

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

A FerroElectric Fast Reactive Tuner(FE-FRT) for ERLs Reducing power consumption by microphonics compensation

N. Shipman¹, J. Bastard¹, M. Coly¹, F. Gerigk¹, A. Macpherson¹, N. Stapley¹, I. Ben-Zvi², C. Jing³, A. Kanareykin³, G. Burt⁴, A. Castilla⁴, E. Nenasheva⁶

¹CERN, ²Brookhaven National Laboratory, ³Euclid Techlabs LLC, ⁴Lancaster University, ⁶Ceramics Ltd.

Electrons in the LHC, October 2019

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	$2 imes 10^{10}$
$R_{/Q}$	393 Ω
V _c	$18.7\mathrm{MV}$

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

How much power do we "need"?

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	$2 imes 10^{10}$
	393 Ω
V_c	$18.7\mathrm{MV}$

¹R. Calaga,"A design for an 802 MHz ERL

Cavity'', CERN-ACC-NOTE-2015-0015, May 2015. 🗇 🗟 🔬 🛓 🛓

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

- How much power do we "need"?
 - No beam loading.

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	$2 imes 10^{10}$
R/Q	393 Ω
Vc	$18.7\mathrm{MV}$

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- How much power do we "need"?
 - No beam loading.

$$P_0 = \frac{V^2}{R_Q^2 Q_0}$$

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	$2 imes 10^{10}$
$R_{/Q}$	393 Ω
Vc	$18.7\mathrm{MV}$

¹R. Calaga,"A design for an 802 MHz ERL

Cavity'', CERN-ACC-NOTE-2015-0015, May 2015. 🗇 🗟 🔬 🛓 🛓

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

- How much power do we "need"?
 - No beam loading.

$$\bullet P_0 = \frac{V^2}{R_Q^2 Q_0}$$

 $\bullet P_0 \approx 44 \, \mathrm{W}$

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	$2 imes 10^{10}$
R/Q	393 Ω
V _c	$18.7\mathrm{MV}$

¹R. Calaga,"A design for an 802 MHz ERL

Cavity", CERN-ACC-NOTE-2015-0015, May 2015. @ → < E → < E → ■ ∽ Q ペ 2

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies

Conclusion

- How much power do we "need"?
 - No beam loading.
 - $P_0 = \frac{V^2}{R_Q Q_0}$
 - $\bullet P_0 \approx \mathbf{44} \mathbf{W}$
- How much power is budgeted?

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	2×10^{10}
	393 Ω
V _c	$18.7\mathrm{MV}$

¹R. Calaga,"A design for an 802 MHz ERL

Cavity", CERN-ACC-NOTE-2015-0015, May 2015. 🗗 🖌 🗧 🖉 🖉

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experiment: Results

Case Studies

Conclusion

- How much power do we "need"?
 - No beam loading.
 - $P_0 = \frac{V^2}{R_Q^2 Q_0}$ $P_0 \approx 44 \, \mathrm{W}$
- How much power is budgeted?
 - $P_{RF}^{avg} \approx 23 \, \mathrm{kW}$

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	2×10^{10}
R/Q	393 Ω
Vc	$18.7\mathrm{MV}$

¹R. Calaga,"A design for an 802 MHz ERL

Cavity", CERN-ACC-NOTE-2015-0015, May 2015. → (=) (=) () ()

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experiment: Results
- Case Studies

Conclusion

- How much power do we "need"?
 - No beam loading.
 - $P_0 = \frac{V^2}{R_Q^2 Q_0}$ $P_0 \approx 44 \, \mathrm{W}$
- How much power is budgeted?
 - $P_{RF}^{avg} \approx 23 \, \mathrm{kW}$
 - $P_{RF}^{peak} \approx 45 \, \mathrm{kW}$

Table: PERLE Cavity Parameters

Parameter	Value
Q_0	$2 imes 10^{10}$
R/Q	393 Ω
V_c	$18.7\mathrm{MV}$

¹R. Calaga, "A design for an 802 MHz ERL

Cavity", CERN-ACC-NOTE-2015-0015, May 2015. → (=) (=) () ()

N. Shipman

The issue

- What can w do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

Microphonics!

