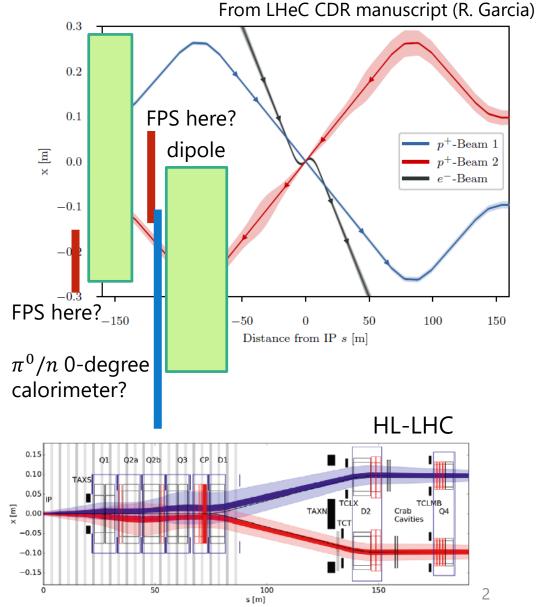
Special thanks to Rogelio Garcia, Alessandro Polini, Peter Kostka and Paul Newman

Forward Detectors

Electrons for the LHC: Workshop on the LHeC, FCC-eh and PERLE 25 October 2019 Yuji Yamazaki (Kobe University)

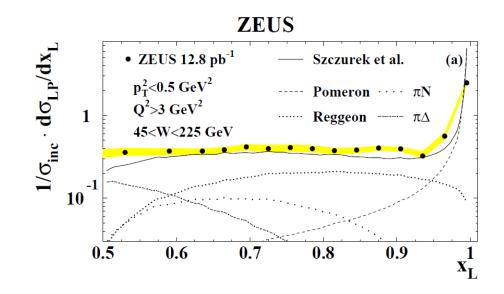

Forward detectors at the LHeC

IP design with ERL recently available

- Proton spectrometer
 - Difference in bending scheme and space from *pp* IP's
- π^0 + neutron zero-degree calorimeter (ZDC)
 - Space? Aperture?

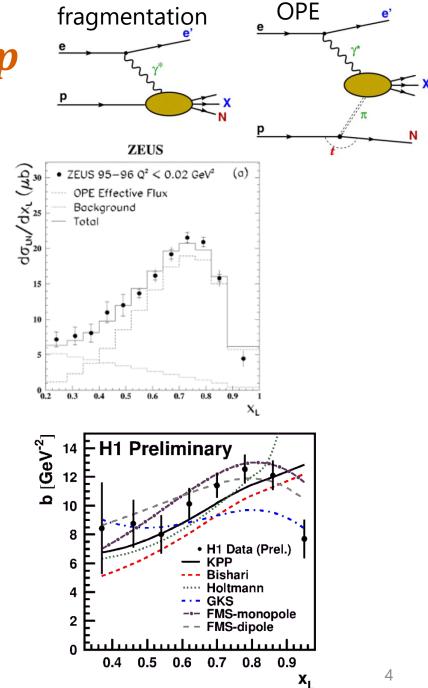
To be or not to be?

First qualitative estimation today No real simulation No guarantee


Physics with proton tagging for ep

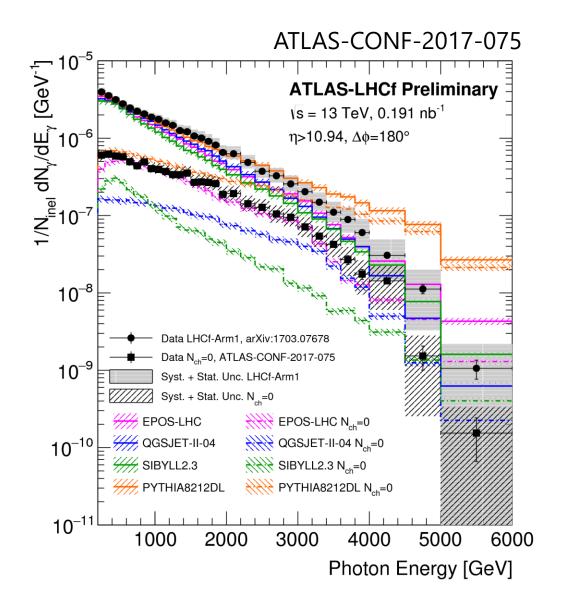
- Exclusive measurements
 - Diffraction, VM production (Anna, Paul ...)
 - QED processes $ep \rightarrow e\gamma p$ etc.
 - Higgs thru WW fusion, reconstruction via elastically scattered proton (??)

