Novel Physics Opportunities at the LHeC

ELECTRONS FOR THE LHC: Workshop on the LHeC, FCC-eh and PERLE

October 24, 2019

Physics at the DIS Frontier

M. Klein

Raison(s) d'etre of the LHeC

Cleanest High Resolution Microscope: QCD Discovery

Empowering the LHC Search Programme

Transformation of LHC into high precision Higgs facility

Discovery (top, H, heavy v's..) Beyond the Standard Model

A Unique Nuclear Physics Facility

$$\begin{split} s_{ep} &= (p_e + p_p)^2 = 4E_e E_p = 4 \times 60 \ GeV \times 7 \ TeV \simeq 1.7 \ TeV^2 \\ & \text{Equivalent to an e-p collider in the CM:} \\ & E_e^{CM} = E_p^{CM} \simeq 650 \ GeV \quad \sqrt{s}_{ep} \simeq 1.3 \ TeV \\ & \text{Equivalent to SLAC Fixed-Target DIS with } E_e^{FT} \simeq 900 \ TeV \end{split}$$

(A SLAC Línear Accelerator: 60,000 Míles Long!)

$$x_{bj} = \frac{Q^2}{2q \cdot p} > 10^{-7} for \ Q^2 > 1 GeV^2$$

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Test Higgs Emission from the Z^o at the LHeC

 $Z^0q \to Hq'$

Test Higgs Emission from the W⁻ at the LHeC

 $W^-u \to Hd$

Test Higgs Emission from the W⁻ at the LHeC

 $W^-c \to H b$

Intrínsic Charm at hígh x

Test Higgs-strahlung from Heavy Quarks at the LHeC

Test $\gamma b \rightarrow Hb'$

b(x, Q) at high x (Intrinsic Bottom)

Crucial Physics for the LHeC

Test for Lepton/Quark Compositeness at the LHeC

Measure $\frac{d\sigma}{dt}(eq \rightarrow e'q')$ at very high Q^2

Test for Lepto-Quarks at the LHeC

s – channel resonance : $eq \rightarrow [\ell q] \rightarrow e'q'$ at $\hat{s} = m_{\ell q}^2$

Brown, Samuel, Sahdev, Mikaelian, Kowalski, sjb

Radiation-Amplitude Zero at the LHeC

$$\gamma W^+ \rightarrow c \bar{b}$$

$$\frac{d\sigma}{dt}(W^+\gamma \to c\bar{b}) = 0$$

at $\cos\theta = \frac{e_{\bar{b}}}{e_{W^+}} = \frac{1}{3}$
Tests $g_W = g_q = 2$

Fundamental Standard Model Physics Tests at the LHeC

Elimination of Scale Ambiguities!

Novel High-Energy Electron-Proton Collider Physics at the LHeC

An Important Theoretical Physics Advance for the LHeC

BLM/PMCPrinciple of Maximum Conformality $\alpha_s(q^2)$ sums all β terms

- Eliminates renormalization scale ambiguities for pQCD and SM predictions
- Predictions are independent of scheme and initial scale choice
- Convergent conformal series: No "renormalons" $C_n \sim \alpha_s^n \beta_o^n n!$
- Consistent with Gell-Mann Low for QED
- Eliminates many outstanding conflicts of pQCD with experiment
- Maximizes sensitivity of LHeC measurements to new physics

Novel High-Energy Electron-Proton Collider Physics at the LHeC

 $\alpha(t) = \frac{\alpha(t_o)}{1 - \Pi(t_o)}$

T. Gehrmann, N. H'afliger, P. F. Monni

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

Renormalization scale depends on the thrust

Not constant ! Not M_Z

1**-**T

T. Gehrmann, N. H'afliger, P. F. Monni

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

Renormalization scale depends on the C-parameter

S.-Q. Wang, L. Di Giustino, X.-G. Wu, sjb

Principle of Maximum Conformality (PMC)

The Renormalization Scale Ambiguity for Top-Pair Production Eliminated Using the 'Principle of Maximum Conformality' (PMC)

Top quark forward-backward asymmetry predicted by pQCD NNLO within 1 $_{\rm 0}$ of CDF/D0 measurements using PMC/BLM scale setting

BLM-PMC

- Test QCD to maximum precision
- High precision determination of $\alpha_s(Q^2)$ at all scales
- Relate observable to observable --no scheme or scale ambiguity
- Eliminate renormalization scale ambiguity in a schemeindependent manner
- Relate renormalization schemes without ambiguity
- Maximize sensitivity to new physics

