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Paul Newman 
(University of Birmingham)

The Large Hadron electron Collider

1

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u



Physics	with	Energy	Frontier	DIS	

Raison(s)	d’etre	of	the	LHeC	
	
	
Cleanest	High	Resolution		
Microscope:	QCD	Discovery	
	
Empowering	the	LHC		
Search	Programme	
	
Transformation	of	LHC	into	
high	precision	Higgs	facility	
	
Discovery	(top,	H,	heavy	ν’s..)		
Beyond	the	Standard	Model	
	
A	Unique		
Nuclear	Physics	Facility	

Q2(GeV2)

xbj

LHeC

SLAC

sep ≃ 1.3 TeV

Physics at the DIS Frontier M. Klein



Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

sep = (pe + pp)2 = 4EeEp = 4 × 60 GeV × 7 TeV ≃ 1.7 TeV2

Equivalent to SLAC Fixed-Target DIS with  EFT
e ≃ 900 TeV

Equivalent to an e-p collider in the CM:  

ECM
e = ECM

p ≃ 650 GeV

The LHeC

xbj =
Q2

2q ⋅ p
> 10−7 for Q2 > 1GeV2

(A SLAC Linear Accelerator: 60,000 Miles Long!)

sep ≃ 1.3 TeV



Test Higgs Emission from the Z0 at the LHeC

p

e′�

e

Z0q → Hq′�

H

Z0 Z0

q′�

q

Precise Higgs Factory



Test Higgs Emission from the W- at the LHeC

pe−

W−u → Hd

H
d

uW− W−

νe



Test Higgs Emission from the W- at the LHeC

pe−

H
b

cW− W−

νe

W−c → H b

Intrinsic Charm at high x



p

e′�

e

γ*

b′�

b

Test γb → Hb′�

b(x, Q) at high x (Intrinsic Bottom)

H

Test Higgs-strahlung from Heavy Quarks at the LHeC

Crucial Physics for the LHeC



Test for Lepton/Quark Compositeness at the LHeC

p

e′�

e

γ*

u′�

u

Measure dσ
dt

(eq → e′�q′�) at very high Q2



Test for Lepto-Quarks at the LHeC

p

e′�

e

q′�

q

[ℓq]

s − channel resonance : eq → [ℓq] → e′�q′� at ̂s = m2
ℓq



Radiation-Amplitude Zero at the LHeC

γW+ → cb̄

dσ
dt

(W+γ → cb̄) = 0

cos θ =
eb̄

eW+
=

1
3

γ W+ u

d

p
e

e′�

Brown, Samuel, Sahdev, Mikaelian, Kowalski, sjb

at

Tests gW = gq = 2

c

b̄
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Fundamental  Standard Model  
Physics Tests at the LHeC 

Elimination of Scale Ambiguities!
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An Important Theoretical Physics Advance 
for the LHeC

• Eliminates renormalization scale ambiguities for pQCD and 
SM predictions

• Predictions are independent of scheme and initial scale choice

• Convergent conformal series: No “renormalons” 

• Consistent with Gell-Mann Low for QED

• Eliminates many outstanding conflicts of pQCD with 
experiment

• Maximizes sensitivity of LHeC measurements to new physics

BLM/PMC

Cn ∼ αn
s βn

on!

α(t) =
α(to)

1 − Π(t, t0)

Principle of Maximum Conformality

↵s(q2) sums all � terms
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FIG. 2. The thrust differential distributions using the con-
ventional (Conv.) and PMC scale settings. The dotdashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO, respectively. The solid line is the PMC re-
sult. The bands for the theoretical predictions are obtained
by varying µr ∈ [MZ/2, 2MZ ]. The PMC prediction elim-
inates the scale µr uncertainty. The experimental data are
taken from the ALEPH [2], DELPH [3], OPAL [4], L3 [5] and
SLD [31] experiments.

• By fitting the conventional predictions to the ex-
perimental data, the extracted coupling constants
are deviated from the world average, and are also
plagued by significant µr uncertainty [32].

Due to the kinematical constraints, the domain of the
thrust distribution at LO and of the PMC scale is re-
stricted to the range of 0 ≤ (1 − T ) ≤ 1/3. After ap-
plying the PMC, in addition to the small values and the
monotonically increasing behavior of the PMC scale, the
magnitude of the conformal coefficients are small and its
behavior is very different from that of the conventional
scale setting. The resulting PMC predictions are in a-
greement with the experimental data with high precision
over the (1 − T ) region, while they show a slight de-
viation near the two-jet and multi-jet regions. Based on
the conventional scale setting, Ref.[8] has also found that
outside of the region of 0.04 ≤ (1−T ) ≤ 0.33, the pQCD
predictions are unreliable. Thus, in order to improve the
predictions near the two-jet and multi-jet regions, the
higher pQCD calculations may be needed for the PM-
C analysis. In addition, as we have already mentioned
above, the non-perturbative effects should be taken into
account in the two-jet region.
In addition to the differential distribution, the mean

value of event shapes have also been extensively mea-
sured and studied. Since the calculation of the mean
value involves an integration over the full phase space, it
provides an important platform to complement the differ-
ential distribution that afflict the event shapes especially
in the two-jet region and to determinate the coupling
constant.
The mean value ⟨τ⟩ (τ = (1− T )) of thrust variable is

defined by

⟨τ⟩ =
∫ τ0

0

τ

σh

dσ

dτ
dτ, (8)

where τ0 is the kinematical upper limit for the thrust
variable.

The electron-positron colliders have collected large
numbers of experimental data for the thrust mean value
over a wide range of center-of-mass energy (14 GeV ≤

√
s

≤ 206 GeV) [2–5, 33]. However, the pQCD prediction-
s based on the conventional scale setting substantially
deviate from the experimental data. Currently, the most
common way is to split the mean value into the perturba-
tive and non-perturbative contributions, which has been
studied extensively in the literature. However, some ar-
tificial parameters and theoretical models are introduced
in order to match the theoretical predictions with the ex-
perimental data. It is noted that the analysis of Ref.[2]
obtains a large value of αs and suggests that a better de-
scription for the mean value can be in general obtained
by setting the renormalization scale µr ≪

√
s.

The pQCD calculations for the mean value variables
have been given in Refs. [34, 35]. After applying the
PMC scale setting to the thrust mean value ⟨1− T ⟩, we
obtain the optimal PMC scale,

µpmc
r |⟨1−T ⟩ = 0.0695

√
s, (9)

which monotonously increases with
√
s, and is 0.0695

times the conventional choice µr =
√
s and thus

µpmc
r |⟨1−T ⟩ ≪

√
s. We notice that by taking

√
s =

MZ = 91.1876 GeV, the PMC scale µpmc
r |⟨1−T ⟩ = 6.3

GeV. This is reasonable, since we have shown in Fig.(1)
that the PMC scales of thrust differential distribution are
also very small in wide region of (1 − T ). By excluding
some results in multi-jet regions, the average of the PM-
C scale ⟨µpmc

r ⟩ of thrust differential distribution is also
close to the µpmc

r |⟨1−T ⟩. This shows that the PMC scale
setting is self-consistent.

We present the thrust mean value ⟨1 − T ⟩ versus the
center-of-mass energy

√
s using the conventional and

PMC scale settings in Fig.(3). In the case of the con-
ventional scale setting, the perturbative series shows a
slow convergence and the estimation of the magnitude
of unknown higher-order QCD corrections by varying
µr ∈ [

√
s/2, 2

√
s] is unreliable. The predictions are

plagued by scale µr uncertainty, and substantial devi-
ated from the experimental data even up to NNLO [34].
These cases are similar to those of the thrust differential
distributions based on the conventional scale setting.

Since the optimal PMC scales are small, and the mag-
nitude of conformal coefficients are very different from
those of the conventional scale setting, the resulting pre-
dictions for thrust mean value increase especially in the
small center-of-mass energy region. Fig.(3) shows that
the scale-independent PMC prediction is in excellent a-
greement with the experimental data in the wide center-

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

T. Gehrmann, N. H äfliger, P. F. Monni

Conventional scale

PMC scale

e+e− → Z → qq̄g + ⋯
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Thrust Distribution in Electron-Positron Annihilation using the Principle of
Maximum Conformality

Sheng-Quan Wang1,2,∗ Stanley J. Brodsky2,† Xing-Gang Wu3,‡ and Leonardo Di Giustino2,4§
1Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China

2SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
3Department of Physics, Chongqing University, Chongqing 401331, P.R. China and

4Department of Science and High Technology, University of Insubria, via valleggio 11, I-22100, Como, Italy
(Dated: February 6, 2019)

We present a comprehensive and self-consistent analysis for the thrust distribution by using the
Principle of Maximum Conformality (PMC). By absorbing all nonconformal terms into the running
coupling using PMC via renormalization group equation, the scale in the running coupling shows
the correct physical behavior and the correct number of active flavors is determined. The resulting
PMC predictions agree with the precise measurements for both the thrust differential distributions
and the thrust mean values. Moreover, we provide a new remarkable way to determine the running
of the coupling constant αs(Q

2) from the measurement of the jet distributions in electron-positron
annihilation at a single given value of the center-of-mass energy

√
s.

PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.-a

The event shape observables in electron-positron an-
nihilation play a crucial role in understanding Quantum
Chromodynamics (QCD). In the last three decades, the
event shape observables have been extensively studied ex-
perimentally and theoretically. In particular, the three-
jet production at the lowest order is directly proportional
to the QCD strong coupling constant, and thus the rele-
vant event shape observables have been used to determine
the coupling constant (see e.g. [1] for a review).

Due to the simple initial leptonic state, the three-jet
event shape observables can be measured with a high pre-
cision, especially at LEP [2–5]. The precision of experi-
mental measurements calls for an equally precise theoret-
ical prediction for three-jet event shapes. The next-to-
leading order (NLO) QCD calculations are known since
1980 [6–11], and the next-to-next-to-leading order (NN-
LO) calculations have been carried out in Refs.[12–16].
Despite the significant progress made in the last years
for both the pQCD calculations [17, 18] and the resum-
mation of large logarithms (see e.g. [19, 20]), the main
obstruction to achieve an accurate value of αs is not the
lack of precise experimental data but the dominant un-
certainties of the theoretical calculations, mainly due to
the choice of the renormalization scale µr.

It is well known that using the conventional scale set-
ting, the renormalization scale is simply set at the center-
of-mass energy µr =

√
s, and the uncertainties are evalu-

ated by varying the scale within an arbitrary range, e.g.
µr ∈ [

√
s/2, 2

√
s]. The three-jet event shape distribu-

tions using the conventional scale setting do not match
the experimental data, and the extracted values of αs in
general deviate from the world average [21].

The conventional procedure of setting the renormal-
ization scale introduces an inherent scheme-and-scale de-
pendence for the pQCD predictions. The scheme de-
pendence of the pQCD violates the fundamental prin-

ciple of the renormalization group invariance. The con-
ventional procedure gives wrong predictions for the A-
belian theory–Quantum Electrodynamics (QED), where
the scale of the coupling constant α can be set unam-
biguously by using the Gell-Mann-Low procedure [22].
The resulting perturbative series is in general factorially
divergent at large orders like n!βn

0 α
n
s –the “renormalon”

problem [23]. It has always been discussed whether the
inclusion of higher-order terms would suppress the scale
uncertainty; however, by simply varying the scale within
a given range of values fixed a priori, the estimation of
unknown higher-order terms is unreliable, and one can-
not judge whether the poor pQCD convergence is the
intrinsic property of pQCD series, or is due to improper
choice of scale.

The Principle of Maximum Conformality (PMC) [24–
28] provides a systematic way to eliminate renormaliza-
tion scheme-and-scale ambiguities. Since the PMC pre-
dictions do not depend on the choice of the renormal-
ization scheme, PMC scale setting satisfies the principles
of renormalization group invariance [29, 30]. The PMC
procedure reduces in the Abelian limit, NC → 0 [31], to
the standard Gell-Mann-Low method. The PMC deter-
mines the renormalization scale by absorbing the β terms
that govern the behavior of the running coupling via the
renormalization group equation. The divergent renor-
malon terms disappear and the convergence of pQCD
series can be thus greatly improved.

The thrust (T ) variable [32, 33] is one of the most fre-
quently studied three-jet event shape observables, which
is defined as

T =

max
n⃗

∑
i
|p⃗i · n⃗|

∑
i
|p⃗i|

, (1)

where the sum runs over all particles in the hadronic
final state, and the p⃗i denotes the three-momentum of

Renormalization scale depends on the thrust
Not constant ! Not MZ

e+e− → Z → qq̄g + ⋯

S.-Q. Wang, L. Di Giustino,   
X.-G. Wu, sjb

T. Gehrmann, N. H äfliger,       
P. F. Monni
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FIG. 2. The thrust differential distributions using the con-
ventional (Conv.) and PMC scale settings. The dotdashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO, respectively. The solid line is the PMC re-
sult. The bands for the theoretical predictions are obtained
by varying µr ∈ [MZ/2, 2MZ ]. The PMC prediction elim-
inates the scale µr uncertainty. The experimental data are
taken from the ALEPH [2], DELPH [3], OPAL [4], L3 [5] and
SLD [31] experiments.

• By fitting the conventional predictions to the ex-
perimental data, the extracted coupling constants
are deviated from the world average, and are also
plagued by significant µr uncertainty [32].

Due to the kinematical constraints, the domain of the
thrust distribution at LO and of the PMC scale is re-
stricted to the range of 0 ≤ (1 − T ) ≤ 1/3. After ap-
plying the PMC, in addition to the small values and the
monotonically increasing behavior of the PMC scale, the
magnitude of the conformal coefficients are small and its
behavior is very different from that of the conventional
scale setting. The resulting PMC predictions are in a-
greement with the experimental data with high precision
over the (1 − T ) region, while they show a slight de-
viation near the two-jet and multi-jet regions. Based on
the conventional scale setting, Ref.[8] has also found that
outside of the region of 0.04 ≤ (1−T ) ≤ 0.33, the pQCD
predictions are unreliable. Thus, in order to improve the
predictions near the two-jet and multi-jet regions, the
higher pQCD calculations may be needed for the PM-
C analysis. In addition, as we have already mentioned
above, the non-perturbative effects should be taken into
account in the two-jet region.
In addition to the differential distribution, the mean

value of event shapes have also been extensively mea-
sured and studied. Since the calculation of the mean
value involves an integration over the full phase space, it
provides an important platform to complement the differ-
ential distribution that afflict the event shapes especially
in the two-jet region and to determinate the coupling
constant.
The mean value ⟨τ⟩ (τ = (1− T )) of thrust variable is

defined by

⟨τ⟩ =
∫ τ0

0

τ

σh

dσ

dτ
dτ, (8)

where τ0 is the kinematical upper limit for the thrust
variable.

The electron-positron colliders have collected large
numbers of experimental data for the thrust mean value
over a wide range of center-of-mass energy (14 GeV ≤

√
s

≤ 206 GeV) [2–5, 33]. However, the pQCD prediction-
s based on the conventional scale setting substantially
deviate from the experimental data. Currently, the most
common way is to split the mean value into the perturba-
tive and non-perturbative contributions, which has been
studied extensively in the literature. However, some ar-
tificial parameters and theoretical models are introduced
in order to match the theoretical predictions with the ex-
perimental data. It is noted that the analysis of Ref.[2]
obtains a large value of αs and suggests that a better de-
scription for the mean value can be in general obtained
by setting the renormalization scale µr ≪

√
s.

The pQCD calculations for the mean value variables
have been given in Refs. [34, 35]. After applying the
PMC scale setting to the thrust mean value ⟨1− T ⟩, we
obtain the optimal PMC scale,

µpmc
r |⟨1−T ⟩ = 0.0695

√
s, (9)

which monotonously increases with
√
s, and is 0.0695

times the conventional choice µr =
√
s and thus

µpmc
r |⟨1−T ⟩ ≪

√
s. We notice that by taking

√
s =

MZ = 91.1876 GeV, the PMC scale µpmc
r |⟨1−T ⟩ = 6.3

GeV. This is reasonable, since we have shown in Fig.(1)
that the PMC scales of thrust differential distribution are
also very small in wide region of (1 − T ). By excluding
some results in multi-jet regions, the average of the PM-
C scale ⟨µpmc

r ⟩ of thrust differential distribution is also
close to the µpmc

r |⟨1−T ⟩. This shows that the PMC scale
setting is self-consistent.

We present the thrust mean value ⟨1 − T ⟩ versus the
center-of-mass energy

√
s using the conventional and

PMC scale settings in Fig.(3). In the case of the con-
ventional scale setting, the perturbative series shows a
slow convergence and the estimation of the magnitude
of unknown higher-order QCD corrections by varying
µr ∈ [

√
s/2, 2

√
s] is unreliable. The predictions are

plagued by scale µr uncertainty, and substantial devi-
ated from the experimental data even up to NNLO [34].
These cases are similar to those of the thrust differential
distributions based on the conventional scale setting.

Since the optimal PMC scales are small, and the mag-
nitude of conformal coefficients are very different from
those of the conventional scale setting, the resulting pre-
dictions for thrust mean value increase especially in the
small center-of-mass energy region. Fig.(3) shows that
the scale-independent PMC prediction is in excellent a-
greement with the experimental data in the wide center-

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

T. Gehrmann, N. H äfliger, P. F. Monni

Conventional scale

PMC scale

e+e− → Z → qq̄g + ⋯
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FIG. 2. The PMC scale for the C-parameter. As a compar-
ison, the scale µr =

p
s using conventional scale-setting and

the PMC scale in QED are also presented.

fixed at µr =
p
s, the PMC scale is determined by ab-

sorbing the � terms of the pQCD series into the coupling
constant. The resulting PMC scale is not a single value,
but it monotonously increases with the value of C, re-
flecting the increasing virtuality of the QCD dynamics.
Thus, simply fixing the scale at µr =

p
s obviously vio-

lates the physical behavior of the C-parameter distribu-
tion. In addition, the number of active flavors nf changes
with the value of C according to the PMC scale. More
explicitly, the PMC scale in the 0 < C < 0.75 region is
presented in Fig.(2). The LO contribution vanishes in
the 0.75 < C < 1 region; the NLO PMC scale is deter-
mined in this domain by using the NNLO contribution.
Near the two-jet region, the quarks and gluons have soft
virtuality, and the PMC renormalization scale becomes
small. The pQCD theory thus becomes unreliable in this
domain. The dynamics of the PMC scale thus signals the
correct physical behavior in the two-jet region. The cor-
rect physical behavior for event shapes was also obtained
in Refs.[30, 31]. Soft collinear e↵ective theory also deter-
mines the C-parameter distribution at di↵erent energy
scales [32].