N. Shipman

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.

N. Shipman

The issue

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- E×perimenta Results
- Case Studies
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\blacksquare \ Q_e << Q_0$

• □ > • #
• □ > • #

ъ

N. Shipman

The issue

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\blacksquare \ Q_e << Q_0$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

N. Shipman

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- E×perimenta Results
- Case Studie
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\blacksquare \ Q_e << Q_0$

N. Shipman

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- E×perimenta Results
- Case Studie
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\blacksquare \ Q_e << Q_0$

N. Shipman

- What can w do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studie
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\bullet \ Q_e << Q_0$

N. Shipman

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studie
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\blacksquare \ Q_e << Q_0$
- ≈ 99.8 % of power is reflected and

N. Shipman

- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studie
- Conclusion

- Microphonics!
- Detuning >> natural cavity bandwidth.
- $\blacksquare \ Q_e << Q_0$
- ≈ 99.8 % of power is reflected and
- Dissipated in load.

What can we do?

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

What we already do.

- Design stiff cavities/cryomodules
- Reduce noise sources.
- Use over-coupled power couplers

What can we do?

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

What we already do.

- Design stiff cavities/cryomodules
- Reduce noise sources.
- Use over-coupled power couplers
- What we've just started doing.
 - Actively compensate microphonics with fast piezo tuners.²

²N. Banerjee *et al.,Physical Review Accelerators and Beams*, vol. 22, pp. 052002-17, Jan. 2019.

What can we do?

A Ferroelectric Fast Reactive Tuner

- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

What we already do.

- Design stiff cavities/cryomodules
- Reduce noise sources.
- Use over-coupled power couplers
- What we've just started doing.
 - Actively compensate microphonics with fast piezo tuners.²
- What we are proposing.
 - Actively compensate microphonics with FerroElectric Fast Reactive Tuner FE-FRT!

²N. Banerjee *et al.,Physical Review Accelerators and Beams*, vol. 22, pp. 052002-17, Jan. 2019.

How does it work?

- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectr Material
- Prototype Tuner
- Experimenta Results
- Case Studie
- Conclusion

Other Reactive Tuners

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

O. Despe, K. Johnson and T. Khoe, IEEE Trans. Nucl. Sci., vol. 20 (3), p. 71, Jun. 1973.
D. Schulze et al., in Proc. 1972 Proton Linear Accelerator Conference, Los Alamos, NM, USA, October 1972, G01, pp. 156–162.

Ferrite Tuners

C. Vollinger and F. Caspers, "Ferrite-tuner Development for 80 MHz Single-Cell RF-Cavity Using Orthogonally Biased Garnets", in *Proc. IPAC'15*, Richmond, VA, USA, May 2015.

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

No moving parts

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • のへで 7</p>

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

No moving parts

Outside cryomodule

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • のへで 7</p>

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

No moving parts

Outside cryomodule

Continuous tuning range

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • のへで 7</p>

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

No moving parts

Outside cryomodule

Continuous tuning range

■ No need to generate a large magnetic field

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

No moving parts

- Outside cryomodule
- Continuous tuning range
- No need to generate a large magnetic field
 Intrinsic speed < 10 ns^3

³S. Kazakov *et al.*,"Fast Ferroelectric L-band Tuner", in *Proceedings of the 12th AAC Workshop*, Lake Geneva, WI, USA, Jul. 2006, AIP Conf.Proc. (877), pp. 331–338.

A Ferroelectric Fast Reactive Tuner

- N. Shipman
- The issue
- What can w do?

Reactive Tuners

- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- No moving parts
- Outside cryomodule
- Continuous tuning range
- No need to generate a large magnetic field
- \blacksquare Intrinsic speed $< 10\,{\rm ns}^3$
- Low losses/small increased bandwidth

³S. Kazakov *et al.*,"Fast Ferroelectric L-band Tuner", in *Proceedings of the 12th AAC Workshop*, Lake Geneva, WI, USA, Jul. 2006, AIP Conf.Proc. (877), pp. 331–338.

