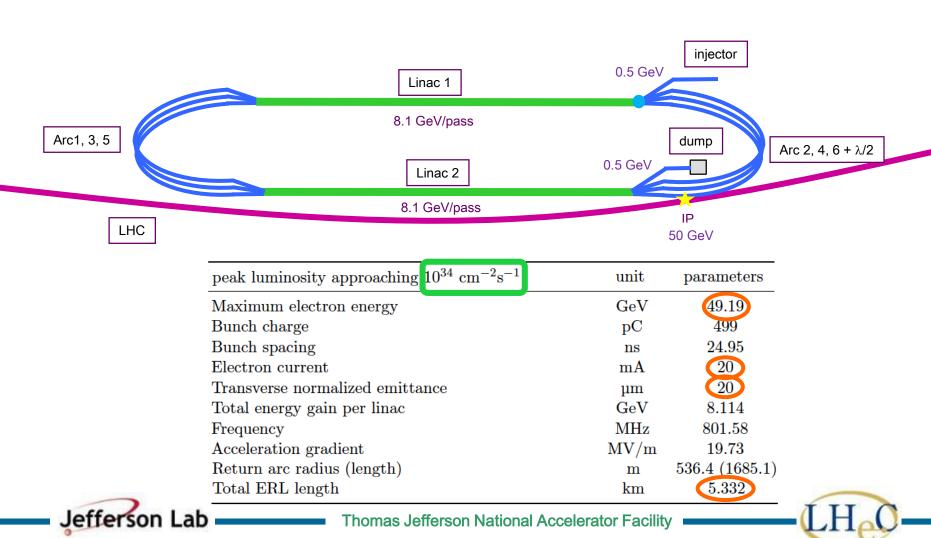
ERL Lattices for the LH_C/FCC-he and PERLE

Alex Bogacz


Overview

- New Baseline 50 GeV ERL
 - Synchrotron radiation effects on beam dynamics
 - Arc optics Emittance preserving lattices & quasi-isochronicity
 - Multi-pass linac optics
 - Energy scaling considerations
- High Energy ERL Options for FCC
 - 60 and 100 GeV ERLs
- PERLE Design
 - Lattice modularity, FMC Arc Optics


LHeC Recirculator with Energy Recovery


LHeC Recirculator with Energy Recovery

LHeC Recirculator with Energy Recovery

Synchrotron Radiation Effects – Beam Dynamics

Synchrotron radiated energy:

$$DE = \frac{2}{3}r_0mc^2g^4I_2$$

$$I_{\mathbf{2}} = \grave{0}_{0}^{L} \frac{1}{r^{2}} ds = \frac{q}{r},$$

Natural energy spread due to quantum excitations:

$$DS_E^2 = \frac{55a}{48\sqrt{3}} (\hbar c)^2 g^7 I_3$$

$$I_3 = \grave{0}_0^L \frac{1}{|r|^3} ds = \frac{q}{r^2},$$

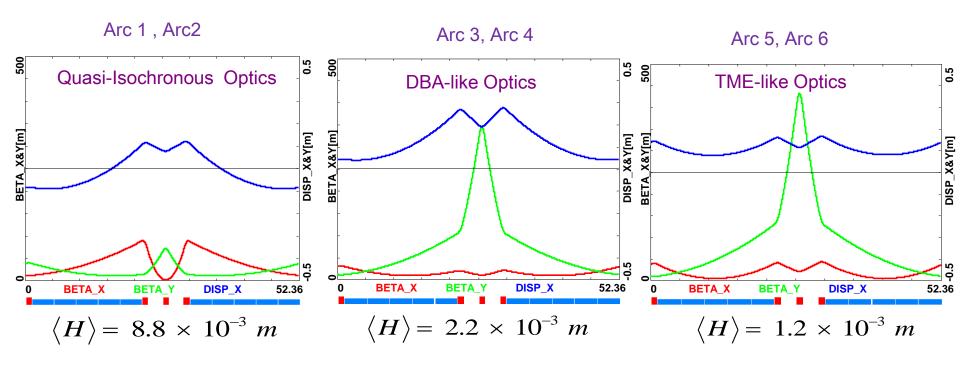
Emittance dilution due to quantum excitations:

$$De = \frac{55r_0}{24\sqrt{3}} \frac{\hbar c}{mc^2} g^5 I_5$$

$$I_{5} = \mathring{0}_{0}^{L} \frac{H}{|r|^{3}} ds = \frac{q\langle H \rangle}{r^{2}},$$

$$H = gD^2 + 2aDD' + bD'^2$$

Momentum Compaction – synchronous acceleration in the linacs:

