Novel Physics Opportunities at the LHeC

Stan Brodsky 든느를 NATIONAL ACCELERATOR LABORATORY

ELECTRONS FOR THE LHC: Workshop on the LHeC, FCC-eh and PERLE
October 24, 2019

The LHeC

$s_{e p}=\left(p_{e}+p_{p}\right)^{2}=4 E_{e} E_{p}=4 \times 60 \mathrm{GeV} \times 7 \mathrm{TeV} \simeq 1.7 \mathrm{Te} V^{2}$
Equivalent to an e-p collider in the CM:

$$
E_{e}^{C M}=E_{p}^{C M} \simeq 650 \mathrm{GeV} \quad \sqrt{s}_{e p} \simeq 1.3 \mathrm{TeV}
$$

Equivalent to SLAC Fixed-Target DIS with $E_{e}^{F T} \simeq 900 \mathrm{TeV}$

(A SLAC Linear Accelerator: 60,000 Mïles Long!)

$$
x_{b j}=\frac{Q^{2}}{2 q \cdot p}>10^{-7} \text { for } Q^{2}>1 G e V^{2}
$$

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky
S느를

Precise Higgs Factory

Test Higgs Emission from the W at the LHeC

$W^{-} u \rightarrow H d$

$W^{-} c \rightarrow H b$

Intrinsic Charm at high x

Test $\gamma b \rightarrow H b^{\prime}$

$b(x, Q)$ at high x (Intrinsic Bottom)

Crucial Physics for the LHeC

Test for Lepton/Quark Compositeness at the LFeC

Measure $\frac{d \sigma}{d t}\left(e q \rightarrow e^{\prime} q^{\prime}\right)$ at very high Q^{2}

Test for Lepto-Quarks at the LHeC

s - channel resonance : $e q \rightarrow[\ell q] \rightarrow e^{\prime} q^{\prime}$ at $\hat{s}=m_{\ell q}^{2}$

Radiation-A mplitude Zero at the LHeC

$$
\gamma W^{+} \rightarrow c \bar{b}
$$

$$
\begin{aligned}
& \frac{d \sigma}{d t}\left(W^{+} \gamma \rightarrow c \bar{b}\right)=0 \\
& \text { at } \cos \theta=\frac{e_{\bar{b}}}{e_{W^{+}}}=\frac{1}{3} \\
& \text { Tests } g_{W}=g_{q}=2
\end{aligned}
$$

Fundamental Standard Model Physics Tests at the LFteC

Elimination of Scale Ambiguities!

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky
오느N으응

An Important Theoretical Physics Advance for the LHeC

BLM/PMC Principle of Maximum Conformality

$$
\alpha_{s}\left(q^{2}\right) \text { sums all } \beta \text { terms }
$$

- Eliminates renormalization scale ambiguities for PQCD and SM predictions
- Predictions are independent of scheme and initial scale choice
- Convergent conformal series: No "renormalons" $C_{n} \sim \alpha_{s}^{n} \beta_{o}^{n} n$!
- Consistent with Gell-Mann Low for QED

$$
\alpha(t)=\frac{\alpha\left(t_{o}\right)}{1-\Pi\left(t, t_{0}\right)}
$$

- Eliminates many outstanding conflicts of pQCD with experiment
- Maximizes sensitivity of LHeC measurements to new physics

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky
SIInc
T. Gehrmann, N. H'afliger, P. F. Monni

Renormalization scale depends on the thrust

T. Gehrmann, N. H'afliger, P. F. Monni

S.-Q. Wang, L. Di Giustino,
X.-G. Wu, sjb
S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

Principle of Maximum Conformality (PMC)

S.-Q.Wang, L. Di Giustino, X.-G. Wu, SJB

The Renormalization Scale Ambiguity for Top-Pair Production Eliminated Using the 'Principle of Maximum Conformality' (PMC)

Top quark forward-backward asymmetry predicted by pQCD NNLO within 1σ of CDF/DO measurements using $P M C / B L M$ scale setting

BLM-PMC

- Test QCD to maximum precision
- High precision determination of $\alpha_{s}\left(Q^{2}\right)$ at all scales
- Relate observable to observable --no scheme or scale ambiguity
- Eliminate renormalization scale ambiguity in a schemeindependent manner
- Relate renormalization schemes without ambiguity
- Maximize sensitivity to new physics