Soft vertex: $\xi = 1 - x_F \ll 1$, $p_T \simeq \Lambda_{QCD} \approx O(200 \text{MeV})$

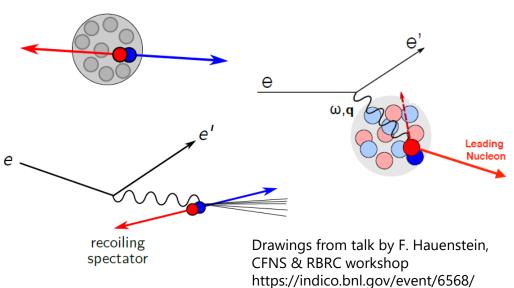

 \Rightarrow 10⁻³ < ξ < 0.05 (or larger), p_T < a few GeV

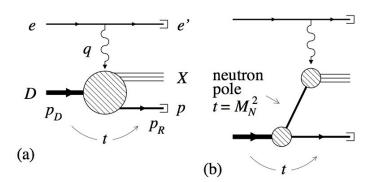
- Inclusive measurements Spectrum of slower leading protons ($x_F < 1$)
- $\Rightarrow \text{lower } x_F, \text{ larger } p_T$ also interesting

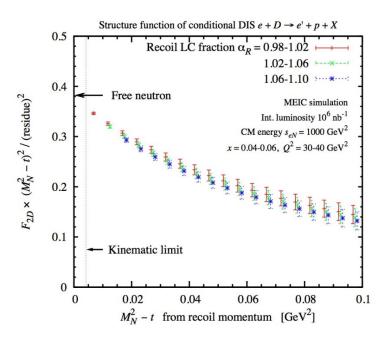
Neutron tagging for ep


- Inclusive measurement @ HERA:
 - supporting one-pion exchange
 - b-slope (~ 8 GeV⁻²)
 compared to various models
 of pion fluxes
- 0.1 < x_F ≤ 1 and
 >1 GeV in p_T needed
 - Effectively wider aperture at the LHeC (7 vs 1 TeV) than HERA $p_T^{max} = p\theta_{max}(1 - x_F)$

π^0 production by LHCf and ATLAS

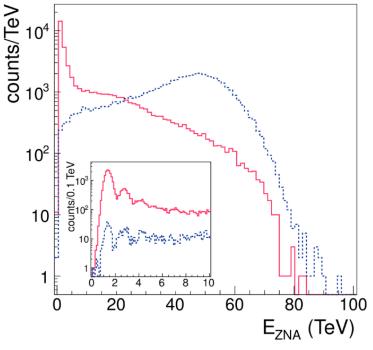

- Impact to cosmic ray simulation
- π^0 tagging thanks to excellent position resolution of the LHCf calorimeter (200 µm for 100 GeV e^-)
- Diffractive events tagged by LRG in ATLAS


Need EM section with excellent position resolution

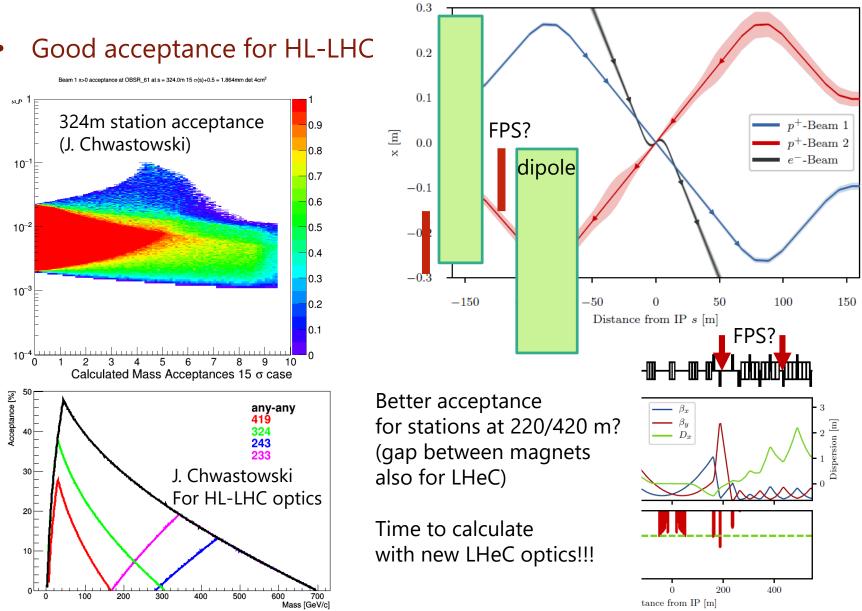


Proton/neutron tagged eD/eA DIS

- Proton-tagged *eD* and *eA* scattering
 - $e(p+n) \rightarrow en + p$ DIS for neutron!
 - Way to understand
 nuclear (EMC) effect
 or short-range correlation (SRC)
 by comparing small and large system
- Neutron-tagged (ep + n):
 - Cross-check with *ep* runs