Since the renormalization scale is simply set as µr =p
s when using conventional scale setting, only one value

of ↵s at scale
p
s can be extracted. In contrast, since

the PMC scale varies with the value of the event shape
C, we can extract ↵s(Q2) over a wide range of Q2 us-
ing the experimental data at a single energy of

p
s. By

adopting a method similar to [33], we have determined
↵s(Q2) bin-by-bin from the comparison of PMC predic-
tions with measurements at

p
s = MZ ; see Fig.(3). The

results for ↵s(Q2) in the range 3 GeV < Q < 11 GeV are
in excellent agreement with the world average evaluated
from ↵s(M2

Z) [1]. Since the PMC method eliminates the
renormalization scale uncertainty, the extracted ↵s(Q2)
is not plagued by any uncertainty from the choice of µr.
The results for ↵s(Q2) obtained from the thrust observ-
able using the PMC are consistent with the results using
the C distribution [27]. Thus, PMC scale-setting pro-

s ! MZ

4 6 8 10
0.14
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0.18
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Q !GeV"

Α
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FIG. 3. The coupling constant ↵s(Q
2) extracted by compar-

ing PMC predictions with the ALEPH data [28] at a single
energy of

p
s = MZ from the C-parameter distributions in the

MS scheme. The error bars are the squared averages of the
experimental and theoretical errors. The three lines are the
world average evaluated from ↵s(M

2
Z) = 0.1181± 0.0011 [1].

vides a remarkable way to verify the running of ↵s(Q2)
from event shapes measured at a single energy of

p
s.

The di↵erential distributions of event shapes are af-
flicted with large logarithms in the two-jet region. Thus,
the comparison of QCD predictions with experimental
data and then the extracted ↵s values are restricted in
the region where the leading-twist pQCD theory is able
to describe the data well. Choosing di↵erent domains of
the distributions leads to di↵erent values of ↵s. Noted
that the mean value of event shapes,

hyi =
Z y0

0

y

�h

d�

dy
dy, (3)

where y0 is the kinematically allowed upper limit of the
y variable, involves an integration over the full phase
space, it thus provides an important platform to com-
plement the di↵erential distributions and to determinate
↵s. Currently, the pQCD predictions even up to NNLO
QCD corrections [34, 35] based on conventional scale set-
ting substantially deviate from measurements.
In contrast to fixing the scale µr =

p
s using conven-

tional scale-setting, we obtain the PMC scales

µpmc

r |h1�T i = 0.0695
p
s, and µpmc

r
|hCi = 0.0656

p
s,

after using the PMC to the mean values for the thrust
and C-parameter, respectively. The PMC scales satisfy
µpmc
r ⌧

p
s. We note that the analysis of Ref.[28] using

conventional scale setting leads to an anomalously large
value of ↵s, showing that a correct description for the
mean values can be obtained by setting µr ⌧

p
s.

When taking
p
s = MZ = 91.1876 GeV, the PMC

scales are µpmc
r |h1�T i = 6.3 GeV and µpmc

r |hCi = 6.0
GeV for the thrust and C-parameter, respectively. The
PMC scales of the di↵erential distributions for the thrust
and C-parameter are also very small. The average of the
PMC scales hµpmc

r i of the di↵erential distributions for

2

14] provides a systematic way to eliminate the renormal-
ization scheme-and-scale ambiguities. The PMC scales
are fixed by absorbing the � terms that govern the be-
havior of the running coupling via the Renormalization
Group Equation (RGE). Since the PMC predictions do
not depend on the choice of the renormalization scheme,
PMC scale setting satisfies the principles of RGI [15–17].
Since � terms do not appear in the pQCD series after
the PMC, there is no renormalon divergence. The PMC
method extends the Brodsky-Lepage-Mackenzie (BLM)
scale-setting method [18] to all orders and reduces in the
Abelian limit to the Gell-Mann-Low method [8].

In this paper, we will apply the PMC to make compre-
hensive analyses for two classic event shapes: the thrust
(T ) [19, 20] and the C-parameter (C) [21, 22]. The PMC
renormalization scale depends dynamically on the virtu-
ality of the underlying quark and gluon subprocess and
thus the specific kinematics of each event. We then can
determine ↵s(Q2) over a large range of Q2 by comparing
the PMC predictions with the experimental data.

The thrust and C-parameter are defined as

T = max
~n

✓P
i |~pi · ~n|P
i |~pi|

◆
, (1)

C =
3

2

P
i,j |~pi||~pj | sin

2 ✓ij

(
P

i |~pi|)
2

, (2)

where ~pi denotes the three-momentum of particle i. For
the thrust, the unit vector ~n is varied to define the thrust
direction ~nT by maximizing the sum on the right-hand
side. For the C-parameter, ✓ij is the angle between ~pi
and ~pj . The range of values is 1/2  T  1 for the
thrust, and for the C-parameter it is 0  C  1.

For our numerical computations, we use the EVENT2
program [23] to precisely calculate the perturbative co-
e�cients at the next-to-leading order (NLO). The per-
turbative coe�cients at the next-to-next-to-leading or-
der (NNLO) can be calculated using the EERAD3 pro-
gram [24], and are checked using the results of Ref.[25].
We use the RunDec program [26] to evaluate the MS
scheme running coupling from ↵s(MZ) = 0.1181 [1].

A detailed PMC analysis for the thrust T has been
given in Ref.[27]. We calculate the C-parameter follow-
ing a similar procedure and present di↵erential distribu-
tions of the C-parameter at

p
s = MZ in Fig.(1). In the

case of conventional scale setting, Fig.(1) shows that the
conventional predictions – even up to NNLO QCD cor-
rections – substantially deviate from the precise experi-
mental data. The conventional predictions are plagued
by the scale uncertainty. Since the variation of the scale
is only sensitive to the � terms, the estimate of unknown
higher-order terms by varying µr 2 [

p
s/2, 2

p
s] is unreli-

able: the NLO calculation does not overlap with the LO
prediction, and the NNLO calculation does not overlap
with NLO prediction. In addition, the perturbative series
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FIG. 1. The C-parameter di↵erential distributions using con-
ventional (Conv.) and PMC scale settings at

p
s = MZ .

The dot-dashed, dashed and dotted lines are the conventional
scale-fixed results at LO, NLO and NNLO [24, 25], respec-
tively, and the corresponding error bands are obtained by
varying µr 2 [MZ/2, 2MZ ]. The solid line is the PMC result,
and its error band is the squared averages of the errors for
↵s(MZ) = 0.1181 ± 0.0011 [1] and the estimated unknown
higher-order contributions ±0.2 Cn. The data is taken from
the ALEPH [28] experiment.

for the C-parameter distribution shows slow convergence
because of the renormalon divergence.
In contrast, Fig.(1) shows that PMC prediction for the

C-parameter distribution is in excellent agreement with
the experimental data. There is some deviation near
the two-jet and multi-jet regions which is expected since
pQCD becomes unreliable due to the presence of large
logarithms in those kinematic regions. The resummation
of large logarithms is thus required, a topic which has
been extensively studied in the literature.
It should be emphasized that PMC eliminates the scale

µr uncertainty; the estimate of unknown higher-order
terms obtained by varying µr 2 [

p
s/2, 2

p
s] is not appli-

cable to PMC predictions. An estimate of the unknown
higher-order contributions can be characterized by the
convergence of the perturbative series and the magnitude
of the last-known higher-order term. We note that the
relative magnitude of the corrections for the C-parameter
distribution is CLO : CNLO : CNNLO ⇠ 1 : 0.5 : 0.2 [29] in
the intermediate region using conventional scale setting.
After using the PMC, the relative magnitude at NLO is
improved to be CLO : CNLO ⇠ 1 : 0.2. The error estimate
of an nth-order calculation can be characterized by the
last known term; i.e., ±Cn, where n stands for LO, NLO,
NNLO, · · ·. After applying the PMC, the unknown Cn+1

term can be estimated using ±0.2Cn if one assumes that
the relative magnitude of the unknown (n + 1)th-order
term is the same as that of the known nth-order term;
i.e., Cn+1/Cn = Cn/Cn�1. The resulting PMC error bar
for the C-parameter distribution is presented in Fig.(1).
This estimate of the unknown higher-order terms is nat-
ural for a convergent perturbative series.
Unlike conventional scale-setting, where the scale is

Renormalization scale depends on the C-parameter

e+e− → Z → qq̄g + ⋯

S.-Q. Wang, L. Di Giustino,   
X.-G. Wu, sjb

MS scheme

GM − L scheme
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14] provides a systematic way to eliminate the renormal-
ization scheme-and-scale ambiguities. The PMC scales
are fixed by absorbing the � terms that govern the be-
havior of the running coupling via the Renormalization
Group Equation (RGE). Since the PMC predictions do
not depend on the choice of the renormalization scheme,
PMC scale setting satisfies the principles of RGI [15–17].
Since � terms do not appear in the pQCD series after
the PMC, there is no renormalon divergence. The PMC
method extends the Brodsky-Lepage-Mackenzie (BLM)
scale-setting method [18] to all orders and reduces in the
Abelian limit to the Gell-Mann-Low method [8].

