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Frequency 647.4MHz 801.58MHz 801.58MHz 1.3GHz
Cavity Voltage — V.. 26.88 MV 18.7MV 18.7MV 13.1MV
External Q-Factor of FPC - Q, 1.60x 107 1.00 x 107 156107 6.5%107
Intrinsic Q-Factor — Qg 2.00x 10" 2.00x 100 2.00x 10"  2,00x 10'°
R 502Q 393Q 393Q 387Q

Peak Detuning — Awypeak 20.0Hz 40.0Hz 26.2Hz 20.0Hz
RMS Detuning — o-(Aw,,) 3.33Hz 6.67Hz 4.36Hz 3.33Hz
Accelerating Gradient — E, . 16 MV/m 20MV/m 20MV/m 16.2MV/m
Cavity Length 1.68m 0.935m 0.935m 0.81m
Final Beam Energy 20GeV 0.9 GeV 60 GeV 5GeV

ERL Passes 12 3 3 1

Number of Cavities 62 16 1069 384

Grid to RF conversion efficiency ~ 70% ~ 50% ~ 70% ~ 50%
Total Electrical Power for microphonics control ~ 1.37 MW 732kW 22.2MW 734 kW

m Black: From a reference
m Orange: Calculated form a referenced value
m Red: Estimated
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Tuner Frequency 647.4MHz 801.58 MHz 801.58MHz 1.3GHz

Cavity Voltage — V. 26.88MV 18 7MV 187MV  13.1MV
External Q-Factor of FPC - Q, 1.60x 107 1.00 x 107 1.56 x 10 6.5 % 107
Intrinsic Q-Factor — Qg 2.00x 10" 2.00x 100 2.00x 10"  2,00x 10'°
R 502Q 393Q 393Q 387Q
Peak Detuning — Awypeak 20.0Hz 40.0Hz 26.2Hz 20.0Hz
RMS Detuning — o-(Aw,,) 3.33Hz 6.67Hz 4.36Hz 3.33Hz
Accelerating Gradient — E, . 16 MV/m 20MV/m 20MV/m 16.2MV/m
Cavity Length 1.68m 0.935m 0.935m 0.81m
Final Beam Energy 20GeV 0.9 GeV 60 GeV 5GeV
ERL Passes 12 3 3 1
Number of Cavities 62 16 1069 384
Grid to RF conversion efficiency ~ 70% ~ 50% ~ 70% ~ 50%
Total Electrical Power for microphonics control ~ 1.37 MW 732kW 22.2MW 734 kW

m Black: From a reference

Cose Studice m Orange: Calculated form a referenced value

m Red: Estimated

m Every effort was made to ensure consistency.

m No guarantee that these are the latest accepted values.
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m Peak power per cavity 44.4kW — 3.05 kW
m Total Electrical Power 732kW — 97.6 kW
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]
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Total Peak Fwd. Avg. Fwd.
Electrical RF Power RF Power
Power per Cavity per Cavity

m Peak power per cavity 29.1 kW — 1.94 kW
m Total Electrical Power 22.2 MW — 2.96 MW
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N. Shipman Tested an FE-FRT with SC RF Cavity: World First!

m Ferroelectric parameters are excellent.

m Extremely fast < 50 us
m Not limited by cavity time constant.
m Outside cryomodule, no moving parts — easy maintenance
and high reliability.

m Microphonics compensation must be experimentally
demonstrated.

m Brazing losses must be addressed.

m Could reduce power requirements by an order of
magnitude or more.

Conclusion
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Thank you for listening.

Any Questions?

m N. Shipman et al.,” A Ferroelectric Fast Reactive Tuner for
Superconduting Cavities”, in SRF 2019, Dresden, Germany, Jul.

Conclusion 2019.

m N. Shipman et al.,”A FerroElectric Fast Reactive Tuner (FE-FRT) to
Combat Microphonics”, in ERL 2019, Berlin, Germany, Sep. 2019.
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N. Shipman .
Fe machines

m ERLs

m Heavy lon Accelerators

. LINAC 2

m If repetitive mechanical
stresses must be avoided

150 MeV/pass

m Whenever you need
really fast tuning

Conclusion ] Where easy
maintainability is a key
concern
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Monte Carlo method applied to
FE-FRT Transmission Line Model
Parameter Value for 801.58 M Hz.

wo 801.58 MHz 35

DRSS Table: PERLE SC 5-cell Cavity Parameters

Fast Reactive
Tuner

N. Shipman

Qo 2 x 101° 30
R 25
Yo 3930 =
Qrec 107 €20
Pre 45 kKW 1514
Max. Af, 40Hz 105"

Outer Radius [mm]
Table: Material Properties at ~ 800 MHz

35
Parameter Value 30!
Max. €, 140 el
Min. ¢, 131.6 &= 20¢ g
—4 15} =
Conclusion tAan g 9.1 x 191 10 { h {
= 0.6 kV™"cm 0 10 20 30 40 50 60

Ocu 596 x 107 S/m Length of Ferro-Electric [mm]
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A Ferroelectric 2
; V2 B+1 [ Aw
Fast Reactive c I
Prr = — |1+ (2
» WoQ 7 “o
Shipman
50 - : - i
s T Table: FE-FRT properties for PERLE
= 401 — FE-FRT Afps =0 K
230} == FE-FRTAf.,=0.5 Parameter Value
2 5ol FE-FRT Af., =1
§ 10l FoM 30
g — Af, 80
005 107 10°  10°  1o% Qrpc 3 x 108
Qrrc
Pre 3kW
Pr vs Qepc for PERLE. Without P; 2.4kW
tuner and with tuner. Max. P 71 kVar

m = 15 fold reduction in RF power

m We can do even better at lower frequencies!
m oy =09.11x 10*8f\/€tan5
[
[

Conclusion

tand o< f
Dielectric losses o 2
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FoM or State Ratio

State 1
State 2
— SRy A )Y
— SR O O B:0.102x
— FoM O O C:0.334\
- FoM with losses O O D:0.352)
0.1 0.2 0.3 0.4 0s

Conclusion

State

State

Length of Transmission Line [A]
Ration — o212 FoM = v/SR; x SR»
ABW,
(AB;)?

AB;
Ratio, = G, oM 4G, G,

FoM

Awlz 2| sin #|

~ VBBW,ABW, V@ =112 - [2P2)
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