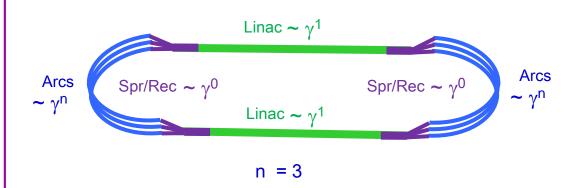

$$M_{56} = \frac{1}{C} I_1$$

$$I_1 = \oint_0^L \frac{D}{r} ds = Q\langle D \rangle$$

Arc Optics – Emittance preserving FMC cells

$$De_{x} = \frac{55r_{0}}{24\sqrt{3}} \frac{\hbar c}{mc^{2}} \frac{g^{5}}{\sqrt{H_{x}}} \left(H_{x}\right) \frac{\rho}{r^{2}} \qquad H_{x} = g_{x}D_{x}^{2} + 2\partial_{x}D_{x}D_{x}^{'} + b_{x}D_{x}^{'2}$$

$$H_{x} = g_{x}D_{x}^{2} + 2\partial_{x}D_{x}D_{x}^{'} + b_{x}D_{x}^{'2}$$


Jefferson Lab

Energy Scaling – Preserving Emittance Dilution

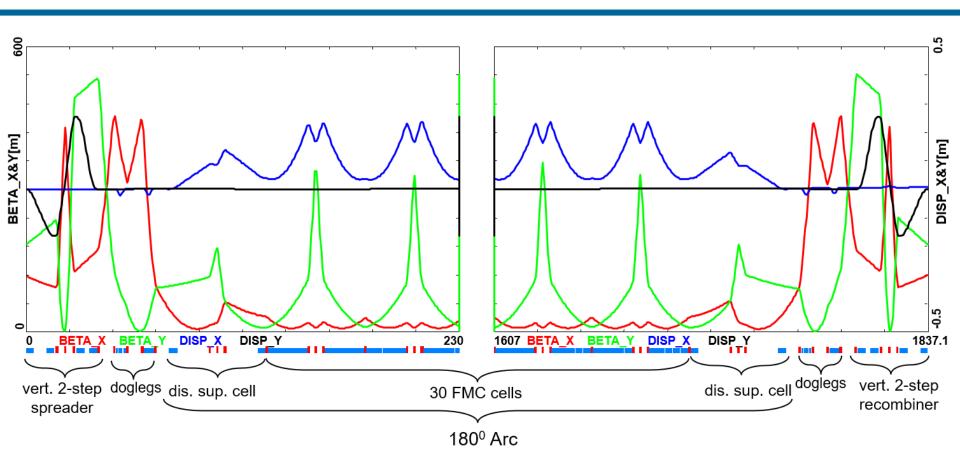
$$\Delta E = rac{2\pi}{3} r_0 \; mc^2 \; rac{\gamma^4}{
ho}, \; {
m Arc} \; {f \sim} \; \gamma^4$$

$$\Delta \epsilon_N = rac{2\pi}{3} C_q r_0 < H > rac{\gamma^6}{
ho^2}, \; {
m Arc} \; {
m agg}$$

$$rac{\Delta\epsilon_E^2}{E^2} = rac{2\pi}{3} C_q r_0 \; rac{\gamma^5}{
ho^2}, \;\; {
m Arc} \sim \gamma^{5/2}$$

1/5		
E [GeV]	49.1	
Linac	824	
Arc Radius [m]	549	
Spr/Rec Matching [m]	76	
Circumference [m]	5400	

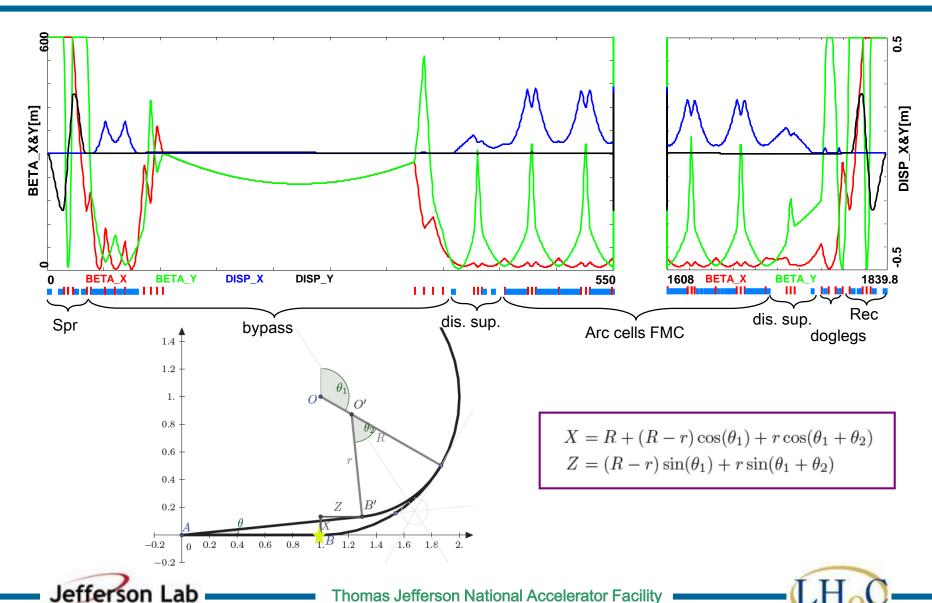
1/3		
E [GeV]	61.1	
Linac	1025	
Arc Radius [m]	1058	
Spr/Rec Matching [m]	76	
Circumference [m]	9000	