The QCD pomeron with optimal renormalization

Stanley J. Brodsky (SLAC), Victor S. Fadin (Novosibirsk, IYF), Victor T. Kim (St. Petersburg, INP & Iowa State U., IITAP), Lev N. Lipatov (St. Petersburg, INP), Grigorii B. Pivovarov (Moscow, INR & Iowa State U., IITAP). Dec 1998. 11 pp. Published in JETP Lett. 70 (1999) 155-160 SLAC-PUB-8037, IITAP-98-010 DOI: 10.1134/1.568145 e-Print: hep-ph/9901229 | PDF

BFKLP Based on BLM/PMC

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

Fixed
$$\tau = t + z/c$$

$$x_{bj} = x = \frac{k^+}{P^+}$$

Invariant under boosts! Independent of P^µ

The LHeC: Key Measurements of Hadron Dynamics and Structure

Fixed $\tau = t + z/c$

Light Front Wavefunctions: Boost Invariant, Causal

Novel High-Energy Electron-Proton Collider Physics at the LHeC

Advantages of the Dirac's Front Form for Hadron Physics Poincare' Invariant

Physics Independent of Observer's Motion

- \bullet LHeC Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent: no boosts, no pancakes!

Penrose, Terrell, Weisskopf

- Same structure function measured at an e p collider and in the proton rest frame
- No dependence of hadron structure on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no vacuum condensates!
- Profound implications for Cosmological Constant

Roberts, Shrock, Tandy, sjb

$$|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks s(x), c(x), b(x) at high x !

Fixed LF time au = t + z/c

 $\overline{s}(x) \neq s(x)$ $\overline{u}(x) \neq \overline{d}(x)$

Deuteron: Hidden Color

 $\bar{d}(x)/\bar{u}(x)$ for $0.015 \le x \le 0.35$

E866/NuSea (Drell-Yan)

$$\bar{d}(x) \neq \bar{u}(x)$$

Interactions of quarks at same rapidity in 5-quark Fock state

Intrínsic sea quarks

Fixed LF time

Probability (QED) $\propto \frac{1}{M_{\ell}^4}$

Probability (QCD) $\propto \frac{1}{M_O^2}$

Collins, Ellis, Gunion, Mueller, sjb M. Polyakov

 $\Delta \sigma(\bar{p}p \to \gamma cX)$ $\Delta \sigma(\bar{p}p \to \gamma bX)$ **Ratio is insensitive** to gluon PDF, scales

 $qc \rightarrow \gamma c$

Signal for significant intrinsic charm

Mesropian, Bandurin

LHC:
$$pp \to Z^0 cX$$

Boettcher, Ilten, Williams

Hoyer, Peterson, Sakai, sjb

RĒ

<u>P</u>

Intrínsic Heavy-Quark Fock

- **Rigorous prediction of QCD, OPE**
- Color-Octet Color-Octet Fock State
- **Probability** $P_{Q\bar{Q}} \propto \frac{1}{M_Q^2}$ $P_{Q\bar{Q}Q\bar{Q}} \sim \alpha_s^2 P_{Q\bar{Q}}$ $P_{c\bar{c}/p} \simeq 1\%$
- Large Effect at high x
- Greatly increases kinematics of colliders such as Higgs production !!
- Underestimated in conventional parameterizations of heavy quark distributions
- Many EIC, LHeC tests

Produce charm hadrons at high x

Charm not a reliable signal for the high - gluon distribution

 $ep \rightarrow e'cgX, ep \rightarrow e'bgX,$ C γ^* e p $\gamma^* c \to gc$ \boldsymbol{g}

LHeC: Measure c(x,Q), b(x,Q) at large x

Test Standard Model Hard Processes at the LHeC

c(x, Q) at high x (Intrinsic Charm)

Test Standard Model Hard Processes at the LHeC

c(x, Q) at high x (Intrinsic Charm)

Test Higgs-strahlung from Heavy Quarks at the LHeC

b(x, Q) at high x (Intrinsic Bottom)

"Hadronization at the Amplitude Level"

"Hadronization at the Amplitude Level"

Barger, Halzen, Keung PRD 25 (1981)

Coalesece of comovers produces high-x_F heavy hadrons

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

- EMC data: $c(x,Q^2) > 30 \times DGLAP$ $Q^2 = 75 \text{ GeV}^2$, x = 0.42
- High $x_F \ pp \to J/\psi X$