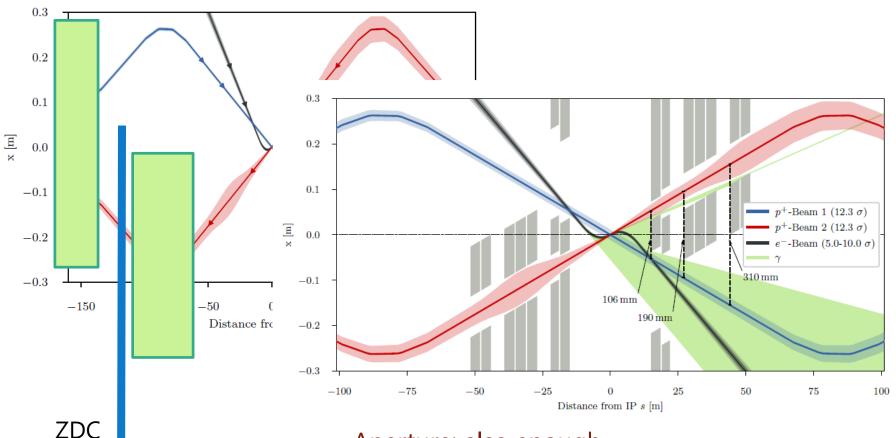

J.Phys.Conf.Ser. 543 (2014) 012007

For bigger nucleus


- Diffraction and Ultra-Peripheral Collisions (UPC) : A may break up (Brian's talk)
 - multiplicity and energy of neutron vs t ?
 - Dissociated particles tagged by FPS? (Paul's talk 2018)
- Geometry (e.g. centrality) determination

need to measure beyond 100 TeV

ALICE ZDC (A-side) with and without activities in plug area 2.76 TeV run


Proton: acceptance and resolution

Zero-degree calorimeter (ZDC) requirement

- Energy resolution:
 - high energy \Rightarrow stochastic term not very important
 - dominated by
 - Non-compensation (e/h)
 - Leak: need big calorimeter
- Position resolution:
 - 70 MeV : 7 TeV = 10^{-5} = 0.01mrad ⇒ **1 mm** @ z = 100m **for neutrons**
 - Need very fine segmentation EM section to track particles from primary interaction
- Dynamic range

ZDC requirement (2) aperture and space

Big calorimeter like

 $60 \times 60 \times 200$ cm possible for good energy resolution!

Aperture: also enough

- 0.35 mrad or **2.4 GeV** p_T @ 7 TeV beam assuming LHC magnet the aperture is ± 35 mm
- Horizontal aperture would be larger

Running scenario

• Nominal run for $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$:

 $\beta^* = 5 \text{ cm}, \sigma(p_T) = 8 \times 10^{-5} \text{ rad} \times 7 \text{ TeV} = 0.56 \text{ GeV}$

- Too large beam dispersion for soft physics
- In principle one could retract the calorimeter for high lumi runs?
- Or, replace with ZDC with minimum function (with fused silica etc.)
- **need** $\boldsymbol{\beta}^* \gtrsim \mathbf{1m}$ **run:** $\sigma(p_T) \ll 100$ MeV
 - $L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$: should be ~enough for soft / low-x physics?

Radiation dose

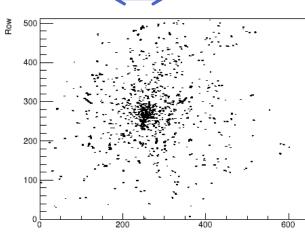
7 TeV dose / event ~ 3×10^{-7} Joule / event

ep cross section: 68 µb \rightarrow 680 kHz @ 10³⁴ cm⁻²s⁻¹ \rightarrow 1.8 Joule/s

- LHCf simulation (about $1\lambda_I$):
 - 1/3 of dose in 1kg material (30Gy/nb for pp)
- For *ep* this corresponds to 0.6 Gy/sec \Rightarrow 6 MGy / year @ 10³⁴

$$\sigma_{ep}$$
: $10^{-3}\sigma_{pp}$

From beam-gas: much smaller: O(100kHz)