1/12		
E [GeV]	31.3	
Linac	525	
Arc Radius [m]	142	
Spr/Rec Matching [m]	76	
Circumference [m]	2248	

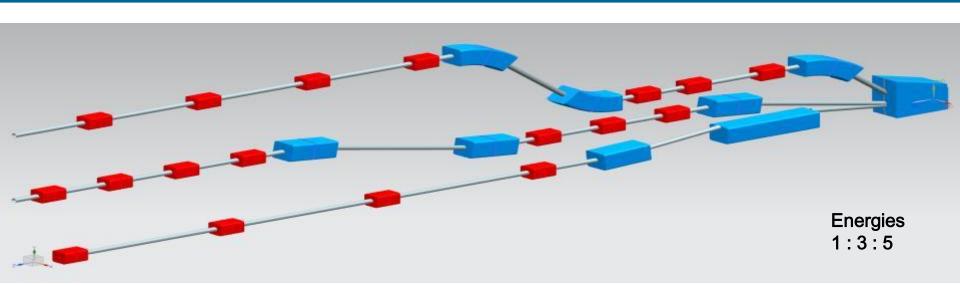
Normailzed Emittance Dilution before IP [mm mrad]

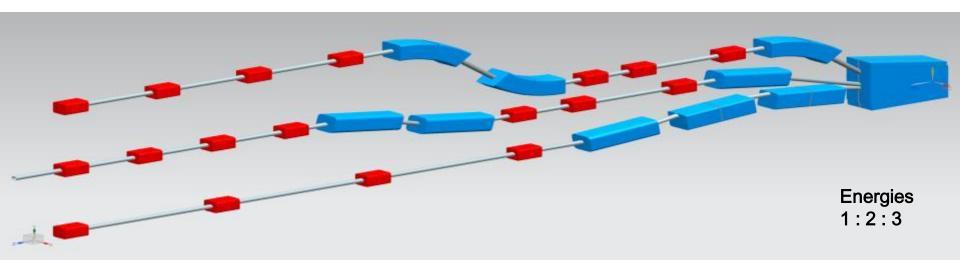
Arc 3 Optics (24.9 GeV)

Arc dipoles:


\$Lb=400 cm

\$B=1.12 kGauss





Arc 4 (with bypass) Optics (33.0 GeV)

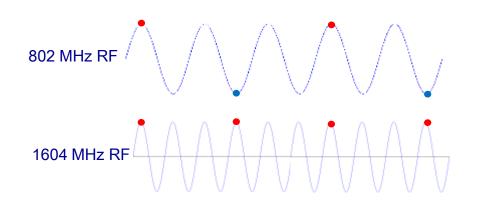
Vertical Switchyard Architecture

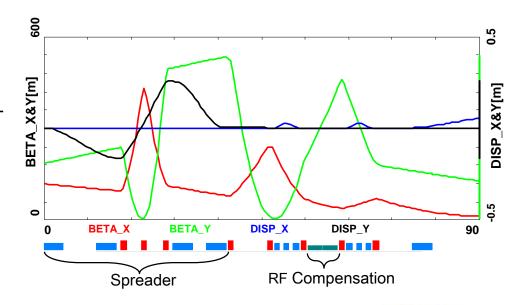
Energy Loss and Emittance Dilution in Arcs

Beamline	Beam energy [GeV]	$\Delta E \; [\mathrm{MeV}]$	$\Delta \epsilon_N \; [ext{mm mrad}]$	$\Delta \sigma_{\frac{\Delta E}{E}}$ [%]
Arc 1	8.62	1	0.0029	0.00044
$\operatorname{Arc} 2$	16.73	9	0.16	0.0028
$\operatorname{Arc} 3$	24.85	42	0.57	0.0090
$\operatorname{Arc} 4$	32.96	131	2.8	0.022
$\operatorname{Arc} 5$	41.08	316	7.4	0.043
Arc 6	49.19	649	21.0	0.078
${ m Arc}~5$	41.08	316	25.6	0.10
$\operatorname{Arc} 4$	32.96	131	27.9	0.11
$\operatorname{Arc} 3$	24.85	42	28.3	0.12
$\operatorname{Arc} 2$	16.73	9	28.4	0.12
Arc 1	8.62	1	28.4	0.12
Dump	0.5		28.4	0.12