Rules out color drag model (Pythia)

Evídence for IQ

- High $x_F \ pp \to J/\psi J/\psi X$
- High $x_F \ pp \to \Lambda_c X$
- High $x_F \ pp \to \Lambda_b X$
- High $x_F pp \rightarrow \Xi(ccd)X$ (SELEX)

Explain Tevatron anomalies: $p\bar{p} \rightarrow \gamma cX, ZcX$

Interesting spin, charge asymmetry, threshold, spectator effects Important corrections to B decays; Quarkonium decays Gardner, Karliner, sjb

Use LHeC 60 GeV Electron Ring in Fixed-Target Mode

HERMES (HERA), SMOG(LHCb)

Complimentary to LHeC Program Nuclear and Polarized ProtonTargets Large-x Domain of DIS

Light-Front Wavefunctions and Heavy-Quark Electroproduction

Coalescence of comovers produces Z_c^+ tetraquark

Why is Intrinsic Heavy Quark Phenomenon Important?

- Test Fundamental QCD predictions OPE, Non-Abelian QCD Non-Abelian: $P_{Q\bar{Q}} \propto \frac{1}{M_{Q\bar{Q}}^2}$ Abelian: $P_{Q\bar{Q}} \propto \frac{1}{M_{Q\bar{Q}}^4}$
- Test non-perturbative effects
- Important for correctly identifying the gluon distribution
- High-x_F open and hidden charm and bottom; discover exotic states
- Explain anomalous high pT charm jet + γ data at Tevatron
- Important source of high energy v at IceCube

Odderon-Pomeron Interference gives c vs. \bar{c} asymmetry Rathsman, Merino, sjb

Deep Inelastic Electron-Proton Scattering

Conventional wisdom: Final-state interactions of struck quark can be neglected

Fínal-State Gluoníc Interactions Produce Díffractive Deep Inelastic Scattering (DDIS)

Quark Rescattering in Final State

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Leading Twist: Bj Scaling

Low-Nussinov model of Pomeror

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

DDIS: Diffractive Deep Inelastic Scattering

Remarkable observation at HERA

10% to 15% of DIS events are díffractive !

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993)

H1: de Roeck, et al.

Diffractive Structure Function F₂^D

Diffractive inclusive cross section

$$\begin{split} \frac{\mathrm{d}^3 \sigma_{NC}^{diff}}{\mathrm{d} x_{I\!\!P} \,\mathrm{d}\beta \,\mathrm{d}Q^2} &\propto \; \frac{2\pi\alpha^2}{xQ^4} F_2^{D(3)}(x_{I\!\!P},\beta,Q) \\ F_2^D(x_{I\!\!P},\beta,Q^2) &= \; f(x_{I\!\!P}) \cdot F_2^{I\!\!P}(\beta,Q^2) \end{split}$$

extract DPDF and xg(x) from scaling violation Large kinematic domain $3 < Q^2 < 1600 \text{ GeV}^2$ Precise measurements sys 5%, stat 5–20%

About 15% of DIS events are díffractive !

DDIS: Diffractive Deep Inelastic Scattering

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Also: Need Imaginary Phase to Generate "Sivers Effect" T-Odd Single-Spin Asymmetry

Physics of FSI not in LF Wavefunction of Target

DDIS: Diffractive Deep Inelastic Scattering

90% of proton momentum carried off by final state p' in 15% of events!

Gluon momentum fraction misidentified!

Stodolsky Pumplin, sjb Gribov

Nuclear Shadowing in QCD

Shadowing depends on understanding leading twist-diffraction in DIS Nuclear Shadowing not included in nuclear LFWF!

> Dynamical effect due to virtual photon interacting in nucleus Diffraction via Reggeon gives constructive interference! Anti-shadowing not universal

Diffraction via Pomeron gives destructive interference!

Shadowing

Observed HERA DDIS produces nuclear shadowing

Phase of two-step amplitude relative to one step:

$$\frac{1}{\sqrt{2}}(1-i) \times i = \frac{1}{\sqrt{2}}(i+1)$$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ^*, Z^0, W^{\pm}

Crítical tests: Tagged SIDIS, Drell-Yan

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

Regge If the scattering on nucleon N_1 is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \overline{q} flux reaching N_2 . **Constructive in phase**

thus increasing the flux reaching N₂

Reggeon DDIS produces nuclear flavor-dependent anti-shadowing

Schmidt, Yang; sjb

Reggeon Contribution to DDIS Constructive Interference! Phase from

signature factor

Nuclear Antishadowing not universal!