A Ferroelectric Fast Reactive Tuner

- N. Shipman
- The issue
- What can w do?

Reactive Tuners

- Ferroelectr Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- No moving parts
- Outside cryomodule
- Continuous tuning range
- No need to generate a large magnetic field
- \blacksquare Intrinsic speed $< 10\,{\rm ns}^3$
- Low losses/small increased bandwidth
- So why hasn't this been done before?

³S. Kazakov *et al.*,"Fast Ferroelectric L-band Tuner", in *Proceedings of the 12th AAC Workshop*, Lake Geneva, WI, USA, Jul. 2006, AIP Conf.Proc. (877), pp. 331–338.

A	Fer	roelectric
F	ast	Reactive
	1	Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectric Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Suitable material only recently developed.⁴

⁴E. Nenasheva *et al., Journal of European Ceramic Society*, vol. 30, pp. 395–400, Jan. 2010.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can work do?

Reactive Tuners

Ferroelectric Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Suitable material only recently developed.⁴
 BaTiO₃ - SrTiO₃ solid solution (BST)

⁴E. Nenasheva *et al., Journal of European Ceramic Society*, vol. 30, pp. 395–400, Jan. 2010.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectric Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Suitable material only recently developed.⁴

- $BaTiO_3$ $SrTiO_3$ solid solution (BST)
- Added linear (non-tunable) Mg-based ceramic component⁵

⁴E. Nenasheva *et al., Journal of European Ceramic Society*, vol. 30, pp. 395–400, Jan. 2010.

⁵A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectric Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Suitable material only recently developed.⁴

- \blacksquare ${\rm BaTiO_3}$ ${\rm SrTiO_3}$ solid solution (BST)
- Added linear (non-tunable) Mg-based ceramic component⁵
- Enhanced tunability with low losses

⁴E. Nenasheva *et al., Journal of European Ceramic Society*, vol. 30, pp. 395–400, Jan. 2010.

⁵A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectric Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Suitable material only recently developed.⁴

- \blacksquare ${\rm BaTiO_3}$ ${\rm SrTiO_3}$ solid solution (BST)
- Added linear (non-tunable) Mg-based ceramic component⁵
- Enhanced tunability with low losses

Table: Material Properties at $\approx 800\,\mathrm{MHz}$

Parameter	Value
Max. ϵ_r	140
Min. ϵ_r	131.6
$ an\delta$	$9.1 imes10^{-4}$
$\frac{\Delta \epsilon_r}{E}$	$0.6 \ \mathrm{kV}^{-1} \mathrm{cm}$
τ	$< 10\mathrm{ns}$

⁴E. Nenasheva *et al., Journal of European Ceramic Society*, vol. 30, pp. 395–400, Jan. 2010.

⁵A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.

Prototype Tuner

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

- What can we do?
- Reactive Tuners
- Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studie

Conclusion

Prototype Tuner, 3D model and transmission line model.

Experimental Setup

A Ferroelectric Fast Reactive Tuner

- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimental Results
- Case Studies
- Conclusion

FE-FRT mounted on cryostat.

Cryostat insert.

Demonstration of Frequency Tuning

A Ferroelectric Fast Reactive Tuner

- N. Shipmai
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectrie Material
- Prototype Tuner
- Experimental Results
- Case Studies

Signal analyser measurement.

Experimental Setup.

A D > A P > A B > A B >

э

Demonstration of Frequency Tuning

Experimental Setup.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimental Results

Case Studies

Conclusion

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

ж

Fall time and std(f) vs. regression window length.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimental Results

Case Studies

Conclusion

■ Cavity response to tuner < 50 µs

ж

・ロット (雪) (山) (山)

Fall time and std(f) vs. regression window length.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimental Results

Case Studies

Conclusion

- Cavity response to tuner < 50 µs
- Cavity time constant $\tau_L = \frac{Q_L}{\omega_0} \approx 46 \,\mathrm{ms}$

ж

・ ロ ト ・ 雪 ト ・ 画 ト ・ 目 ト

Fall time and std(f) vs. regression window length.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimental Results

Case Studies

Conclusion

Fall time and std(f) vs. regression window length.