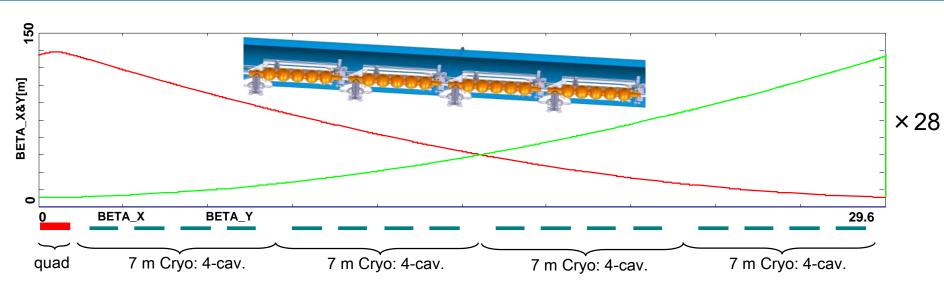
Total Energy Loss [GeV]	1.6
Normailzed Emittance Dilution before IP [mm mrad]	7.4
Net Normailzed Emittance Dilution [mm mrad]	28.4
Net Natural Momentum Spread	0.001

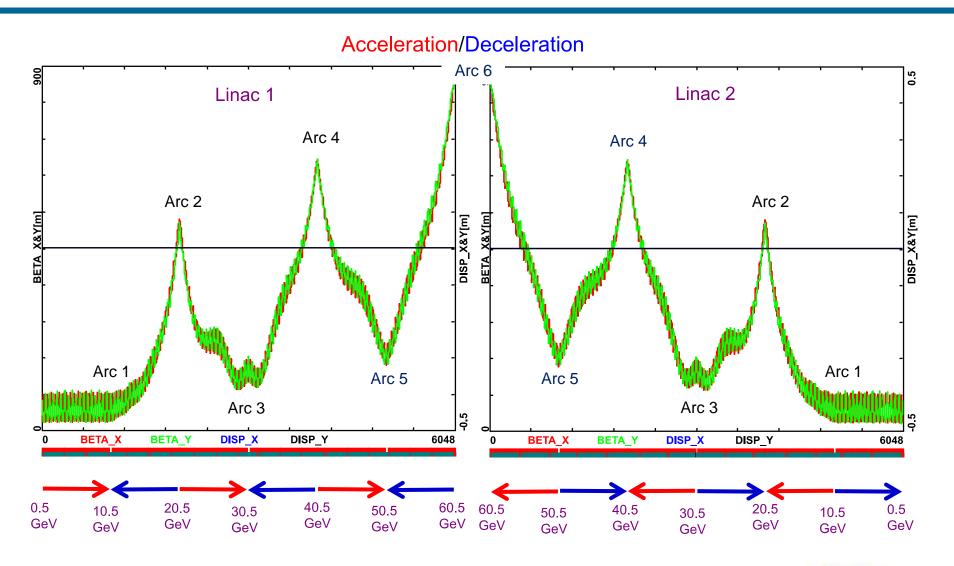
R [m]	536.4
r [m]	398.8


Challenge: decelerating beam (and synchrotron radiation-driven energy spread) adiabatically anti-damp.

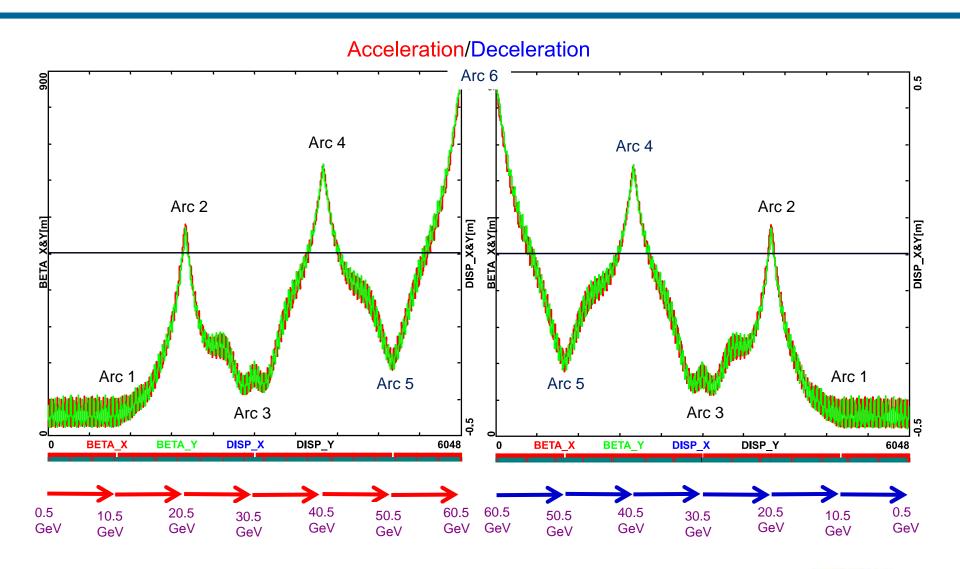


2-nd Harmonics RF Compensation of SR Losses


Arc number	$\Delta E~[\mathrm{MeV}]$	P [MW]	Cryomodules
1	1	0.03	0
2	9	0.4	0
3	42	2.1	1
4	131	6.6	1
5	316	15.8	2
6	649	32.5	5