In this paper, we will apply the PMC to make compre-
hensive analyses for two classic event shapes: the thrust
(T ) [19, 20] and the C-parameter (C) [21, 22]. The PMC
renormalization scale depends dynamically on the virtu-
ality of the underlying quark and gluon subprocess and
thus the specific kinematics of each event. We then can
determine ↵s(Q2) over a large range of Q2 by comparing
the PMC predictions with the experimental data.

The thrust and C-parameter are defined as

T = max
~n

✓P
i |~pi · ~n|P
i |~pi|

◆
, (1)

C =
3

2

P
i,j |~pi||~pj | sin

2 ✓ij

(
P

i |~pi|)
2

, (2)

where ~pi denotes the three-momentum of particle i. For
the thrust, the unit vector ~n is varied to define the thrust
direction ~nT by maximizing the sum on the right-hand
side. For the C-parameter, ✓ij is the angle between ~pi
and ~pj . The range of values is 1/2  T  1 for the
thrust, and for the C-parameter it is 0  C  1.

For our numerical computations, we use the EVENT2
program [23] to precisely calculate the perturbative co-
e�cients at the next-to-leading order (NLO). The per-
turbative coe�cients at the next-to-next-to-leading or-
der (NNLO) can be calculated using the EERAD3 pro-
gram [24], and are checked using the results of Ref.[25].
We use the RunDec program [26] to evaluate the MS
scheme running coupling from ↵s(MZ) = 0.1181 [1].

A detailed PMC analysis for the thrust T has been
given in Ref.[27]. We calculate the C-parameter follow-
ing a similar procedure and present di↵erential distribu-
tions of the C-parameter at

p
s = MZ in Fig.(1). In the

case of conventional scale setting, Fig.(1) shows that the
conventional predictions – even up to NNLO QCD cor-
rections – substantially deviate from the precise experi-
mental data. The conventional predictions are plagued
by the scale uncertainty. Since the variation of the scale
is only sensitive to the � terms, the estimate of unknown
higher-order terms by varying µr 2 [

p
s/2, 2

p
s] is unreli-

able: the NLO calculation does not overlap with the LO
prediction, and the NNLO calculation does not overlap
with NLO prediction. In addition, the perturbative series
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FIG. 1. The C-parameter di↵erential distributions using con-
ventional (Conv.) and PMC scale settings at

p
s = MZ .

The dot-dashed, dashed and dotted lines are the conventional
scale-fixed results at LO, NLO and NNLO [24, 25], respec-
tively, and the corresponding error bands are obtained by
varying µr 2 [MZ/2, 2MZ ]. The solid line is the PMC result,
and its error band is the squared averages of the errors for
↵s(MZ) = 0.1181 ± 0.0011 [1] and the estimated unknown
higher-order contributions ±0.2 Cn. The data is taken from
the ALEPH [28] experiment.

for the C-parameter distribution shows slow convergence
because of the renormalon divergence.
In contrast, Fig.(1) shows that PMC prediction for the

C-parameter distribution is in excellent agreement with
the experimental data. There is some deviation near
the two-jet and multi-jet regions which is expected since
pQCD becomes unreliable due to the presence of large
logarithms in those kinematic regions. The resummation
of large logarithms is thus required, a topic which has
been extensively studied in the literature.
It should be emphasized that PMC eliminates the scale

µr uncertainty; the estimate of unknown higher-order
terms obtained by varying µr 2 [

p
s/2, 2

p
s] is not appli-

cable to PMC predictions. An estimate of the unknown
higher-order contributions can be characterized by the
convergence of the perturbative series and the magnitude
of the last-known higher-order term. We note that the
relative magnitude of the corrections for the C-parameter
distribution is CLO : CNLO : CNNLO ⇠ 1 : 0.5 : 0.2 [29] in
the intermediate region using conventional scale setting.
After using the PMC, the relative magnitude at NLO is
improved to be CLO : CNLO ⇠ 1 : 0.2. The error estimate
of an nth-order calculation can be characterized by the
last known term; i.e., ±Cn, where n stands for LO, NLO,
NNLO, · · ·. After applying the PMC, the unknown Cn+1

term can be estimated using ±0.2Cn if one assumes that
the relative magnitude of the unknown (n + 1)th-order
term is the same as that of the known nth-order term;
i.e., Cn+1/Cn = Cn/Cn�1. The resulting PMC error bar
for the C-parameter distribution is presented in Fig.(1).
This estimate of the unknown higher-order terms is nat-
ural for a convergent perturbative series.
Unlike conventional scale-setting, where the scale is

PMC scale

Conventional scale

Principle of Maximum Conformality (PMC)

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

e+e− → Z → qq̄g + ⋯
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the thrust and C-parameter are close to the PMC scales
µpmc
r |h1�T i and µpmc

r |hCi, respectively. This shows that
PMC scale setting is self-consistent from the di↵erential
distributions to the mean values.
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FIG. 4. The mean values for the thrust (up) and C-parameter
(down) versus the center-of-mass energy

p
s using conven-

tional (Conv.) and PMC scale settings. The dot-dashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO [34, 35], respectively, and the correspond-
ing error bands are obtained by varying µr 2 [MZ/2, 2MZ ].
The solid line is the PMC result and its error band is ob-
tained by the squared averages of the errors for ↵s(MZ) =
0.1181 ± 0.0011 [1] and the estimated unknown higher-order
contributions ±0.2 Cn. The data are from the JADE and
OPAL experiments, taken from [36, 37].

We present the mean values for the thrust and C-
parameter versus the center-of-mass energy

p
s in Fig.(4).

It shows that in the case of conventional scale setting,
the predictions are plagued by the renormalization scale
µr uncertainty, and substantially deviate from measure-
ments even up to NNLO. In contrast, after using PMC
scale setting, the mean values for the thrust and C-
parameter are increased especially in the small

p
s region.

The scale-independent PMC predictions are in excellent
agreement with experimental data in the wide center-of-
mass energy

p
s range. Thus, PMC scale setting provides

a rigorous explanation for precise measurements without
introducing any artificial parameters.

Since a high degree of consistency between the PMC
predictions and the measurements is obtained, we can
precisely extract ↵s(Q2); the results in the MS scheme are
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FIG. 5. The running coupling ↵s(Q
2) extracted from the

thrust and C-parameter mean values by comparing PMC pre-
dictions with the JADE and OPAL data [36, 37] in the MS
scheme. The error bars are the squared averages of the exper-
imental and theoretical errors. The three lines are the world
average evaluated from ↵s(M

2
Z) = 0.1181± 0.0011 [1].

presented in Fig.(5). The values obtained for ↵s(Q2) are
mutually compatible and are in excellent agreement with
the world average in the range 1 GeV < Q < 15 GeV.
The results are not plagued by the renormalization scale
µr uncertainty. In addition, unlike the ↵s extracted from
the di↵erential distributions, the ↵s extracted from the
mean values are not a✏icted with the large logarithms
as well as the non-perturbative e↵ects.
In order to obtain a reliable ↵s at the scale of the

Z0 mass, we determine ↵s(M2

Z) from the fit of the
PMC predictions to the measurements. We adopt the
method similar to [38] and the �2-fit is defined by �2 =P

i

�
(hyiexp.i � hyithe.i )/�i

�2
, where hyiexp.i is the value of

the experimental data, �i is the corresponding experi-
mental uncertainty, hyithe.i is the theoretical prediction.
The �2 value is minimized with respect to ↵s(M2

Z) for
the thrust and C-parameter separately. We obtain

↵s(M
2

Z) = 0.1185± 0.0011(Exp.)± 0.0005(Theo.)

= 0.1185± 0.0012, (4)

with �2/d.o.f.= 27.3/20 for the thrust mean value, and

↵s(M
2

Z) = 0.1193+0.0009
�0.0010(Exp.)

+0.0019
�0.0016(Theo.)

= 0.1193+0.0021
�0.0019, (5)

with �2/d.o.f.= 43.9/20 for the C-parameter mean value,
where the first (Exp.) and second (Theo.) errors are
the experimental and theoretical uncertainties, respec-
tively. Both values are consistent with the world average
of ↵s(M2

Z) = 0.1181 ± 0.0011 [1]. Since the dominant
scale µr uncertainty is eliminated and the convergence of
pQCD series is greatly improved after using the PMC, the
precision of the extracted ↵s values is greatly improved.
In particular, since a strikingly much faster pQCD con-
vergence is obtained for the thrust mean value [27], the
theoretical uncertainty is even smaller than the experi-
mental uncertainty.