- Cavity response to tuner < 50 µs
- Cavity time constant $\tau_L = \frac{Q_L}{\omega_0} \approx 46 \,\mathrm{ms}$

Э

 Cavity responds faster to FE-FRT than τ_L.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

$$\mathrm{FoM} \approx \frac{2|\sin\frac{\Delta\theta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

$$\mathrm{FoM} \approx \frac{2|\sin\frac{\Delta\theta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

$$\mathrm{FoM} \approx \frac{2|\sin\frac{\Delta\theta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectric Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

■ FoM larger for:

Iower losses

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

- Iower losses
- greater phase change

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

- Iower losses
- greater phase change
- Larger FoM gives:

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

- Iower losses
- greater phase change
- Larger FoM gives:
 - Increased tuning range

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experiment: Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

- Iower losses
- greater phase change
- Larger FoM gives:
 - Increased tuning range
 - Decreased bandwidth

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experiment Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

- Iower losses
- greater phase change
- Larger FoM gives:
 - Increased tuning range
 - Decreased bandwidth
 - Decreased forward power

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$\mathrm{FoM} pprox rac{2|\sin rac{\Delta heta_{12}}{2}|}{\sqrt{(1-|\Gamma_1|^2)(1-|\Gamma_2|^2)}}$$

- Iower losses
- greater phase change
- Larger FoM gives:
 - Increased tuning range
 - Decreased bandwidth
 - Decreased forward power

•
$$P_{RF}^{avg}$$
 reduced by $\frac{\text{FoM}}{4}$

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

- Iower losses
- greater phase change
- Larger FoM gives:
 - Increased tuning range
 - Decreased bandwidth
 - Decreased forward power
- P^{avg}_{RF} reduced by FoM/4
 P^{peak}_{RF} reduced by FoM/2

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

P^{avg}_{RF} reduced by
$$\frac{\text{FoM}}{4}$$

P^{peak}_{RF} reduced by $\frac{\text{FoM}}{2}$

•
$$\alpha_c = 2.98 \ 10^{-7} \sqrt{f} \frac{1}{b} (1 + \frac{b}{a}) \frac{\epsilon}{\ln \frac{b}{a}} \ \mathrm{dB/m}$$

14

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

 $a_c = 2.98 \ 10^{-7} \sqrt{f} \frac{1}{b} (1 + \frac{b}{a}) \frac{\epsilon}{\ln \underline{b}} \ dB/m$ $\alpha_d = 9.11 \ 10^{-8} f \sqrt{\epsilon_r} \tan \delta \, dB/m$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 14

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

- $a_c = 2.98 \ 10^{-7} \sqrt{f} \frac{1}{b} (1 + \frac{b}{a}) \frac{\epsilon}{\ln \frac{b}{a}} \ \mathrm{dB/m}$
- $a_d = 9.11 \ 10^{-8} f \sqrt{\epsilon_r} \tan \delta \, dB/m$
- Monte Carlo, transmission line model

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 14

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

- $a_c = 2.98 \ 10^{-7} \sqrt{f} \frac{1}{b} (1 + \frac{b}{a}) \frac{\epsilon}{\ln \frac{b}{a}} \ \mathrm{dB/m}$
- $\alpha_d = 9.11 \ 10^{-8} f \sqrt{\epsilon_r} \tan \delta \, \mathrm{dB/m}$
- Monte Carlo, transmission line model
- FoM frequency dependence

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

- $a_c = 2.98 \ 10^{-7} \sqrt{f} \frac{1}{b} (1 + \frac{b}{a}) \frac{\epsilon}{\ln \frac{b}{a}} \ \mathrm{dB/m}$
- $\alpha_d = 9.11 \ 10^{-8} f \sqrt{\epsilon_r} \tan \delta \, \mathrm{dB/m}$
- Monte Carlo, transmission line model
- FoM frequency dependence
- Cross-checked with CST simulations