Radiation ~ O(10MGy) for 1-year operation: way below LHC *pp*

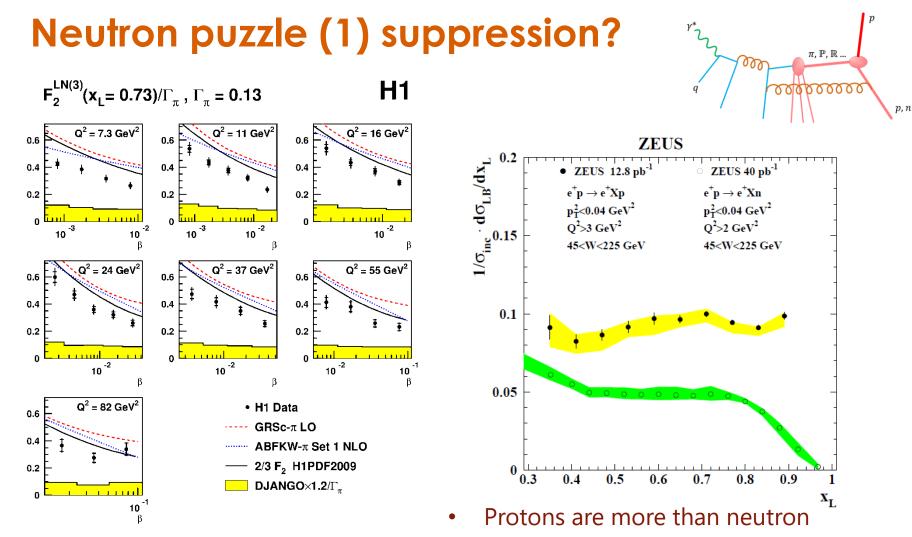
Technology on market

3mm (30um sensor size)

Radiation ~ O(10MGy)

- For EM section: silicon-based fine-segmentation calorimeter for position resolution + SW compensation
 - **CMS forward calorimeter** (Si + Scintillators) Operation at $-30 \text{ C}^{\circ} \Rightarrow \text{OK for } n_{eq} \sim 10^{16}$ Si sensor: $\sim 0.5 - 1 \text{ cm}^2$

ALICE FoCal (EM section: MAPS + pads)
 Very fine shower image, also for neutron tracking


N. van der Kolk, NIMA (2019), https://doi.org/10.1016/j.nima.2019.04.013

- For Hadcal: cheaper options with compensation?
 - Good e/h: plastic scintillators + lead CMS uses for $n_{eq} < 3 \times 10^{13} \sim 0(1 \text{MGy})$
 - Or full silicon calorimeter

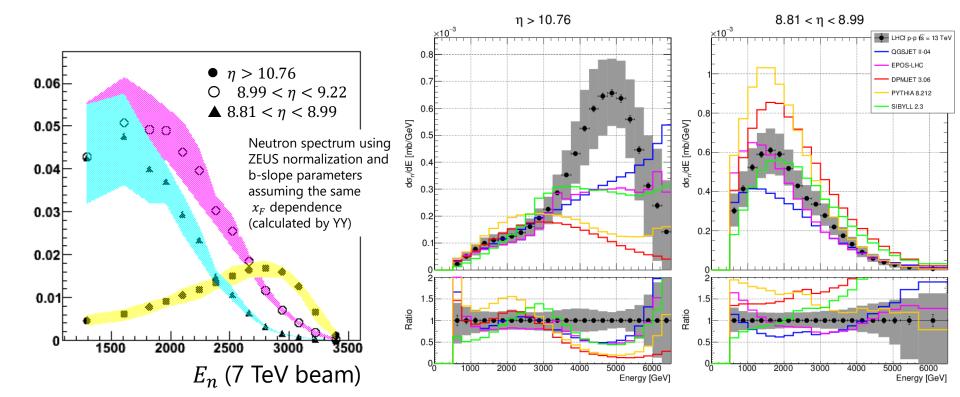
Summary

- New ERL IP design seems to allow us to place
 - A big ZDC with enough aperture
 - ... and spaces to place forward proton spectrometers
- Requirement for ZDC
 - Need 1mm position resolution for neutron
 - Radiation is low enough: silicon for EM

BACKUP

Again no consistent

with isovector exch.


Where did neutron disappear?

- Neutron yield is 20-30% fewer than naïve prediction of p : n = 1:2 expected from isovector exchange
- Absorbtion? Rescattering?

16

Neutron puzzle (2): pp vs ep

- Limited fragmentation \Rightarrow the same spectra
- LHCf data similar but models suggest harder spectrum at $x_F \sim 1$
 - due to projectile fragmentation? $pp \rightarrow N^* + Y$, $N^* \rightarrow n + (hadrons)$
 - Corresponding to proton dissociation for *ep* DIS: $\gamma^* p \rightarrow XN^*$ LRG-tagged neutron?

