ERL Lattices for the LHO/FCC-he and PERLE

Alex Bogacz

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Overview

- New Baseline 50 GeV ERL
 - Synchrotron radiation effects on beam dynamics
 - Energy scaling considerations
 - Arc optics Emittance preserving lattices & quasi-isochronicity
 - Multi-pass linac optics
- High Energy ERL Options for FCC
 - 60 and 100 GeV ERLs
- PERLE Design
 - Lattice modularity, FMC Arc Optics

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

LHeC Recirculator with Energy Recovery

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Alex Bogacz

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

LHeC Recirculator with Energy Recovery

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019 Alex Bogacz

LHeC Recirculator with Energy Recovery

Synchrotron Radiation Effects – Beam Dynamics

Synchrotron radiated energy:

$$DE = \frac{2}{3}r_0mc^2g^4I_2$$

$$I_{\mathbf{2}} = \check{\mathbf{0}}_{0}^{L} \frac{1}{r^{2}} ds = \frac{q}{r},$$

Natural energy spread due to quantum excitations:

$$DS_E^2 = \frac{55\partial}{48\sqrt{3}} (\hbar c)^2 g^7 I_3$$

$$I_{3} = 0_{0}^{L} \frac{1}{|r|^{3}} ds = \frac{q}{r^{2}},$$

Emittance dilution due to quantum excitations:

$$De = \frac{55r_0}{24\sqrt{3}} \frac{\hbar c}{mc^2} g^5 I_5$$

$$I_{5} = \overset{L}{\underbrace{0}} \frac{H}{|r|^{3}} ds = \frac{q\langle H \rangle}{r^{2}},$$

 $H = gD^2 + 2\partial DD' + bD'^2$

Momentum Compaction – synchronous acceleration in the linacs:

$$M_{56} = \frac{1}{C} I_1$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Alex Bogacz

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

 $l_1 = \dot{0} \frac{D}{\Gamma} ds \left(= Q \langle D \rangle \right)$

Arc Optics – Emittance preserving FMC cells

$$De_{x} = \frac{55r_{0}}{24\sqrt{3}} \frac{\hbar c}{mc^{2}} g^{5} \langle H_{x} \rangle \frac{\rho}{r^{2}} \qquad H_{x} = g_{x} D_{x}^{2} + 2a_{x} D_{x} D_{x}^{'} + b_{x} D_{x}^{'2}$$

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Alex Bogacz

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019 7

Energy Scaling – Preserving Emittance Dilution

$$\begin{split} \Delta E &= \frac{2\pi}{3} r_0 \ mc^2 \ \frac{\gamma^4}{\rho}, \ \text{Arc} \sim \gamma^4 \\ \Delta \epsilon_N &= \frac{2\pi}{3} C_q r_0 < H > \frac{\gamma^6}{\rho^2}, \ \text{Arc} \sim \gamma^3 \\ \frac{\Delta \epsilon_E^2}{E^2} &= \frac{2\pi}{3} C_q r_0 \ \frac{\gamma^5}{\rho^2}, \ \text{Arc} \sim \gamma^{5/2} \end{split}$$

$\frac{1}{3}$		
E [GeV]	61.1	
Linac	1025	
Arc Radius [m]	1058	
Spr/Rec Matching [m]	76	
Circumference [m]	9000	

1/12		
E [GeV]	31.3	
Linac	525	
Arc Radius [m]	142	
Spr/Rec Matching [m]	76	
Circumference [m]	2248	

Normailzed Emittance Dilution before IP [mm mrad] Jefferson Lab

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

7.4

Arc 3 Optics (24.9 GeV)

Arc 4 (with bypass) Optics (33.0 GeV)

Vertical Switchyard Architecture

Energy Loss and Emittance Dilution in Arcs

Beamline	Beam energy $[GeV]$	$\Delta E \ [\text{MeV}]$	$\Delta \epsilon_N \text{ [mm mrad]}$	$\Delta \sigma_{\frac{\Delta E}{E}}$ [%]	
Arc 1	8.62	1	0.0029	0.00044	
Arc 2	16.73	9	0.16	0.0028	
Arc 3	24.85	42	0.57	0.0090	
Arc 4	32.96	131	2.8	0.022	
Arc 5	41.08	316	7.4	0.043	
Arc 6	49.19	649	21.0	0.078	
Arc 5	41.08	316	25.6	0.10	
Arc 4	32.96	131	27.9	0.11	
Arc 3	24.85	42	28.3	0.12	
Arc 2	16.73	9	28.4	0.12	
Arc 1	8.62	1	28.4	0.12	
Dump	0.5		28.4	0.12	$\Delta \sigma_{\Delta E} =$

Total Energy Loss [GeV]	1.6
Normailzed Emittance Dilution before IP [mm mrad]	7.4
Net Normailzed Emittance Dilution [mm mrad]	28.4
Net Natural Momentum Spread	0.001

R [m]	536.4
r [m]	398.8

Challenge: decelerating beam (and synchrotron radiation-driven energy spread) adiabatically **anti-**damp.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019 12

2-nd Harmonics RF Compensation of SR Losses

Cryo Unit Layout/Optics – Half-Cell 130^o FODO

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Linac 1 and 2 – Multi-pass ER Optics

Linac 1 and 2 – Multi-pass ER Optics

End-to-End ERL Tracking (PLACET 2)

PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS 18, 121004 (2015)