Cryo Unit Layout/Optics – Half-Cell 130° FODO

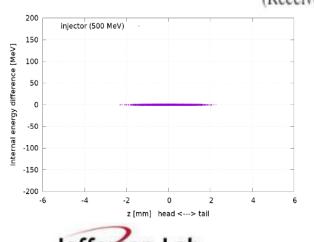
Description	unit	parameters
Total energy gain per linac	${ m GeV}$	8.114
Frequency	MHz	801.58
Acceleration gradient	$\mathrm{MV/m}$	19.73
Cavity iris diameter	$\mathbf{m}\mathbf{m}$	130
Number of cells per cavity		5
Cavity length (active/real estate)	\mathbf{m}	0.918/1.5
Cavities per cryomodule		4
Cryomodule length	\mathbf{m}	7
Length of 4-CM unit	\mathbf{m}	29.6
Acceleration per cryomodule (4-CM unit)	${ m MeV}$	289.8
Total number of cryomodules (4-CM units) per lina	c	112 (28)

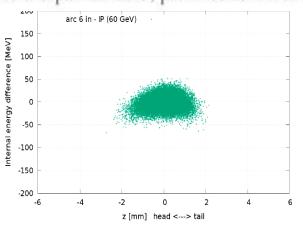


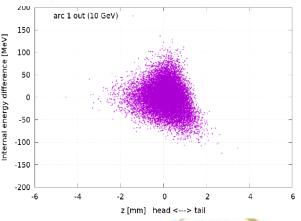
Linac 1 and 2 – Multi-pass ER Optics

Linac 1 and 2 – Multi-pass ER Optics

End-to-End ERL Tracking (PLACET 2)


PHYSICAL REVIEW SPECIAL TOPICS—ACCELERATORS AND BEAMS 18, 121004 (2015)


Beam-dynamics driven design of the LHeC energy-recovery linac


Dario Pellegrini, Andrea Latina, and Daniel Schulte CERN, Geneva CH-1211, Switzerland

S. Alex Bogacz

Jefferson Lab, Newport News, Virginia 23606, USA (Received 3 September 2015; published 23 December 2015)

Jefferson Lab

FCC-he ERLs

EDMS 17979910 | FCC-ACC-RPT-0012

V1.0, 6 April, 2017

Future Circular Collider Study FCC-he Baseline Parameters

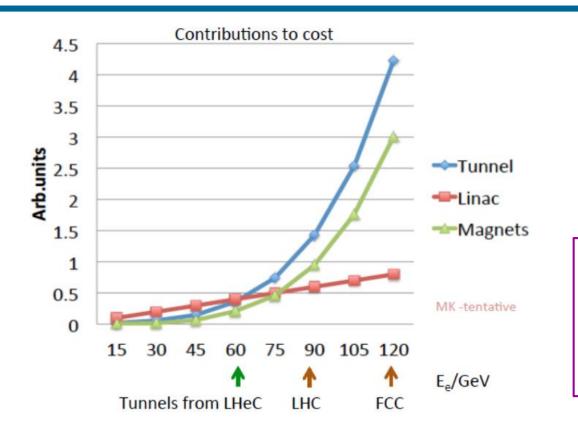
Oliver Brüning¹, John Jowett¹, Max Klein², Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹

¹ CERN, ² University of Liverpool

Parameter	Unit	Protons	Electrons
Beam energy	${ m GeV}$	50000	60
Normalised emittance	$ m \mu m$	$2.2 \rightarrow 1.1$	10
IP betafunction	mm	150	$42 \rightarrow 52$
Nominal RMS beam size	$ m \mu m$	$2.5 \rightarrow 1.8$	$1.9 \rightarrow 2.1$
Waist shift	$_{ m mm}$	0	$65 \rightarrow 70$
Bunch population	10^{10}	$10 \rightarrow 5$	0.31
Bunch spacing	ns	25	25
Luminosity	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	18.3 -	→ 14.3
Int. luminosity per 10 years	$[ab^{-1}]$	1.2	