The QCD pomeron with optimal renormalization

Stanley J. Brodsky (SLAC), Victor S. Fadin (Novosibirsk, IYF), Victor T. Kim (St. Petersburg, INP \& lowa State U., IITAP), Lev N. Lipatov (St. Petersburg, INP), Grigorii B. Pivovarov (Moscow, INR \& lowa State U., IITAP). Dec 1998. 11 pp.
Published in JETP Lett. 70 (1999) 155-160
SLAC-PUB-8037, IITAP-98-010
DOI: 10.1134/1.568145
e-Print: hep-ph/9901229 | PDF

BFKLP

Based on BLM/PMC

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

生

Measurements of hadron LF wavefunction are at fixed LF time Fixed $\tau=t+z / c$

Like aflash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Invariant under boosts! Independent of P^{11}

The LHeC :

Key Measurements of Hadron Dynamics and Structure

Fixed $\tau=t+z / c$

Light Front Wavefunctions: Boost Invariant, Causal

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky

Advantages of the Dirac's Front Form for Hadron Physics

 Poincare' InvariantPhysics Independent of Observer's Motion

- LHeC Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!

Penrose, Terrell, Weisskopf

- Same structure function measured at an ep collider and in the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant

Roberts, Shrock, Tandy, sjb

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fork State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

> Intrinsic heavy quarks
> $s(x), c(x), b(x)$ at high x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Fixed LF time $\tau=t+z / c$

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) \neq \bar{u}(x)
$$

Interactions of quarks at same rapidity in 5-quark Fock state

Intrinsic sea quarks

Fixed LF time

Proton Self Energy Intrinsic Heavy Quarks

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{\text {t }}}$
Collins, Ellis, Gunion, Mueller, sjb
M. Polyakov

Fixed LF time

Proton 5-quark Fock State:
Intrinsic Heavy Quarks

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

QCD predicts
Intrinsic Heavy Quarks at high x!

Minimal off-shellness

Maximum at Equal rapidity!
Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

Rigorous OPE
Analysis

Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al.

Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$
$p \bar{p} \rightarrow \gamma+Q+X$

$$
\frac{\Delta \sigma(\bar{p} p \rightarrow \gamma c X)}{\Delta \sigma(\bar{p} p \rightarrow \gamma b X)}
$$

Ratio is insensitive to gluon PDF, scales
$g c \rightarrow \gamma c$

Signal for

 significant intrinsic charmMesropian, Bandurin
LHC: $p p \rightarrow Z^{0}{ }_{c} X$
Boettcher, Itten, Williams

Intrinsic Heavy-Quark Fock

- Rigorous prediction of QCD, OPE
- Color-Octet Color-Octet Fock State

- Probability $\quad P_{Q \bar{Q}} \propto \frac{1}{M_{Q}^{2}} \quad P_{Q \bar{Q} Q \bar{Q}} \sim \alpha_{S}^{2} P_{Q \bar{Q}} \quad P_{c \bar{c} / p} \simeq 1 \%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production !!
- Underestimated in conventional parameterizations of heavy quark distributions
- Many EIC, LHeC tests

Produce charm hadrons at high x
Charm not a reliable signal for the high - glwon distribution

$$
e p \rightarrow e^{\prime} c g X, e p \rightarrow e^{\prime} b g X
$$

LHeC: Measure $c(x, Q), b(x, Q)$ at large x

Test $\gamma c \rightarrow Z^{0} c^{\prime}$
$c(x, Q)$ at high x (Intrinsic Charm)

Test $\gamma c \rightarrow W^{+} b^{\prime}$
$c(x, Q)$ at high x (Intrinsic Charm)

Test Higgs-strahlung from Heary Quarks at the LHeC

Test $\gamma b \rightarrow H b^{\prime}$
$b(x, Q)$ at high x (Intrinsic Bottom)

"Hadronization at the Amplitude Level"

Fixed LF time

Proton 5-quark Fock State:
Intrinsic Heavy Quarks

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

QCD predicts
Intrinsic Heavy Quarks at high x!

Minimal off-shellness

Maximum at Equal rapidity!
Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$

Rigorous OPE
Analysis

Collins, Ellis, Gunion, Mueller, sjb
Polyakov, et al.