Beam-dynamics driven design of the LHeC energy-recovery linac

Dario Pellegrini, Andrea Latina, and Daniel Schulte CERN, Geneva CH-1211, Switzerland

S. Alex Bogacz

Jefferson Lab, Newport News, Virginia 23606, USA (Received 3 September 2015; published 23 December 2015)

Operated by JSA for the U.S. Department of Energy

Alex Bogacz Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

FCC-he ERLs

EDMS 17979910 | FCC-ACC-RPT-0012

V1.0, 6 April, 2017

Future Circular Collider Study FCC-he Baseline Parameters

Oliver Brüning¹, John Jowett¹, Max Klein², Dario Pellegrini¹, Daniel Schulte¹, Frank Zimmermann¹ ¹ CERN, ² University of Liverpool

Parameter	Unit	Protons	Electrons
Beam energy	${ m GeV}$	50000	60
Normalised emittance	$\mu { m m}$	$2.2 \rightarrow 1.1$	10
IP betafunction	$\mathbf{m}\mathbf{m}$	150	$42 \rightarrow 52$
Nominal RMS beam size	$\mu { m m}$	$2.5 \rightarrow 1.8$	$1.9 \rightarrow 2.1$
Waist shift	$\mathbf{m}\mathbf{m}$	0	$65 \rightarrow 70$
Bunch population	10^{10}	$10 \rightarrow 5$	0.31
Bunch spacing	\mathbf{ns}	25	25
Luminosity	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	18.3 –	→ 14.3
Int. luminosity per 10 years	$[\mathrm{ab}^{-1}]$	1.2	

FCC-he ERLs

Parameter	Unit	Protons	Electrons
Beam energy	${ m GeV}$	50000	60
Normalised emittance	$\mu{ m m}$	$2.2 \rightarrow 1.1$	10
IP betafunction	$\mathbf{m}\mathbf{m}$	150	$42 \rightarrow 52$
Nominal RMS beam size	$\mu { m m}$	$2.5 \rightarrow 1.8$	$1.9 \rightarrow 2.1$
Waist shift	$\mathbf{m}\mathbf{m}$	0	$65 \rightarrow 70$
Bunch population	10^{10}	$10 \rightarrow 5$	0.31
Bunch spacing	\mathbf{ns}	25	25
Luminosity	$10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	18.3 -	→ 14.3
Int. luminosity per 10 years	$[\mathrm{ab}^{-1}]$	1.2	

$$\Delta E = \frac{2\pi}{3} r_0 \ mc^2 \left(\frac{\gamma^4}{\rho} \right)$$

FCC - 100 GeV

E [GeV]	100.0
Linac	1677
Arc Radius [m]	7716
Spr/Rec Matching [m]	76
Circumference [m]	52139

Energy dependence of the main component cost

The LHeC ERL at 60 GeV (about 9 km), for which linac and tunnel cost would be approximately equal and the magnet cost would be slightly smaller. If one used a tunnel of the LHC size (triple the original ERL circumference), the tunnel cost would dominate, while the linac and magnet costs would stay comparable up to about 90 GeV.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

PERLE@Orsay - Layout

Thomas Jefferson National Accelerator Facility

-UHO-

Operated by JSA for the U.S. Department of Energy

Alex Bogacz E

Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

TARGET PARAMETER	VALU	Ξ
Injection energy [MeV]	5	
Maximum energy [MeV]	400	
Normalised emittance $\gamma \varepsilon_{x,y}$ [mm mrad]	6	
Average beam current [mA]	15	(375 pC)
Bunch spacing [ns]	25	(20 th sub-harmonic)
Bunch length (rms) [mm]	3	
RF frequency [MHz]	801.58	
Duty factor	CW	

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019 22

Linac, Cryo-module - Layout

Multi-pass ER Optics

Arc 6 (5,4) Optics – FMC Lattice

Arc 1 Optics (71 MeV)

Summary

50 GeV ERL Baseline

- Lower energy options $-\frac{1}{5}$ of the LHC circumference
- All lattice building blocks are available from 60 GeV design
- Same performance in terms of synchrotron radiation effects
- FCC High Energy Options (60 and 100 GeV)
 - Same performance in terms of synchrotron radiation effects
- PERLE@Orsay (400 MeV)
 - 'test bed' for next generation of high power ERLs
 - Iean design', fewer magnet varieties, 1.2 Tesla curved bends
 - Flexible Momentum Compaction Optics

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jeffe

Alex Bogacz Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019 27

Special Thanks to:

Max Klein and Oliver Brüning

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Alex Bogacz

z Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

Thank you for your attention!

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Alex Bogacz

z Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

Backup Slides

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Alex Bogacz

z Electrons for the LHC, Chavannes-de-Bogis, Switzerland, Oct. 25, 2019

Vertical Spreaders – Optics

Energy Scaling – Preserving Emittance Dilution

Cavity gradient [MV/m]	19.73
Cryo-unit length [m]	29.60
Energy gain /cryo-unit [MeV]	289.83
Number of cryo-units	28.00
Linac length [m]	828.80
Linac energy [GeV]	8.12
Net energy gain [GeV]	48.69
Injection Energy [GeV]	0.50
Total Energy [GeV]	49.19

Circumference [m]	5331.8
Linac [m]	828.8
Straight [m]	76.0
Arc [m]	1685.1
R [m]	536.4

25 to 50 GeV ERL – Staging

25 to 50 GeV ERL – Staging