FCC-he ERLs

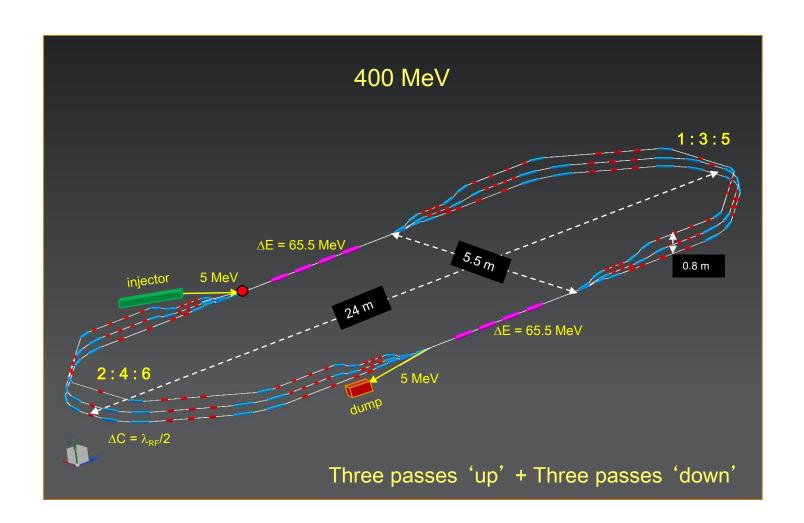
Parameter	Unit	Protons	Electrons
Beam energy	${ m GeV}$	50000	60
Normalised emittance	$ m \mu m$	$2.2 \rightarrow 1.1$	10
IP betafunction	$_{ m mm}$	150	$42 \rightarrow 52$
Nominal RMS beam size	$ m \mu m$	$2.5 \rightarrow 1.8$	$1.9 \rightarrow 2.1$
Waist shift	$_{ m mm}$	0	$65 \rightarrow 70$
Bunch population	10^{10}	$10 \rightarrow 5$	0.31
Bunch spacing	$_{ m ns}$	25	25
Luminosity	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	$18.3 \rightarrow 14.3$	
Int. luminosity per 10 years	$[\mathrm{ab}^{-1}]$	1.2	


$$\Delta E = \frac{2\pi}{3} r_0 \ mc^2 \left(\frac{\gamma^4}{\rho} \right)$$

FCC - 100 GeV		
E [GeV]	100.0	
Linac	1677	
Arc Radius [m]	[m] 7716	
Spr/Rec Matching [m]	76	
Circumference [m]	52139	

Energy dependence of the main component cost

$$\Delta E = rac{2\pi}{3} r_0 \ mc^2 \ rac{\gamma^4}{
ho}$$
 Arc ~ γ^4


$$\Delta\epsilon = \frac{2\pi}{3}C_qr_0 < H > \frac{\gamma^5}{\rho^2}$$

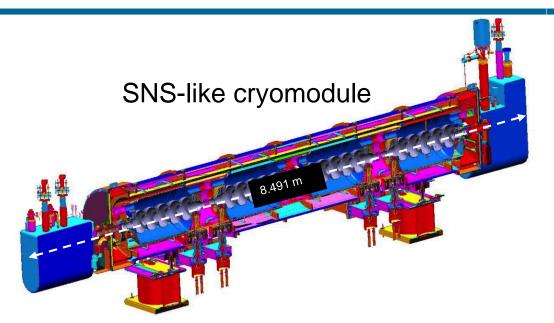
$$\Delta\epsilon = \frac{2\pi}{3}C_qr_0 < H > \frac{\gamma^5}{\rho^2}$$
 Arc $\sim \gamma^{5/2}$
$$\frac{\Delta\epsilon_E^2}{E^2} = \frac{2\pi}{3}C_qr_0 \ \frac{\gamma^5}{\rho^2},$$

The LHeC ERL at 60 GeV (about 9 km), for which linac and tunnel cost would be approximately equal and the magnet cost would be slightly smaller. If one used a tunnel of the LHC size (triple the original ERL circumference), the tunnel cost would dominate, while the linac and magnet costs would stay comparable up to about 90 GeV.

PERLE@Orsay - Layout

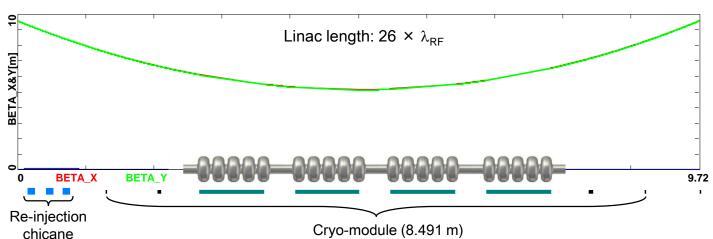
Alex Bogacz

PERLE@Orsay - Baseline Parameters PERLE


TARGET PARAMETER	VALUE	3
Injection energy [MeV]	5	
Maximum energy [MeV]	400	
Normalised emittance $\gamma \varepsilon_{x,y}$ [mm mrad]	6	
Average beam current [mA]	15	(375 pC)
Bunch spacing [ns]	25	(20th sub-harmonic)
Bunch length (rms) [mm]	3	
RF frequency [MHz]	801.58	
Duty factor	CW	