"Hadronization at the Amplitude Level"

Collinear heavy quarks and heavy hadrons at same rapidity as proton

Barger, Halzen, Keung PRD 25 (198I)

Coalesece of comovers produces high-XF heavy hadrons

Spectator counting rules

$$
\frac{d N}{d x_{F}} \propto\left(1-x_{F}\right)^{2 n_{\text {spect }}-1}
$$

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky

- EMC data: $c\left(x, Q^{2}\right)>30 \times$ DGLAP $Q^{2}=75 \mathrm{GeV}^{2}, x=0.42$
- High $x_{F} p p \rightarrow J / \psi X$

Rules out color drag model (Pythia)

- High $x_{F} p p \rightarrow J / \psi J / \psi X$
- High $x_{F} p p \rightarrow \wedge_{c} X$

Evidence for IQ

- High $x_{F} p p \rightarrow \Lambda_{b} X$
- High $x_{F} p p \rightarrow$ 三($c c d$) X (SELEX)

Explain Tevatron anomalies: $p \bar{p} \rightarrow \gamma c X, Z c X$
Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to B decays; Quarkonium decays
Gardner, Karliner, sjb

Fixed Target

Use LHeC 60 GeV Electron Ring in Fixed-Target Mode

HERMES (HERA), SMOG(LHCb)
Complimentary to LHeC Program Nuclear and Polarized ProtonTargets Large-x Domain of DIS

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky

Coalescence maximal at matching rapidities

$$
\operatorname{High} x_{\Lambda_{b}}^{F}
$$

LHeC: Measure heary hadrons produced at high x_{F}

Light-Front Wavefunctions and Heavy-Quark Electroproduction

Coalescence of comovers produces Z_{c}^{+}tetraquark

Why is Intrinsic Heavy Quark Phenomenon Important?

- Test Fundamental QCD predictions OPE, Non-Abelian QCD Non-Abelian: $P_{Q \bar{Q}} \propto \frac{1}{M_{Q \bar{Q}}^{2}}$ Abelian: $P_{Q \bar{Q}} \propto \frac{1}{M_{Q \bar{Q}}^{4}}$
- Test non-perturbative effects
- Important for correctly identifying the gluon distribution
- High-xf open and hidden charm and bottom; discover exotic states
- Explain anomalous high pT charm jet + γ data at Tevatron
- Important source of high energy \mathbf{v} at IceCube

> Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky

$$
\gamma * p \rightarrow c \bar{c}+p^{\prime}
$$

Odderon-Pomeron Interference gives c vs. \bar{c} asymmetry Rathsman, Merino, sj

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Final-state interactions of struck quark can be neglected

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Final-State Gluonic Interactions

$$
\begin{aligned}
& \text { Produce Diffractive Deep } \\
& \text { Inelastic Scattering (DDIS) }
\end{aligned}
$$

Quark Rescattering in Final State

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Leading Twist: Bj Scaling
Novel High-Energy Electron-Proton Collider Physics at the LHeC

Low-Nussinov model of Pomero

Stan Brodsky
SIne

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach
DDIS: Crucial Input for leading-twist nuclear shadowing
DDIS: Diffractive Deep Inelastic Scattering

Remarkable observation at HERA

are
diffractive!

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993)

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky

H1: de Roeck, et al.

Diffractive Structure Function $F_{2}{ }^{D}$

Diffractive inclusive cross section

$\frac{\mathrm{d}^{3} \sigma_{N C}^{\text {diff }}}{\mathrm{d} x_{\mathbb{P}} \mathrm{d} \beta \mathrm{d} Q^{2}} \propto \frac{2 \pi \alpha^{2}}{x Q^{4}} F_{2}^{D(3)}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)$
$F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)=f\left(x_{\mathbb{P}}\right) \cdot F_{2}^{\mathbb{P}}\left(\beta, Q^{2}\right)$
extract DPDF and $x g(x)$ from scaling violation
Large kinematic domain $3<Q^{2}<1600 \mathrm{GeV}^{2}$
Precise measurements sys 5%, stat $5-20 \%$
About 15\% of DIS events are
 diffractive!

DDIS: Diffractive Deep Inelastic Scattering

Integration over on-shell domain produces phase i
Need Imaginary Phase to Generate Pomeron
Also: Need Imaginary Pbase to Generate "Sivers Effect" T-Odd Single-Spin Asymmetry

Physics of FSI not in LF Wavefunction of Target
Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky

90\% of proton momentum carried off by final state p' in 15% of events!

Gluon momentum fraction misidentified!