Shadowing and Antishadowing in Lepton-Nucleus Scattering

Shadowing: Destructive Interference
 of Two-Step and One-Step Processes
 Pomeron Exchange

• Antishadowing: Constructive Interference of Two-Step and One-Step Processes! Reggeon and Odderon Exchange

 Antishadowing is Not Universal!
 Electromagnetic and weak currents: different nuclear effects !
 Potentially significant for NuTeV Anomaly} Jian-Jun Yang Ivan Schmidt Hung Jung Lu sjb

Charge-Exchange Diffractive Deep Inelastic Scattering

 $\gamma^*A \rightarrow \gamma^*A$ Nuclear Forward DVCS

Front-Face Nucleon N1 struckFront-Face Nucleon N1 not struckOne-Step / Two-Step InterferenceStudy Double Virtual Compton Scattering $\gamma^*A \rightarrow \gamma^*A$ Cannot reduce to real phase matrix element of local
operator! No Sum Rules!I. Schmidt, S. Liuti, sjb

Nuclear PDFs

- Shadowing from destructive interference of 2-step and 1-step processes
 Gribov-Glauber, Stodolsky
- Anti-Shadowing from constructive interference of 2-step and 1-step processes
 H. Lu, sjb
- Diffractive DIS and Charge-Exchange DDIS crucial inputs
- Handbag amplitude for nuclear DVCS not applicable
- OPE and Sum Rules inapplicable to nuclear pdfs! I. Schmidt, S. Liuti, sjb
- Multiple scattering effects in high density proton pdf at low x. Nonlinear QCD.

Two particle correlations: CMS results

 Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 for two hadrons in the intermediate 1 < p_T, q_T < 3 GeV

High Multiplicity Events

Origin of same-side CMS ridge in p p Collisions

Collision of Flux Tubes Bjorken, Goldhaber, sjb

LFHQD Light-Front Holographic QCD

- Predicts Hadron Spectra and Dynamics (LFWFs)
- Color Confinement; Universal Mass Scale
- Illuminates Supersymmetric Features of Hadron Physics: Equal-Mass Mesons, Baryons and Tetraquarks for Light and Heavy Quarks
- Universal Regge Trajectories: in n and L
- Massless composite pion for m_q=0
- Predicts Running QCD coupling at all scales: $\alpha_s(Q^2)$

The leading Regge trajectory: Δ resonances with maximal J in a given mass range. Also shown is the Regge trajectory for mesons with J = L+S.

E. Klempt and B. Ch. Metsch

Superconformal Algebra

2X2 Hadronic Multiplets

Bosons, Fermions with Equal Mass!

de Tèramond, Dosch, Lorce', sjb

Fit to the slope of Regge trajectories, including radial excitations

Same Regge Slope for Meson, Baryons: Supersymmetric feature of hadron physics

de Téramond, Dosch, Nielsen, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy charm quark mass does not break supersymmetry

de Téramond, Dosch, Lorcé, sjb

Supersymmetry across the light and heavy-light spectrum

Heavy bottom quark mass does not break supersymmetry

Supersymmetry in QCD

- A hidden symmetry of Color SU(3) in hadron physics
- QCD: No squarks or gluinos!
- Emerges from Light-Front Holography and Super-Conformal Algebra
- Color Confinement
- Massless Pion in Chiral Limit
- QCD coupling $\alpha_s(Q^2)$ in non-perturbative domain

Novel High-Energy Electron-Proton Collider Physics at the LHeC

de Tèramond, Dosch, sjb

AdS/QCD Soft-Wall Model

 $e^{\varphi(z)} = e^{+\kappa^2 z^2}$

Líght-Front Holography

$$\left[-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = M^2\psi(\zeta)$$

Light-Front Schrödinger Equation

 $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$ Single variable ζ Unique Confinement Potential!

Conformal Symmetry of the action

Confinement scale:

ale: $\kappa \simeq 0.5 \ GeV$

de Alfaro, Fubini, Furlan:Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

GeV units external to QCD: Only Ratios of Masses Determined

Meson Spectrum in Soft Wall Model

$$m_{\pi} = 0$$
 if $m_q = 0$

Pion: Negative term for J=0 cancels positive terms from LFKE and potential

Massless pion!