αs(Q2) in MS schemee+e− → Z0 → qq̄g + ⋯

S.-Q. Wang, L. Di Giustino, X.-G. Wu, SJB

Determine QCD running coupling from  
measurement of the thrust T and the 

C - distribution at one energy!

A new way to measure   αs(Q2)



The Renormalization Scale Ambiguity for Top-Pair Production  
Eliminated Using the ‘Principle of Maximum Conformality’ (PMC)

Xing-Gang Wu  
 SJB

Conventional guess for 
renormalization scale  

and range

Experimental  
asymmetry

PMC Prediction

Top quark forward-backward asymmetry predicted by pQCD NNLO 
within 1 σ of CDF/D0 measurements using PMC/BLM scale setting 



• Test QCD to maximum precision

• High precision determination of               at all scales

• Relate observable to observable --no scheme or scale 
ambiguity

• Eliminate renormalization scale ambiguity in a scheme-
independent manner

• Relate renormalization schemes without ambiguity

• Maximize sensitivity to new physics at the colliders 

↵s(Q2)

BLM-PMC

Crucial for LHeC
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Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

General remarks about orbital angular mo-
mentum
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The LHeC: 
Key Measurements of Hadron Dynamics and Structure P+ = P0 + Pz
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Light Front Wavefunctions: Boost Invariant, Causal



Advantages of the Dirac’s Front Form for Hadron Physics

• LHeC Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function measured at an e p collider and in 
the proton rest frame 

• No dependence of hadron structure on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no vacuum condensates! 

• Profound implications for Cosmological Constant

Physics Independent of Observer’s Motion

Poincare’ Invariant

Roberts, Shrock, Tandy, sjb

Penrose, Terrell, Weisskopf



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum
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Sivers, T-odd from lensing

Light-Front Wavefunctions
underly hadronic observables

DGLAP, ERBL Evolution
Factorization Theorems

Weak transition  
form factors

Diffractive DIS from FSI
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s(x), c(x), b(x) at high x !
Deuteron: Hidden Color
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Interactions of quarks at same
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duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
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First Evidence for Intrinsic Charm

Measurement of Charm Structure  
Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x,Q2) = c(x, Q2)extrinsic + c(x, Q2)intrinsic

gluon splitting 
(DGLAP)

Q2 = 75 GeV2, x = 0.42
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Boettcher, Ilten, Williams
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Intrinsic Heavy-Quark Fock 

• Rigorous prediction of QCD, OPE 

• Color-Octet Color-Octet Fock State  

• Probability 

• Large Effect at high x 

• Greatly increases kinematics of colliders  such as 
Higgs production !! 

• Underestimated in conventional parameterizations 
of heavy quark distributions 

• Many EIC, LHeC tests 



V.A. Bednyakov et al. / Physics Letters B 728 (2014) 602–606 603

Initially in [6,7] S. Brodsky and coauthors proposed the exis-
tence of the 5-quark state |uudcc̄⟩ in the proton. Later some other
models were developed. One of them considered a quasi-two-body
state D̄0(uc̄)Λ̄+

c (udc) in the proton [9]. In order to not contradict
the DIS HERA data the probability to find the intrinsic charm (IC)
in the proton (the weight of the relevant Fock state in the proton)
was found to be less than 3.5% [9–12]. The probability of find-
ing an intrinsic bottom state (IB) in the proton is suppressed by a
factor of m2

c /m2
b ≃ 0.1 [13], where mc ≃ 1.3 GeV and mb = 4.2 GeV

are the current masses of the charm and bottom quarks. Therefore,
the experimental search for a possible IC signal in pp collisions at
the LHC energies is more promising than the search for the IB con-
tribution.

If the distributions of the intrinsic charm or bottom in the pro-
ton are hard enough and similar in the shape to the valence quark
distributions (i.e. have valence-like form), then one expects the
production of the charmed (bottom) mesons or charmed (bottom)
baryons in the fragmentation region to be similar to the production
of pions or nucleons (from the light quarks). However, the yield of
this production depends on the probability to find intrinsic charm
or bottom in the proton, but this amount looks too small. The PDFs
that include the IC contribution in the proton have already been
used in perturbative QCD calculations in [9–12].

The probability distribution for the 5-quark state (|uudcc̄⟩) in
the light-cone description of the proton was first calculated in [6].
The general form for this distribution calculated within the light-
cone dynamics in the so-called BHPS model [6,7] can be written
as [11]

P (x1, . . . , x5) = N5δ

(

1 −
5∑

j=1

x j

)(

m2
p −

5∑

j=1

m2
j

x j

)− 2

, (1)

where x j is the momentum fraction of the parton, m j is its mass
and mp is the proton mass. Neglecting the light quark (u,d, s)
masses and the proton mass in comparison to the c-quark mass
and integrating (1) over dx1 · · ·dx4 one can get the probability to
find the intrinsic charm with momentum fraction x5 in the pro-
ton [11]:

P (x5) = 1
2

Ñ5x2
5

[
1
3
(1 − x5)

(
1 + 10x5 + x2

5
)

− 2x5(1 + x5) ln(x5)

]
, (2)

where Ñ5 = N5/m4
4,5, m4,5 = mc = mc̄ , the normalization constant

N5 determines some probability w IC to find the Fock state |uudcc̄⟩
in the proton. Fig. 1 illustrates the IC contribution in comparison
to the conventional sea charm quark distribution in the proton.

The solid line in Fig. 1 shows the standard perturbative sea
charm density distribution xcrg(x) (ordinary sea charm) in the pro-
ton from CTEQ6.6M [12] as a function of x at Q 2 = 1000 GeV2. The
dashed curve in Fig. 1 is the sum of the intrinsic charm density
xcin(x) from CTEQ6.6C2 BHPS with the IC probability w IC = 3.5%
and xcrg(x) at the same Q 2 [12]. One can see from Fig. 1 that
the IC distribution (with w IC = 3.5%) given by (2) has a rather
visible enhancement at x ∼ 0.2–0.5 and this distribution is much
larger (by an order and more of magnitude) than the sea (ordinary)
charm density distribution in the proton.

As a rule, the gluons and sea quarks play the key role in hard
processes of open charm hadroproduction. Simultaneously, due to
the nonperturbative intrinsic heavy quark components one can ex-
pect some excess of these heavy quark PDFs over the ordinary
sea quark PDFs at x > 0.1. Therefore the existence of this in-
trinsic charm component can lead to some enhancement in the

Fig. 1. Distributions of the charm quark in the proton at Q 2 = 1000 GeV2. The
solid line is the standard perturbative sea charm density distribution xcrg(x) only,
whereas the dashed curve is the charm quark distribution function, for the sum of
the intrinsic charm density xcin(x) (see (2)) and xcrg(x).

inclusive spectra of open charm hadrons, in particular D-mesons,
produced at the LHC in pp-collisions at large pseudorapidities η
and large transverse momenta pT [15]. Furthermore, as we know
from [6–12] photons produced in association with heavy quarks
Q (≡ c,b) in the final state of pp-collisions provide valuable infor-
mation about the parton distributions in the proton [9–23].

In this Letter, having in mind these considerations we will first
discuss where the above-mentioned heavy flavor Fock states in
the proton could be searched for at the LHC energies. Following
this we analyze in detail, and give predictions for, the LHC semi-
inclusive pp-production of prompt photons accompanied by c-jets
including the intrinsic charm component in the PDF.

2. The intrinsic charm and beauty

According to the model of hard scattering [24–29] the relativis-
tic invariant inclusive spectrum of the hard process p + p → h + X
can be related to the elastic parton–parton subprocess i + j →
i′ + j′ , where i, j are the partons (quarks and gluons), by the for-
mula [26,27]:

E
dσ

d3 p
=

∑

i, j

∫
d2kiT

∫
d2k jT

1∫

xmin
i

dxi

1∫

xmin
j

dx j f i(xi,kiT )

f j(x j,k jT )
dσi j(ŝ, t̂)

dt̂

Dh
i, j(zh)

π zh
. (3)

Here: ki, j and k′
i, j are the four-momenta of the partons i or j

before and after the elastic parton–parton scattering, respectively;
kiT , k jT are the transverse momenta of the partons i and j; f i, j are
the PDFs of partons i, j inside the proton; Dh

i, j is the fragmenta-
tion function (FF) of the parton i or j to a hadron h; and zh is
the fraction of the final state hadron momentum from the parton
momentum.