14

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

- $a_c = 2.98 \ 10^{-7} \sqrt{f} \frac{1}{b} (1 + \frac{b}{a}) \frac{\epsilon}{\ln \frac{b}{a}} \ \mathrm{dB/m}$
- $\alpha_d = 9.11 \ 10^{-8} f \sqrt{\epsilon_r} \tan \delta \, \mathrm{dB/m}$
- Monte Carlo, transmission line model
- FoM frequency dependence
- Cross-checked with CST simulations
- Better for lower frequencies

A Ferroelectric Fast Reactive Tuner

Case Studies

Case Studies

Parameter	eRHIC	PERLE	LHeC	Cornell
Frequency	647.4 MHz	801.58 MHz	801.58 MHz	1.3 GHz
Cavity Voltage – V_c	26.88 MV	18.7 MV	18.7 MV	13.1 MV
External Q-Factor of FPC – Q_e	1.60×10^{7}	1.00×10^{7}	1.56×10^{7}	6.5×10^{7}
Intrinsic Q-Factor – Q_0	2.00×10^{10}	2.00×10^{10}	2.00×10^{10}	2.00×10^{10}
R_{Q}	502Ω	393 Ω	393 Ω	387Ω
Peak Detuning – $\Delta \omega_{\mu p e a k}$	20.0 Hz	40.0 Hz	26.2 Hz	20.0 Hz
RMS Detuning $-\sigma(\Delta \omega_{\mu})$	3.33 Hz	6.67 Hz	4.36 Hz	3.33 Hz
Accelerating Gradient – E_{acc}	16 MV/m	20 MV/m	20 MV/m	16.2 MV/m
Cavity Length	1.68 m	0.935 m	0.935 m	0.81 m
Final Beam Energy	20 GeV	0.9 GeV	60 GeV	5 GeV
ERL Passes	12	3	3	1
Number of Cavities	62	16	1069	384
Grid to RF conversion efficiency	$\approx 70\%$	$\approx 50\%$	$\approx 70\%$	≈ 50%
Total Electrical Power for microphonics control	1.37 MW	732 kW	22.2 MW	734 kW

<ロ> < @ > < E > < E > E の < 0 15

- Black: From a reference
- Orange: Calculated form a referenced value
- Red: Estimated

A Ferroelectric Fast Reactive Tuner

Case Studies

Parameter	eRHIC	PERLE	LHeC	Cornell
Frequency	647.4 MHz	801.58 MHz	801.58 MHz	1.3 GHz
Cavity Voltage – V_c	26.88 MV	18.7 MV	18.7 MV	13.1 MV
External Q-Factor of FPC – Q_e	1.60×10^{7}	1.00×10^{7}	1.56×10^{7}	6.5×10^{7}
Intrinsic Q-Factor – Q_0	2.00×10^{10}	2.00×10^{10}	2.00×10^{10}	2.00×10^{10}
R_{Q}	502Ω	393 Ω	393 Ω	387Ω
Peak Detuning – $\Delta \omega_{\mu p e a k}$	20.0 Hz	40.0 Hz	26.2 Hz	20.0 Hz
RMS Detuning – $\sigma(\Delta \omega_{\mu})$	3.33 Hz	6.67 Hz	4.36 Hz	3.33 Hz
Accelerating Gradient – E_{acc}	16 MV/m	20 MV/m	20 MV/m	16.2 MV/m
Cavity Length	1.68 m	0.935 m	0.935 m	0.81 m
Final Beam Energy	20 GeV	0.9 GeV	60 GeV	5 GeV
ERL Passes	12	3	3	1
Number of Cavities	62	16	1069	384
Grid to RF conversion efficiency	≈ 70%	$\approx 50\%$	$\approx 70\%$	≈ 50%
Total Electrical Power for microphonics control	1.37 MW	732 kW	22.2 MW	734 kW

- Black: From a reference
- Orange: Calculated form a referenced value
- Red: Estimated
- Every effort was made to ensure consistency.
- No guarantee that these are the latest accepted values.