- Effective potential: $U(\zeta^2) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$
- LF WE

$$\left(-rac{d^2}{d\zeta^2}-rac{1-4L^2}{4\zeta^2}+\kappa^4\zeta^2+2\kappa^2(J-1)
ight)\phi_J(\zeta)=M^2\phi_J(\zeta)$$

• Normalized eigenfunctions $\ \langle \phi | \phi
angle = \int d\zeta \, \phi^2(z)^2 = 1$

$$\phi_{n,L}(\zeta) = \kappa^{1+L} \sqrt{rac{2n!}{(n+L)!}} \, \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)$$

Eigenvalues

$$\mathcal{M}_{n,J,L}^2 = 4\kappa^2\left(n+rac{J+L}{2}
ight)$$

$$\vec{\zeta}^2 = \vec{b}_\perp^2 x (1-x)$$

G. de Teramond, H. G. Dosch, sjb

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau = t + z/c$

Fixed
$$\tau = t + z/c$$

 $\psi(x_i, \vec{k}_{\perp i}, \lambda_i)$
 $x = \frac{k^+}{P^+} = \frac{k^0 + k^3}{P^0 + P^3}$

Invariant under boosts. Independent of P^{μ}

$$\mathbf{H}_{LF}^{QCD}|\psi\rangle = M^2|\psi\rangle$$

Direct connection to QCD Lagrangian

Off-shell in invariant mass

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Prediction from AdS/QCD: Meson LFWF

week ending 24 AUGUST 2012

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

Using SU(6) flavor symmetry and normalization to static quantities

Comparison for xq(x) in the proton from LFHQCD (red bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6] (cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD results are evolved from the initial scale $\mu_0 = 1.06\pm0.15$ GeV.

Universality of Generalized Parton Distributions in Light-Front Holographic QCD

Guy F. de Te´ramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur PHYSICAL REVIEW LETTERS 120, 182001 (2018)

Helicity asymmetries of $u(x) + \bar{u}(x)$ and $d(x) + \bar{d}(x)$ compared with measurements.

Guy F. de Te´ramond, Tianbo Liu, Raza Sabbir Sufian, Hans Günter Dosch, Stanley J. Brodsky, and Alexandre Deur

Bjorken sum rule defines effective charge
$$\alpha_{g1}(Q^2)$$
$$\int_0^1 dx [g_1^{ep}(x,Q^2) - g_1^{en}(x,Q^2)] \equiv \frac{g_a}{6} [1 - \frac{\alpha_{g1}(Q^2)}{\pi}]$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large Q²
- Computable at large Q² in any pQCD scheme
- Universal β_0 , β_1

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for Q < 1 GeV

$$e^{\varphi} = e^{+\kappa^2 z^2}$$

Deur, de Teramond, sjb

Light-Front Holography: First Approximation to QCD

- Color Confinement, Analytic form of confinement potential
- Retains underlying conformal properties of QCD despite mass scale (DeAlfaro-Fubini-Furlan Principle)
- Massless quark-antiquark pion bound state in chiral limit, GMOR
- QCD coupling at all scales
- Connection of perturbative and nonperturbative mass scales
- Poincarè Invariant
- Hadron Spectroscopy-Regge Trajectories with universal slopes in n, L
- Supersymmetric 4-Plet: Meson-Baryon -Tetraquark Symmetry
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- OPE: Constituent Counting Rules
- Hadronization at the Amplitude Level: Many Phenomenological Tests
- Systematically improvable: Basis LF Quantization (BLFQ)

Novel High-Energy Electron-Proton Collider Physics at the LHeC

The Impact of the LHeC on Advancing QCD

- Testing a New Approach to Color Confinement, Hadron Spectroscopy, Light-Front Dynamics: *Light-Front Holographic QCD*
- Exotic Hadron Production
- Ridge Production from Flux Tube Collisions: Novel Azimuthal
 Correlations
- Hadronization at the Amplitude Level
- Heavy Quark and Flavor Dynamics: Intrinsic Distributions
- Novel Nuclear Structure Phenomena: Breakdown of Sum Rules for Nuclear PDFs, Flavor-Dependent Antishadowing, Hidden Color, Color Transparency,
- Violation of Factorization Theorems: Initial & Final-State Interactions, Novel Spin Phenomena
- Elimination of Scale Ambiguities: Principle of Maximum Conformality

Novel Physics Opportunities at the LHeC

ELECTRONS FOR THE LHC: Workshop on the LHeC, FCC-eh and PERLE

October 24, 2019

0.3

0.5

0.4

0.6

0.7

0.8

0.9

Z_c

0.2

0

0.1

Merino, Rathsman, sjb