Alex Bogacz

Linac, Cryo-module - Layout

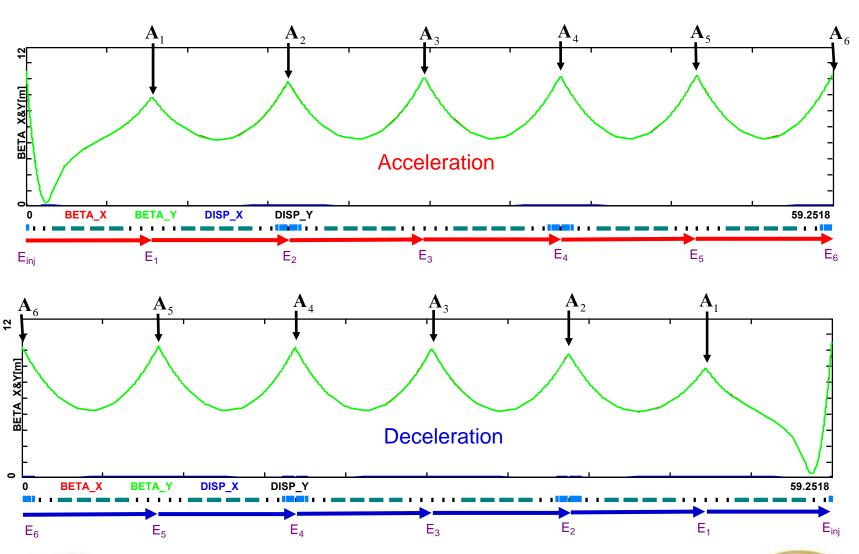

801.58 MHz RF, 5-cell cavity:

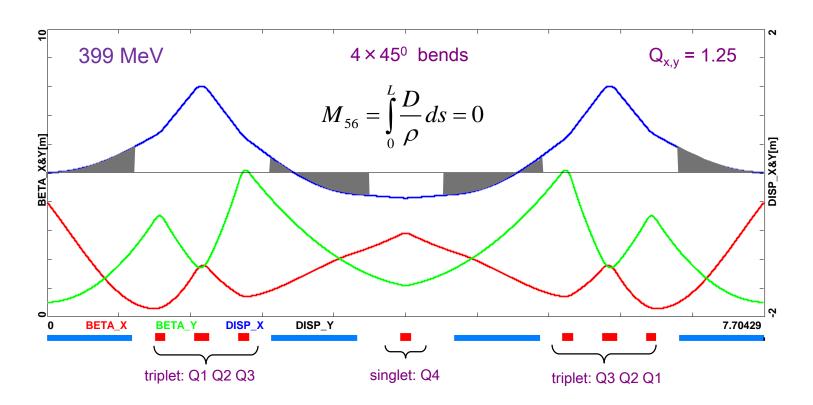
 λ = 37.40 cm

 $L_c = 5\lambda/2 = 93.50 \text{ cm}$

Grad = 17.5 MeV/m (16.4 MeV per cavity)

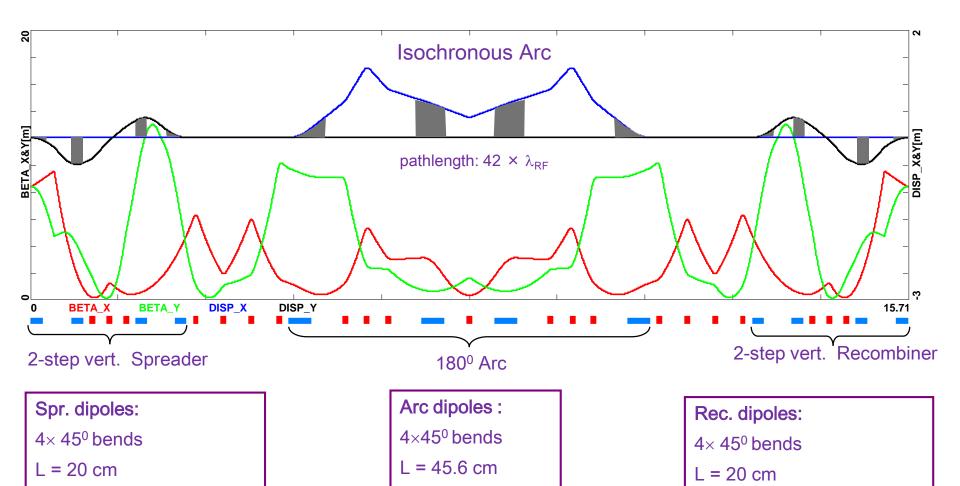
 ΔE = 65.5 MeV per Cryo-module




Multi-pass ER Optics

Arc 6 (5,4) Optics – FMC Lattice

Dipoles: (91.2 cm long)


B = 1.2 Tesla

Quadrupo	Quadrupoles:		
Q1 Q2	L[cm] =15	G[T/m] = - 23.6 G[T/m] = 28.2	
Q3 Q4	L[cm] =10 L[cm] =10	G[T/m] = - 22.4 G[T/m] = 8.6	

Arc 1 Optics (71 MeV)

quads: L = 10 cm

 $G \le 1 kGauss/cm$

Thomas Jefferson National Accelerator Facility

B = 4.5 kGauss

B = 9.5 kGauss

B = 9.5 kGauss

Summary

- 50 GeV ERL Baseline
 - Lower energy options $-\frac{1}{5}$ of the LHC circumference
 - All lattice building blocks are available from 60 GeV design
 - Same performance in terms of synchrotron radiation effects
- FCC High Energy Options (60 and 100 GeV)
 - Same performance in terms of synchrotron radiation effects
- PERLE@Orsay (400 MeV)
 - 'test bed' for next generation of high power ERLs
 - 'lean design', fewer magnet varieties, 1.2 Tesla curved bends
 - Flexible Momentum Compaction Optics