Experimenta Results

Case Studies

Case Studies - PERLE

- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectr Material
- Prototype Tuner
- Experimenta Results
- Case Studies

$$P_{RF} = \frac{V_c^2}{4R_Q^2 Q_L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q_L \frac{\Delta \omega_\mu}{\omega_0} \right)^2 \right]$$

Case Studies - PERLE

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimenta Results

Case Studies

Case Studies - PERLE

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimenta Results

Case Studies

Case Studies - LHeC

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$P_{RF} = \frac{V_c^2}{4R_Q^2 Q_L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q_L \frac{\Delta \omega_\mu}{\omega_0} \right)^2 \right]$$

Case Studies - LHeC

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimenta Results

Case Studies

Case Studies - LHeC

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

$$P_{RF} = \frac{V_c^2}{4R_Q^2 Q_L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q_L \frac{\Delta \omega_\mu}{\omega_0} \right)^2 \right]$$

◆□ > < @ > < 注 > < 注 > 注 の Q @ 17

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

■ Tested an FE-FRT with SC RF Cavity: World First!

A Ferroelectric Fast Reactive Tuner

N. Shipmar

The issue

What can we do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

• Tested an FE-FRT with SC RF Cavity: World First!

◆□ > ◆□ > ◆ □ > ◆ □ > □ = ● ● ● ●

• Ferroelectric parameters are excellent.

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectrie Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

• Tested an FE-FRT with SC RF Cavity: World First!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Ferroelectric parameters are excellent.
- Extremely fast $< 50 \, \mu s$

- A Ferroelectric Fast Reactive Tuner
- N. Shipman
- The issue
- What can wo do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent.
- Extremely fast $< 50 \, \mu s$
 - Not limited by cavity time constant.
- \blacksquare Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability.

<ロ> < 母> < 母> < ヨ> < ヨ> = のへで 18

Conclusion

- A Ferroelectric Fast Reactive Tuner
- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent.
- Extremely fast $< 50 \, \mu s$
 - Not limited by cavity time constant.
- \blacksquare Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 18

 Microphonics compensation must be experimentally demonstrated.

Conclusion

- A Ferroelectric Fast Reactive Tuner
- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent.
- Extremely fast $< 50 \, \mu s$
 - Not limited by cavity time constant.
- \blacksquare Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 18

- Microphonics compensation must be experimentally demonstrated.
- Brazing losses must be addressed.

Conclusion

- A Ferroelectric Fast Reactive Tuner
 - N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- E×perimenta Results
- Case Studies
- Conclusion

- Tested an FE-FRT with SC RF Cavity: World First!
- Ferroelectric parameters are excellent.
- Extremely fast $< 50 \, \mu s$
 - Not limited by cavity time constant.
- \blacksquare Outside cryomodule, no moving parts \rightarrow easy maintenance and high reliability.

4日 × (日) × (18)

- Microphonics compensation must be experimentally demonstrated.
- Brazing losses must be addressed.
- Could reduce power requirements by an order of magnitude or more.

Thank You

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Thank you for listening.

Any Questions?

- N. Shipman *et al.*,"A Ferroelectric Fast Reactive Tuner for Superconduting Cavities", in *SRF 2019*, Dresden, Germany, Jul. 2019.
- N. Shipman *et al.*,"A FerroElectric Fast Reactive Tuner (FE-FRT) to Combat Microphonics", in *ERL 2019*, Berlin, Germany, Sep. 2019.