Novel High-Energy Electron-Proton Collider
Physics at the LHeC

Anti-Shadowing

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twist-diffraction in DIS Nuclear Shadowing not included in nuclear LFWF !

Dynamical effect due to virtual photon interacting in nucleus
Diffraction via Reggeon gives constructive interference!
Anti-shadowing not universal

Diffraction via Pomeron gives destructive interference!

Shadowing

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$

Criticaltests: Tagged SIDIS, Drell-Yan

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_{B} :
$1 / M x_{B}=2 \nu / Q^{2} \geq L_{A}$.

Regge

If the scattering on nucleon N_{1} is via exchange, the one-step and two-step amplitudes are oppesite in phase, thus diminishing the \bar{q} flux reaching N_{2}.
constructive in phase thus increasing the flux reaching N_{2}

Reggeon DDIS produces nuclear flavor-dependent anti-shadowing

Anti-shadowing

Nuclear Antishadowing not universal!

Shadowing and Antishadowing in Lepton-Nucleus Scattering

- Shadowing: Destructive Interference of Two-Step and One-Step Processes Pomeron Exchange
- Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange
- Antishadowing is Not Universal!

Electromagnetic and weak currents: different nuclear effects!
Potentially significant for NuTeV Anomaly\}

Jian-Jun Yang Ivan Schmidt Hung Jung Lu sjb

Crucial LHeC Tests

$$
\gamma^{*} p \rightarrow n X
$$

Charge-Exchange Diffractive Deep Inelastic Scattering CEDDIS

$\gamma^{*} A \rightarrow \gamma^{*} A \quad$ Nuclear Forward DVCS

$q^{+}=0 \quad q_{\perp}^{2}=Q^{2}=-q^{2}$
Illustrates the

$$
A-1
$$

Front-Face Nucleon N_{1} struck
Front-Face Nucleon N_{1} not struck One-Step / Two-Step Interference
Study Double Virtual Compton Scattering $\gamma^{*} A \rightarrow \gamma^{*} A$
cannot reduce to real phase matrix element of local operator! No Sum Rules!
I. Schmidt, S. Liuti, sjb

Nuclear PDFs

- Shadowing from destructive interference of 2-step and I-step processes

Gribov-Glauber, Stodolsky

- Anti-Shadowing from constructive interference of 2 -step and I -step processes
H. Lu, sjb
- Diffractive DIS and Charge-Exchange DDIS crucial inputs
- Handbag amplitude for nuclear DVCS not applicable
- OPE and Sum Rules inapplicable to nuclear pdfs!
I. Schmidt, S. Liuti, sjb
- Multiple scattering effects in high density proton pdf at low x. Nonlinear QCD.

Ridge Formation

Two particle correlations: CMS results

- Ridge: Distinct long range correlation in η collimated around $\Delta \Phi \approx 0$ for two hadrons in the intermediate $1<\mathrm{p}_{\mathrm{T}}, \mathrm{q}_{\mathrm{T}}<3 \mathrm{GeV}$ High Multiplicity Events

Origin of same-side CMS ridge in p p Collisions

Collision of Flux Tubes

Bjorken, Goldhaber, sjb

$$
\vec{V}=\sum_{i=1}^{N}\left[\cos 2 \phi_{i} \hat{x}+\sin 2 \phi_{i} \hat{y}\right]
$$

LFHQD Light-Front Holographic QCD

- Predicts Hadron Spectra and Dynamics (LFWFs)
- Color Confinement; Universal Mass Scale
- Illuminates Supersymmetric Features of Hadron Physics: Equal-Mass Mesons, Baryons and Tetraquarks for Light and Heavy Quarks
- Universal Regge Trajectories: in n and L
- Massless composite pion for $\mathrm{m}_{\mathrm{q}}=0$
- Predicts Running QCD coupling at all scales: $\alpha_{s}\left(Q^{2}\right)$

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Stan Brodsky
SIInc

The leading Regge trajectory: Δ resonances with maximal J in a given mass range. Also shown is the Regge trajectory for mesons with $J=L+S$.
E. Klempt and B. Ch. Metsch

6. $M^{2}\left(\mathrm{GeV}^{2}\right)$
 $\rho-\Delta$ superpartner trajectories

 fermions
 BARYONS
 [qqq]
 $L_{M}=L_{B}+1$
 Dosch, de Teramond, sjb
 L (Orbital Angular Momentum)