Alex Bogacz

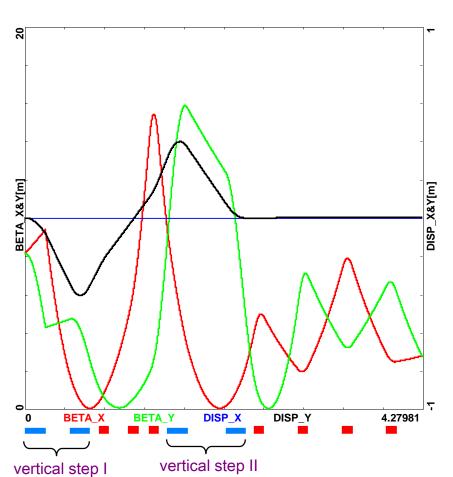
Special Thanks to:

Max Klein
and
Oliver Brüning

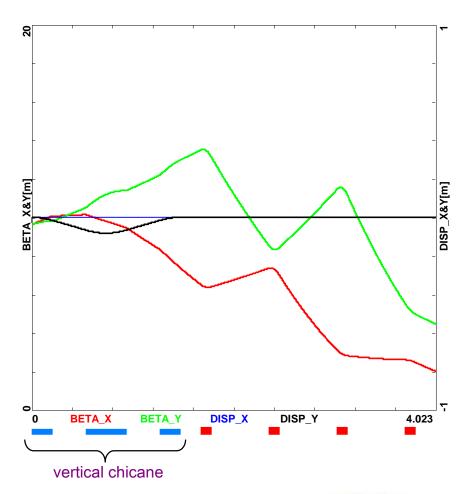
Thank you for your attention!

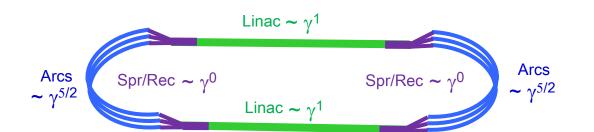
Alex Bogacz

Backup Slides



Alex Bogacz


Vertical Spreaders – Optics

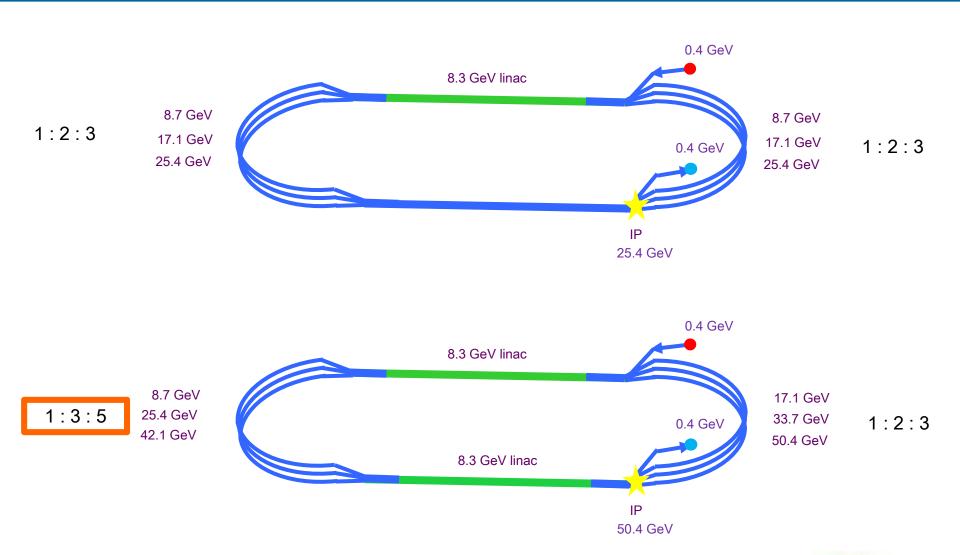

Spr. 5 (333 MeV)

Energy Scaling – Preserving Emittance Dilution

$$De_{x} = \frac{55r_{0}}{24\sqrt{3}} \frac{\hbar c}{mc^{2}} g^{5} \langle H_{x} \rangle \frac{\rho}{r^{2}}$$

Cavity gradient [MV/m]	19.73
Cryo-unit length [m]	29.60
Energy gain /cryo-unit [MeV]	289.83
Number of cryo-units	28.00
Linac length [m]	828.80
Linac energy [GeV]	8.12
Net energy gain [GeV]	48.69
Injection Energy [GeV]	0.50
Total Energy [GeV]	49.19

Circumference [m]	5331.8
Linac [m]	828.8
Straight [m]	76.0
Arc [m]	1685.1
R [m]	536.4


25 to 50 GeV ERL – Staging

25 to 50 GeV ERL – Staging