When the transverse momenta of the partons are neglected in
comparison to the longitudinal momenta, the variables ŝ, t̂ , û and
zh can be presented in the following form [26]: ŝ = xi x j s, t̂ = xi

t
zh

,

û = x j
u
zh

, zh = x1
xi

+ x2
x j

, where, x1 = − u
s = xT

2 cot(θ/2), x2 = − t
s =

xT
2 tan(θ/2), xT = 2

√
tu/s = 2pT /

√
s. Here as usual, s = (p1 + p2)

2,
t = (p1 − p′

1)
2, u = (p2 − p′

1)
2, and p1, p2, p′

1 are the 4-momenta
of the colliding protons and the produced hadron h, respectively;
θ is the scattering angle of hadron h in the pp c.m.s. The lower

Charm not a reliable signal for the high - gluon distribution

Charm Hadrons at high xF,  small rapidities Δy at LHCb-SMOG 

Produce charm hadrons at high x
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Test Standard Model Hard Processes at the LHeC
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Test Standard Model Hard Processes at the LHeC
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Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

Coalescence of Comoving Charm and Valence Quarks
Produce J/ψ, Λc and other Charm Hadrons at High xF

PX X

Spectator counting rules 
dN

dxF
/ (1� xF )2nspect�1

Coalesece of comovers produces high-xF heavy hadrons



• EMC data: c(x, Q2) > 30�DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp⇤ J/�X

• High xF pp⇤ J/�J/�X

• High xF pp⇤ �cX

• High xF pp⇤ �bX

• High xF pp⇤ ⇥(ccd)X (SELEX)

Interesting spin, charge asymmetry, threshold, spectator effects
Important corrections to B decays; Quarkonium decays

Gardner, Karliner, sjb

Explain Tevatron anomalies: pp̄! �cX,ZcX

Rules out color drag model 
(Pythia)

Evidence for IQ



Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

Use LHeC 60 GeV Electron Ring in Fixed-Target Mode 

Paul Newman 
(University of Birmingham)

The Large Hadron electron Collider

1

Complimentary to LHeC Program 
Nuclear and Polarized ProtonTargets 

Large-x Domain of DIS

HERMES (HERA), SMOG(LHCb)

Fixed Target
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Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

Why is Intrinsic Heavy Quark 
Phenomenon Important?

•Test Fundamental QCD predictions OPE, Non-Abelian 
QCD

•Test non-perturbative effects

•Important for correctly identifying the gluon distribution

•High-xF open and hidden charm and bottom; discover 
exotic states

•Explain anomalous high pT charm jet + γ data at 
Tevatron

• Important source of high energy ν at IceCube

Non-Abelian: PQQ̄ / 1
M2

QQ̄

Abelian: PQQ̄ / 1
M4

QQ̄
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Odderon-Pomeron Interference gives c vs. c̄ asymmetry.
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Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  
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Final-State Gluonic Interactions 
Produce Diffractive Deep 

Inelastic Scattering (DDIS)

Quark Rescattering in Final State 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of PomeronLeading Twist: Bj Scaling



QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

Reproduces lab-frame color dipole approach 
DDIS: Crucial Input for leading-twist nuclear shadowing

Hoyer, Marchal, Peigne, Sannino, sjb

DDIS: Diffractive Deep Inelastic Scattering
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

β

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA



Diffractive Structure Function F2
D  

H1: de Roeck, et al.

About 15% of DIS events are 
diffractive !
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Also: Need Imaginary Phase to Generate “Sivers Effect”
T-Odd Single-Spin Asymmetry

Physics of FSI not in LF Wavefunction of Target

DDIS: Diffractive 
Deep Inelastic 

Scattering
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DDIS: Diffractive 
Deep Inelastic 

Scattering

90% of proton momentum carried off 
by final state p’ in 15% of events!

Gluon momentum fraction misidentified!
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.
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2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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R = σpA
DY /σpA′

DY . The ratios (Rexp − Rtheo)/Rtheo are shown.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.
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Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].



Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF !  

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky 
Pumplin, sjb 

Gribov

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Reggeon gives constructive interference!

Anti-shadowing not universal



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Pomeron gives destructive interference!

Shadowing

  Observed HERA DDIS produces nuclear shadowing
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Phase of two-step amplitude relative to one
step:

1⇧
2
(1� i)⇥ i = 1⇧

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Di�erent for couplings of �⇤, Z0, W±

Reggeon 
Exchange

Critical tests: Tagged  SIDIS, Drell-Yan



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Regge

        constructive in phase
thus increasing the flux reaching N2

 Reggeon DDIS produces nuclear flavor-dependent anti-shadowing

Anti-shadowing





Shadowing and Antishadowing in Lepton-Nucleus Scattering

• Shadowing: Destructive Interference
of Two-Step and One-Step Processes
Pomeron Exchange

• Antishadowing: Constructive Interference
of Two-Step and One-Step Processes!
Reggeon and Odderon Exchange

• Antishadowing is Not Universal!
Electromagnetic and weak currents:
di�erent nuclear e�ects !
Potentially significant for NuTeV Anomaly}

Jian-Jun Yang 
Ivan Schmidt
Hung Jung Lu

sjb

Crucial LHeC Tests
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Charge-Exchange Diffractive Deep Inelastic Scattering

CEDDIS

I = 1 Reggeon Exchange

Rapidity Gap

X

�⇤p ! nX



A

q+ = 0 q2
? = Q2 = �q2

A-1

One-Step / Two-Step Interference

Front-Face Nucleon N1 not struckFront-Face Nucleon N1 struck

�⇤

Q2
�⇤

Study Double Virtual Compton Scattering �⇤A! �⇤A

Illustrates the
LF time sequence

Cannot reduce to real phase matrix element of local 
operator!  No Sum Rules!

N1
N2 N2

N1

A

Q2
No OPE!!

�    Nuclear Forward DVCSγ*A → γ*A

I. Schmidt, S. Liuti, sjb



Nuclear PDFs
• Shadowing from destructive interference                          

of 2-step and 1-step processes

• Anti-Shadowing from constructive interference                          
of 2-step and 1-step processes

• Diffractive DIS and Charge-Exchange DDIS crucial 
inputs

• Handbag amplitude for nuclear DVCS not applicable

• OPE and Sum Rules inapplicable to nuclear pdfs! 

• Multiple scattering effects in high density proton pdf at 
low x.  Nonlinear QCD.

Gribov-Glauber, Stodolsky

H. Lu, sjb

I. Schmidt, S. Liuti, sjb



Two(parBcle(correlaBons:(CMS(results(

�Discovery� 

!  Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 
                  for two hadrons in the intermediate 1 < pT, qT < 3 GeV   

Ridge Formation

High Multiplicity Events
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1-2013
8825A7
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Origin of same-side CMS ridge in p p Collisions

Bjorken, Goldhaber, sjbThe key point is that a multi-particle correlation should give a much more conspicuous signal

than the two-particle correlation used so far in the experimental analysis, but of course only

in that small fraction of the events where the prerequisite conditions of coincidence of narrow

strings in the projectile and target are in fact obtained. To be specific, we suggest looking at

the following vector ~V , computing its magnitude for each event. If the number of events with

large magnitude are greater than expected from chance, one would have powerful evidence

for the proposed colliding flux tube mechanism. Define

~V =
NX

i=1

[cos 2�ix̂+ sin 2�iŷ] , (1)

and obtain the distribution of ~V 2. If the particles were distributed randomly in �, then the

expectation value of ~V
2 would be N , where N is the number of particles in the event in

the given region of transverse momentum. The probability of getting a value N
2 may be

estimated by introducing quadrants in the variable 2�: Assume each vector can take only

the values ±x̂ or ±ŷ, with each having a probability 1/4. Suppose the first vector is +x̂.

Then the chance that the remainder would all be in the same direction would be (1/4)N�1.

For N = 5, this would yield a probability 1/256. If, among events in which the ridge was

seen, with more than 110 particles per event, and 5 particles separated from each other by

about one unit in �⌘ in an interval of p? between 1 and 2 GeV/c, as many as 2% of the

events should show ~V
2 ⇡ 25, that could be evidence for the kind of correlation we suggest.

This exercise is equivalent to asking the probability – assuming complete randomness in � –

that all 5 particles are in either of two opposite octants of �. If they were more collimated

than that, the probability would be even smaller.

It is likely that insistence on rapidity separation of emerging particles by one unit is

unnecessary: If there were only short-range correlations, then the value of ~V
2 inevitably

would lie far below its allowed maximum. Thus counting all particles in each event in the

specified range of transverse momentum, regardless of rapidity separation, should give a

reliable measure of the correlation. Technically, ~V is just the square of the usual ellipticity

variable. An advantage of squaring is that maximal ellipticity events are easy to pick out.

Also, it is easier to think about such a scalar variable rather than a vector variable.

At this point let us take a step back to gain perspective on what could cause such

phenomena. Obviously projectile and target must overlap in impact parameter to some

extent. Dynamics, in the form of conservation of momentum or of attraction of outgoing

6

 67

Collision of Flux Tubes
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An Important Theoretical Physics Advance for the LHeC

• Predicts Hadron Spectra and Dynamics (LFWFs)

• Color Confinement; Universal Mass Scale

• Illuminates Supersymmetric Features of Hadron 
Physics:  Equal-Mass Mesons, Baryons and 
Tetraquarks for Light and Heavy Quarks

• Universal Regge Trajectories: in n and L

• Massless composite pion for mq=0

• Predicts Running QCD coupling at all scales:  αs(Q2)

LFHQD Light-Front Holographic QCD 
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contributions in different angular-momentum configura-
tions from the broad and overlapping resonances. Thus,
there is now the chance to clarify the “missing” resonance
problem. The attempt to assign (nearly) all baryon reso-
nances to SU(3) multiplets should be helpful to identify
problems and to serve as guidance for further discussions.
This assignment requires to identify the leading orbital
angular momenta L and the spin S within the three-
quark system. Measured quantities are only the total an-
gular momentum, the spin J of the baryon, and its mass.
Here, theoretical input is required. We use a holographic
mass formula derived in [11] which reproduces the known
spectrum of nucleon and ∆ resonances with remarkable
precision.