Back Up Slides

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can w do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

Back Up Slides

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Case Study references

- A Ferroelectric Fast Reactive Tuner
 - N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studies
- Conclusion

- E. G. H. Hoffstaetteret *et al.*, "Cornell Energy Recovery Linac Science Case and Project Definition Design Report", *Cornell Tech. Rep.*, 2013, p. 518.
- E. C. Aschenauer *et al.*, "eRHIC Design Study: An Electron Ion Collider at BNL", *Tech. Rep.*, Sep. 2014.
- W. Xu et al., "RF and Mechanical Design of 647 MHz 5-CELL BNL4 Cavity for eRHIC ERL", in Proceedings of IPAC2016, Busan, 2014.
- W. Xu et al., "Progress of 650 MHz SRF cavity for eRHIC SRF linac", in 18th International Conference on RF Superconductivity, Lanzhou, 2017, pp. 64–66.
- D. Angal-Kalinin *et al.*, "PERLE. Powerful energy recovery linac for experiments. Conceptual design report", *Journal of Physics G: Nuclear and Particle Physics*, vol. 45, no. 6, pp. 065 003, Jun. 2018.
- J. L. Abelleira Fernandez *et al.*, "A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector", *Journal of Physics G: Nuclear and Particle Physics*, vol. 39, no. 7, pp. 075 001, Jul. 2012.
- R. Calaga, "A design for an 802 MHz ERL Cavity," CERN-ACC-NOTE-2015-0015, 2015.

Experimental Setup

- N. Shipman
- The issue
- What can we do?
- Reactive Tuners
- Ferroelectri Material
- Prototype Tuner
- Experimenta Results
- Case Studie
- Conclusion

Where is an FE-FRT likely to be most useful?

A Ferroelectric Fast Reactive Tuner

N. Shipman

The issue

What can we do?

Reactive Tuners

Ferroelectri Material

Prototype Tuner

Experimenta Results

Case Studies

Conclusion

 Low beam loading machines

ERLs

- Heavy Ion Accelerators
- If repetitive mechanical stresses must be avoided
- Whenever you need really fast tuning
- Where easy maintainability is a key concern

PERLE Case Study

A Ferroelectric Fast Reactive Tuner

Conclusion

Table	e: PERLE SC 5-cell Cavity Parameters		
	Parameter	Value	
	ω_0	$801.58\mathrm{MHz}$	
	Q_0	$2 imes 10^{10}$	
	R/Q	393 Ω	
	Q_{FPC}	10 ⁷	
	P_{RF}	$45\mathrm{kW}$	
	Max. Δf_{μ}	$40\mathrm{Hz}$	

Table: Material Properties at $\approx 800 \text{ MHz}$

Parameter	Value
Max. ϵ_r	140
Min. ϵ_r	131.6
$ an\delta$	$9.1 imes10^{-4}$
$\frac{\Delta \epsilon_r}{F}$	$0.6 \ \mathrm{kV^{-1}cm}$
$\sigma_{ m Cu}$	$5.96\times10^{-7}\mathrm{S/m}$

Monte Carlo method applied to **FF-FRT** Transmission Line Model for 801.58 MHz.

Length of Ferro-Electric [mm]

10 20 30 40 50 60

PERLE Case Study

A Ferroelectric Fast Reactive Tuner

N. Shipman

50

40

30

Foward Power [kW]

The issue

What can w do?

Reactive Tuners

Ferroelectr Material

Prototype Tuner

Experimenta Results

Case Studie

Conclusion

1010

Table: FE-FRT properties for PERLE

Parameter	Value
FoM	30
Δf_t	80
Q_{FPC}	$3 imes 10^8$
P _{RF}	$3\mathrm{kW}$
P_t	$2.4\mathrm{kW}$
Max. \mathcal{P}_t	$71\mathrm{kVar}$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 の < の 25</p>

 \blacksquare \approx 15 fold reduction in RF power

No Tuner

 10^{8}

 Q_{FPC}

 P_f vs Q_{FPC} for PERLE. Without

FE-FRT $\Delta f_{res} = 0$

FE-FRT $\Delta f_{res} = 0.5$ FE-FRT $\Delta f_{res} = 1$

We can do even better at lower frequencies!

10⁹

- $\alpha_d = 9.11 \times 10^{-8} f \sqrt{\epsilon_r} \tan \delta$
- ${\rm \blacksquare } \, \tan \delta \propto f$

tuner and with tuner.

 10^{7}

Dielectric losses $\propto f^2$

How does it work?

3

Case Studies - eRHIC

Case Studies - Cornell Light Source ERL