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass! Meson

Baryon

$\phi_{M}, L_{B}+1 \quad \underset{\substack{\psi_{B+}, L_{B} \\ \text { Baryon }}}{L_{B}}$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} \bar{q} \rightarrow[q q] \\
\overline{3}_{C} \rightarrow \overline{3}_{C}
\end{array}
$$

$$
\begin{array}{r}
R_{\lambda}^{\dagger} q \rightarrow[\bar{q} \bar{q}] \\
3_{C} \rightarrow 3_{C}
\end{array}
$$

Proton: lu[ud]> Quark + Scalar Diquark Equal Weight: L=0, L=1

Superconformal Quantum Mechanics Light-Front Holography

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

de Tèramond, Dosch, Lorcè, sjb
$M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N_{-}^{7-}$

Same slope

$$
N \frac{5^{+}}{2}(1680)
$$

$$
b_{3}
$$

$\lambda=\kappa^{2}$
de Tèramond, Dosch, Lorce', sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
$$

Fit to the slope of Regge trajectories, including radial excitations
Same Regge Slope for Meson, Baryons:
Supersymmetric feature of hadron physics

Supersymmetry across the light and heavy-light spectrum

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

Supersymmetry in QCD

- A hidden symmetry of Color SU(3) in hadron physics
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement
- Massless Pion in Chiral Limit
- QCD coupling $\alpha_{s}\left(Q^{2}\right)$ in non-perturbative domain

Novel High-Energy Electron-Proton Collider
Physics at the LHeC

Stan Brodsky
S! 를

AdS/QCD

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=M^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Single variable ζ

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale: $\kappa \simeq 0.5 \mathrm{GeV}$

- de Alfaro, Fubini, Furlan:
- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

GeV units external to QCD: Only Ratios of Masses Determined

Meson Spectrum in Soft Wall Model

Massless pion!

$$
m_{\pi}=0 \text { if } m_{q}=0
$$

Pion: Negative term for $J=0$ cancels positive terms from $L F K E$ and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\vec{\zeta}^{2}=\vec{b}_{\perp}^{2} x(1-x)
$$

G. de Teramond, H. G. Dosch, sjb

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions
Dirac's Front Form: Fixed $\tau=t+z / c$
Fixed $\tau=t+z / c$

$$
\psi\left(x_{i},{\overrightarrow{k_{\perp}}}_{i}, \lambda_{i}\right)_{x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}}
$$

Invariant under boosts. Independent of $P^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

$$
0.80 .6^{0.40 .2}
$$

$$
\psi_{M}\left(x, k_{\perp}^{2}\right)^{0}
$$

Note coupling

$$
k_{\perp}^{2}, x
$$

de Teramond, Cao, sjb
"Soft Wall" model

massless quarks

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q q}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV} \quad \text { Same as DSE! c. D. Roberts et al. }
$$

Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction

Spacelike Paulí Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Using $S U(6)$ flavor symmetry and normalization to static quantities

Comparison for $x q(x)$ in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_{0}=1.06 \pm 0.15 \mathrm{GeV}$.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD
Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PHYSICAL REVIEW LETTERS 120, 182001 (2018)

Helicity asymmetries of $u(x)+\bar{u}(x)$ and $d(x)+\bar{d}(x)$ compared with measurements.

Guy F. de Téramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb
$m_{\rho}=\sqrt{2} \kappa$ $m_{p}=2 \kappa$

All-Scale QCD Coupling

Deur, de Tèramond, sjb Fit to $\mathrm{Bj}+\mathrm{DHG}$ Sum Rules:

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-Fubini-Furlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

> Novel High-Energy Electron-Proton Collider Physics at the LHeC

- Testing a New Approach to Color Confinement, Hadron Spectroscopy, Light-Front Dynamics: Light-Front Holographic QCD
- Exotic Hadron Production
- Ridge Production from Flux Tube Collisions: Novel Azimuthat Correlations
- Hadronization at the Amplitude Level
- Heavy Quark and Flavor Dynamics: Intrinsic Distributions
- Novel Nuclear Structure Phenomena: Breakdown of Sum Rules for Nuclear PDFs, Flawor-Dependent Antishadowing, Hidden Color, Color Transparency,
- Violation of Factorization Theorems: Initial EFFinal-State Interactions, Novel Spín Phenomena
- Elimination of Scale Ambiguities:Princíple of Maximum Conformality

Novel Physics Opportunities at the LHeC

(10)