In this paper, we shall use the word missing resonance
in a restricted sense. E.g., we may interpret the three
resonances N3/2+(1900), N5/2+(2000), N7/2+(1990) [12]
as members of a spin quartet, with orbital angular mo-
menta L = 2 and quark spin S = 3/2 coupling to the ob-
served particle spin J . In this interpretation, N1/2+(1880)
—observed in recent coupled-channel analyses [13]— was
missing to complete a quark spin quartet [14]. But the
existence of a N1/2+ resonance would be required in any
kind of quark model. More subtle is the question if two ad-
ditional doublets (N3/2+ , N5/2+) and (∆3/2+ , ∆5/2+) as
requested by symmetry arguments (see eq. (9) below) are
realized in nature. None of these states has been observed.
The latter type of resonances, i.e. the non-observation of a
complete L, S multiplet, we shall call missing resonances
in the context of this paper.

We refrain here from a discussion of the possibility that
baryon resonances are formed as parity doublets. If this
conjecture holds true, it gives an exciting new approach to
the internal dynamics of excited hadronic states; we give
here a few references for further reading [15–18]. However,
the predictive power of the conjecture is limited: it pre-
dicts that resonances should occur as parity doublets but
there is no prediction at which mass. In this article we
hence restrict ourselves to a discussion of the data within
the quark model and its symmetries.

The outline of the paper is as follows: In sects. 2 and 3
we summarise the empirical data on light-flavoured delta
and nucleon resonances, respectively. In particular we re-
call that these can be suitable organised according to lead-
ing and daughter Regge trajectories where the resonance
positions follow from a simple mass formula. In sect. 4
we summarise the relevant symmetries for light-flavoured
baryons and the classification of states in multiplets within
the framework of the (harmonic oscillator) constituent
quark model. In sect. 5 we discuss the structure of the
nucleon and ∆ resonances within the framework of this
classification, before concluding in sect. 6.

2 The mass spectrum of ∆ resonances

2.1 Regge trajectories

It is well known that meson and baryon resonances lie on
Regge trajectories, i.e. that their squared masses depend
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Fig. 1. The leading Regge trajectory: ∆ resonances with maxi-
mal J in a given mass range. Also shown is the Regge trajectory
for mesons with J = L + S.

linearly on the total angular momentum J . Figure 1 shows
such a plot; ∆ resonances are plotted having the largest
total angular momentum J in a given mass range. This
trajectory is called the leading Regge trajectory. The reso-
nances are consistent with having even orbital angular mo-
mentum L = 0, 2, 4, 6 and quark spin S = 3/2 maximally
aligned to form total angular momentum J = L+3/2. The
errors in the fit are given by the PDG errors and a second
systematic error of 30MeV added quadratically. This sys-
tematic error is introduced to avoid hard constraints from
well measured meson or baryon masses like the ∆(1232)
mass; the error can be interpreted as uncertainty due to
variations of the self-energy of different hadrons due to,
e.g., the proximity of (strong) decay thresholds.

Figure 1 also shows the leading Regge trajectory of
natural-parity mesons, again as a function of the total an-
gular momentum. Light mesons with approximate isospin
degeneracy and with J = L+1 are presented. Although it
is customary to plot the meson trajectories for L even and
L odd (for positive- and negative-parity mesons, respec-
tively) separately, there is no problem fitting both trajec-
tories simultaneously: This property is called MacDowell
symmetry [19].

The dotted line represents such a common fit to the
meson masses taken from the PDG [12]; the error in the fit
is given by the PDG errors and a second systematic error
of 30MeV added quadratically. The slope is determined
as 1.142GeV2. The ∆ trajectory is given by the ∆(1232)
mass and the slope as determined from the meson tra-
jectory. Obviously, mesons and ∆’s have the same Regge
slope. This observation is the basis for diquark models;
indeed, the QCD forces between quark and antiquark are
the same as those between quark and diquark.

The leading Regge trajectory:  Δ resonances with maximal J in a given mass range. 
Also shown is the Regge trajectory for mesons with J = L+S.

M2[GeV2]

E. Klempt and B. Ch. Metsch

Mesons and Baryons: Same Regge Slope M2 / J !



!

!

!

!!

!!

!!
!!
!!

"

"

"

"

#

#

#

#

M2 !GeV2"

LM ! LB ! 1
Ρ, Ω

a2, f2

Ρ3, Ω3

a4, f4

$
3
2

!

$
1
2

%

, $
3
2

%

$
1
2

!

, $
3
2

!

, $
5
2

!

, $
7
2

!

$
11
2

!

0 1 2 3 4 5
0

1

2

3

4

5

6

⇢�� superpartner trajectories

Dosch, de Teramond, sjb L (Orbital Angular Momentum)

MESONS
[qq̄]

BARYONS
[qqq]

bosons fermions



Superconformal Algebra
2X2 Hadronic Multiplets

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R
†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R
†
�

Figure 1: The supersymmetric quadruplet {�M , B+, B�,�T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, J
P = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m
2 =

P
n

i=1
m

2
i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e
� 1

2��m
2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m
2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

Meson Baryon

TetraquarkBaryon

Bosons, Fermions with Equal Mass!

Proton: |u[ud]> Quark + Scalar Diquark
Equal Weight: L=0, L=1

R†
� q ! [q̄q̄]

3C ! 3C

R†
� q̄ ! [qq]

3̄C ! 3̄C
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M2(n,LB) = 42(n + LB + 1)
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nucleon

=
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de Tèramond, Dosch, Lorcè, sjbSuperconformal Quantum Mechanics 
Light-Front Holography

Universal slopes in n, L





Fit to the slope of Regge trajectories, 
including radial excitations

Same Regge Slope for Meson, Baryons:  
Supersymmetric feature of hadron physics

mu = md = 46 MeV, ms = 357 MeV

From ↵g1(Q2)
Deur

� = 2 de Tèramond, Dosch, Lorce’, sjb



Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry

de Téramond, Dosch, Nielsen, sjb



Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

de Téramond, Dosch, Lorcé, sjb



Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

Supersymmetry in QCD

• A hidden symmetry of Color SU(3) in hadron 
physics

• QCD: No squarks or gluinos!

• Emerges from Light-Front Holography and 
Super-Conformal Algebra

• Color Confinement

• Massless Pion in Chiral Limit

• QCD coupling αs(Q2) in non-perturbative 
domain



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

Conformal Symmetry 
of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation Unique 
Confinement Potential!

de Tèramond, Dosch, sjb

 ' 0.5 GeV

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 
without affecting conformal invariance of action!• Fubini, Rabinovici: 

e'(z) = e+2z2

Single variable  ζ

⇥
� d2

d⇣2 � 1�4L2

4⇣2 + U(⇣)
⇤
 (⇣) = M2 (⇣)

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

GeV units external to QCD: Only Ratios of Masses Determined



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potentialm⇡ = 0 if mq = 0

Massless pion! 

~⇣2 = ~b2?x(1� x)



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 

Light-Front Wavefunctions

Remarkable new insights from AdS/CFT, the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian

 (xi,~k?i,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Off-shell in invariant mass

x =
k+

P+
=

k0 + k3

P 0 + P 3



Prediction from AdS/QCD: Meson LFWF
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Provides Connection of Confinement to Hadron Structure
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 = 92.4 MeV Same as DSE!

e'(z) = e+2z

C. D. Roberts et al.



J. R. Forshaw,  
R. Sandapen
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Using SU(6) flavor symmetry and normalization to static quantities
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ&with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ&∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ&follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn¼ 1.673 and
χd ¼ 2χnþ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.

PHYSICAL REVIEW LETTERS 120, 182001 (2018)

182001-3

Universality of Generalized Parton Distributions in Light-Front Holographic QCD 

Guy F. de Te ́ramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur 

PHYSICAL REVIEW LETTERS 120, 182001 (2018) 
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Since the sea quark distributions are not separately
constrained by electromagnetic form factors, one needs
other physical observables that are sensitive to the quark
and antiquark contributions individually to determine
them separately. Instead of attempting a full separa-
tion, which is beyond the purpose of this work, we use
the relation of the isovector axial charge,

gA = (�u+�ū) � (�d+�d̄), (30)

to constrain the non-minimal sea quark.
The value of the isovector axial charge gA = 1.2732(23)

is precisely determined by the neutron weak decay [58].
As shown in Table I, its value evaluated with a minimal
sea component, gA,min, is smaller than the experimen-
tal value. To obtain the value of gA with the minimal
shift u⌧ ! u⌧ + �⌧,u, ū⌧ ! ū⌧ + �⌧,u and similarly for
the d-quark, implies a positive shift �⌧=5,u and/or �⌧=6,d.
Therefore, we satisfy the relation (30) by the shift �⌧=5,u

and �⌧=6,d, and take the variation between them as part
of the theoretical uncertainty.

FIG. 1. Polarized distributions of the isovector combina-
tion x[�u+(x)��d+(x)] in comparison with NNPDF global
fit [15] and experimental data [6–12]. Three sets of parame-
ters, see Table I, are determined from the Dirac form factor
and unpolarized valence distributions. The bands represent
the variation with di↵erent approaches to saturate the axial
charge gA. The blue dashed curve is the valence state contri-
bution without saturating the axial charge.

For the universal reparametrization function w(x), we
take the same form as in [50],

w(x) = x
1�x exp[�a(1 � x)2], (31)

with the parameter “a” fixed with the first moment of
unpolarized valence quark distributions. One can in
principle adopt any parametrization form that fulfills
the boundary conditions (7) and (8), and the predic-
tive power is kept by the universality of w(x) for all

FIG. 2. Polarized distributions of u, d, ū, and d̄ in comparison
with NNPDF global fit [15] and experimental data [10–12].
The bands have the same meaning as in Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0
x

�1.0

�0.5

0.0

0.5

1.0

�
q(

x
)/

q(
x
)

µ2 = 5 GeV2

�u+/u+

�d+/d+

This work (I)
This work (II)
This work (III)
E06-014/EG1
E99-117/EG1
EG1b
HERMES

FIG. 3. Helicity asymmetries of u + ū and d + d̄ compared
with measurements. The bands and symbols have the same
meaning as in Fig. 1.

PDFs. For comparison with measurements, we evolve the
PDFs from Q = 1.06GeV, which is the matching scale
determined from the study of the strong coupling con-
stant [59]. As shown in Figs. 1-3, our numerical results
are in good agreement with the global fit [15] and mea-
surements [6–12]. The isovector combination�u+��d+,
where u+ and d+ stand for u+ ū and d+ d̄, is the distri-
bution relevant to the relation of the axial charge (30).
The dashed blue curve in Fig. 1 is the contribution from
the valence state only; the di↵erence with the full results,
cases I, II and III, which include saturation of the axial
charge is noticeable. This is consistent with the analysis
of the Pauli form factor in [60], which demonstrates the
significance of the sea quarks in describing spin-related
quantities.

Helicity asymmetries of u(x) + ū(x) and d(x) + d̄(x)
compared with measurements.

Guy F. de Te ́ramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur 



•Can be used as standard QCD coupling

•Well measured

•Asymptotic freedom at large Q2

•Computable at large Q2 in any pQCD 
scheme

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q2)� gen
1 (x,Q2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡
]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS

Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV
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Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative
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 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:

Q0 = 0.87± 0.08 GeV

MS schemeReverse Dimensional Transmutation!

Use Q0 for starting 
DGLAP  and ERBL 

Evolution

Experiment:
⇤MS = 0.332± 0.017 GeV

5-Loop � Prediction:
⇤MS = 0.339± 0.019 GeV



Novel High-Energy Electron-Proton Collider 
Physics at the LHeC

Stan Brodsky  

Light-Front Holography:  First Approximation to QCD

• Color Confinement, Analytic form of confinement potential 

• Retains underlying conformal properties of QCD despite mass scale                          
(DeAlfaro-Fubini-Furlan Principle) 

• Massless quark-antiquark pion bound state in chiral limit, GMOR 

• QCD coupling at all scales 

• Connection of perturbative and nonperturbative mass scales 

• Poincarè Invariant 

• Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L 

• Supersymmetric 4-Plet:  Meson-Baryon -Tetraquark Symmetry 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions, Hadronic Observables 

• OPE: Constituent Counting Rules 

• Hadronization at the Amplitude Level:  Many Phenomenological Tests 

• Systematically improvable:  Basis LF Quantization (BLFQ)



The Impact of the LHeC on Advancing QCD

• Testing a New Approach to Color Confinement, Hadron Spectroscopy, 
Light-Front Dynamics: Light-Front Holographic QCD 

• Exotic Hadron Production 
• Ridge Production from Flux Tube Collisions: Novel Azimuthal 

Correlations 

• Hadronization at the Amplitude Level 
• Heavy Quark and Flavor Dynamics: Intrinsic Distributions 
• Novel Nuclear Structure Phenomena: Breakdown of Sum Rules for 

Nuclear PDFs, Flavor-Dependent Antishadowing, Hidden Color, 
Color Transparency, 

• Violation of Factorization Theorems: Initial &Final-State Interactions, 
Novel Spin Phenomena 

• Elimination of Scale Ambiguities:Principle of Maximum Conformality
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Novel Physics Opportunities at the LHeC
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P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)
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d lnQ2 < 0
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where s0 is a typical hadronic scale ∼ 1 GeV2 which replaces M2
X in Eq. (4). In the last

step we also make the simplifying assumption that the contribution to the denominator
from the Odderon is numerically much smaller than from the Pomeron and therefore can be
neglected. The maximally allowed Odderon coupling at t=0 is then given by,
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Strictly speaking this limit applies for the soft Odderon and Pomeron and is therefore not
directly applicable to charm photoproduction which is a harder process, i.e. with larger
energy dependence. According to recent data from HERA [24] the energy dependence,
parameterized as sδ

γp, for photoproduction of J/ψ mesons is δ = 0.39 ± 0.09 for exclusive
production and δ = 0.45±0.13 for inclusive production corresponding to a Pomeron intercept
of αP(0) ≃ 1.2. Even so we will use this limit to get an estimate of the maximal Odderon
coupling to the proton.
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FIG. 3. The amplitudes for the asymmetry using the Donnachie-Landshoff [21] model for the

Pomeron/Odderon coupling to the quark and the proton.

The amplitudes can be calculated using the Donnachie-Landshoff [21] model for the
Pomeron and a similar ansatz for the Odderon [12]. The coupling of the Pomeron/Odderon
to a quark is then given by κγcc̄

P/Oγρ, i.e. assuming a helicity preserving local interaction. In

the same way the Pomeron/Odderon couples to the proton with 3κP/O
pp′ F1(t)γσ if we only

include the Dirac form-factor F1(t). The amplitudes shown in Fig. 3 can then be obtained

by replacing gP/O
pp′ (t)gγcc̄

P/O(t, M2
X , zc) in Eq. (4) by,

gP/O
pp′ (t)gγcc̄

P/O(t, M2
X , zc) = 3κP/O

pp′ F1(t)ū(p − ℓ)γσu(p)

(

gρσ −
ℓρqσ + ℓσqρ

ℓq

)

κγcc̄
P/Oϵµ(q)

×ū(pc)

{

γµ ℓ̸− p̸c̄ + mc

(1 − z)M2
X

γρ − SP/Oγρ p̸c − ℓ̸ + mc

zM2
X

γµ

}

v(pc̄)

where ℓ = ξp is the Pomeron/Odderon momentum and gρσ − ℓρqσ+ℓσqρ

ℓq stems from the
Pomeron/Odderon “propagator”. Note the signature which is inserted for the crossed dia-
gram to model the charge conjugation property of the Pomeron. The Pomeron amplitude
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Fig. 4. The asymmetry in fractional energy z of charm versus anticharm jets predicted by our model using the Donnachie-Landshoffc

Pomeron for a s 1.2, a s 0.95 and s rM 2s 100.PP OO g p X

Ž . soft 4 2 2 Ž .from Eq. 13 for a s 1.08, ss 10 GeV , s s 1 GeV and Dr s s 0.05. Inserting the numericalPP 0 max

values discussed above then gives

y 0 .25s 2 z y 1g p c2AA t,0,M , z ,0.45 , 17Ž .Ž .X c 2 22ž /M z q 1 y zŽ .X c c

which for a typical value of s rM 2s 100 becomes a ;15 % asymmetry for large z as illustrated in Fig. 4.g p X c

We also note that the asymmetry can be integrated over z givingc

y 0 .25s1 0.5 g p2 2 2AA t,0,M s AA t,0,M , z y AA t,0,M , z ,0.3 . 18Ž .Ž . Ž . Ž .H HX X c X c 2ž /M0.5 0 X

It should be emphasized that the magnitude of this estimate is quite uncertain. The Odderon coupling to the

proton which we are using is a maximal coupling for the soft Odderon in relation to the soft Pomeron. So on the

one hand the ratio may be smaller than this, and on the other hand the ratio may be larger if the hard Odderon

and Pomeron have a different ratio for the coupling to the proton. For the hard Pomeron the coupling is in
Ž w x.general different at the two vertices see e.g. 27 and this could also be true for the hard Odderon.

There is also a small irreducible asymmetry from photon-Pomeron interference. Adding the photon exchange
Žamplitude to the Odderon amplitude modifies the asymmetry as follows again only taking into account the

.Dirac form-factor ,

p aPP
1y asin PPs 2 z y 1g p c22AA t,0,M , z s 2Ž .X c 2 2PP g cc 2ž /X Mk k z q 1 y zŽ .Xp p PP c c

=

p
a y 1 2sin a y a° ¶2Ž .OO OO PPs 1 2 e p ag p PP2OO g cc~ •Xy k k q cos .p p OO X2ž / p D qa t 3 3 t 2M¢ ßŽ .OO OOX
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Measure charm asymmetry in 
photon fragmentation region

Odderon-Pomeron Interference!
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