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How much RF power do we need per cavity in
PERLE?

CERN v2 cavity1

How much power do we
”need”?

No beam loading.
P0 = V 2

R/QQ0

P0 ≈ 44 W

How much power is
budgeted?

Pavg
RF ≈ 23 kW

Ppeak
RF ≈ 45 kW

Table: PERLE Cavity Parameters

Parameter Value

Q0 2× 1010
R/Q 393 Ω
Vc 18.7 MV

1R. Calaga,”A design for an 802 MHz ERL
Cavity”,CERN-ACC-NOTE-2015-0015, May 2015.
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Why so much power?

Microphonics!

Detuning >>
natural cavity
bandwidth.
Qe << Q0

≈ 99.8 % of power
is reflected and
Dissipated in load.
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What can we do?

What we already do.
Design stiff cavities/cryomodules
Reduce noise sources.
Use over-coupled power couplers

What we’ve just started doing.

Actively compensate microphonics with fast piezo tuners.2

What we are proposing.

Actively compensate microphonics with FerroElectric Fast
Reactive Tuner FE-FRT!

2N. Banerjee et al.,Physical Review Accelerators and Beams, vol. 22,
pp. 052002-17, Jan. 2019.
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How does it work?

∆ω12 =
−ω0∆B′t12

√
Lc/Cc

2N2

∆BWn = G ′tn
N2Cc
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Other Reactive Tuners

Pin Diode Tuners

O. Despe, K. Johnson and T. Khoe, IEEE Trans.
Nucl. Sci., vol. 20 (3), p. 71, Jun. 1973.
D. Schulze et al., in Proc. 1972 Proton Linear
Accelerator Conference, Los Alamos, NM, USA,
October 1972, G01, pp. 156–162.

Ferrite Tuners

C. Vollinger and F. Caspers, “Ferrite-tuner
Development for 80 MHz Single-Cell RF-Cavity
Using Orthogonally Biased Garnets”, in Proc.
IPAC’15, Richmond, VA, USA, May 2015.
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Why use an FE-FRT?

No moving parts

Outside cryomodule
Continuous tuning range
No need to generate a large magnetic field
Intrinsic speed < 10 ns3

Low losses/small increased bandwidth
So why hasn’t this been done before?

3S. Kazakov et al.,”Fast Ferroelectric L-band Tuner”, in Proceedings of
the 12th AAC Workshop, Lake Geneva, WI, USA, Jul. 2006, AIP
Conf.Proc. (877), pp. 331–338.
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Newly Developed Ferroelectric

Suitable material only recently developed.4

BaTiO3 - SrTiO3 solid solution (BST)
Added linear (non-tunable) Mg-based ceramic
component5

Enhanced tunability with low losses
Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1× 10−4
∆εr
E 0.6 kV−1cm
τ < 10 ns

4E. Nenasheva et al.,Journal of European Ceramic Society, vol. 30, pp.
395–400, Jan. 2010.

5A. Kozyrev et al., Appl.Phys. Lett., vol. 95, pp. 1–5, Jul. 2009.
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Prototype Tuner

Prototype Tuner, 3D model and transmission line model.
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Experimental Setup

FE-FRT mounted on cryostat. Cryostat insert.
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Demonstration of Frequency Tuning

Signal analyser measurement.

Experimental Setup.

Frequency calculated from I and Q
measurements.
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Timescale of Frequency Shift

Fall time and std(f ) vs. regression
window length.

Cavity response to
tuner < 50µs
Cavity time constant
τL = QL

ω0
≈ 46 ms

Cavity responds
faster to FE-FRT
than τL.
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FoM and Frequency Dependence

FoM ≈
2| sin ∆θ12

2 |√
(1− |Γ1|2)(1− |Γ2|2)

FoM larger for:

lower losses
greater phase change

Larger FoM gives:

Increased tuning range
Decreased bandwidth
Decreased forward
power

Pavg
RF reduced by FoM

4

Ppeak
RF reduced by FoM

2
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Figure of Merit (FoM) and Frequency Dependence
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Monte Carlo, transmission
line model
FoM frequency
dependence
Cross-checked with CST
simulations
Better for lower
frequencies
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Case Studies

Black: From a reference
Orange: Calculated form a referenced value
Red: Estimated

Every effort was made to ensure consistency.
No guarantee that these are the latest accepted values.
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Case Studies - PERLE

PRF = V 2
c

4R/QQL

β + 1
β

[
1 +

(
2QL

∆ωµ
ω0

)2]

Peak power per cavity 44.4 kW→ 3.05 kW
Total Electrical Power 732 kW→ 97.6 kW
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Case Studies - LHeC

PRF = V 2
c
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Peak power per cavity 29.1 kW→ 1.94 kW
Total Electrical Power 22.2 MW→ 2.96 MW
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Conclusion

Tested an FE-FRT with SC RF Cavity: World First!

Ferroelectric parameters are excellent.
Extremely fast < 50µs

Not limited by cavity time constant.

Outside cryomodule, no moving parts → easy maintenance
and high reliability.
Microphonics compensation must be experimentally
demonstrated.
Brazing losses must be addressed.
Could reduce power requirements by an order of
magnitude or more.
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Thank You

Thank you for listening.

Any Questions?

N. Shipman et al.,”A Ferroelectric Fast Reactive Tuner for
Superconduting Cavities”, in SRF 2019, Dresden, Germany, Jul.
2019.
N. Shipman et al.,”A FerroElectric Fast Reactive Tuner (FE-FRT) to
Combat Microphonics”, in ERL 2019, Berlin, Germany, Sep. 2019.
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Case Study references

E. G. H. Hoffstaetteret et al., “Cornell Energy Recovery Linac Science Case
and Project Definition Design Report”,Cornell Tech. Rep., 2013, p. 518.
E. C. Aschenauer et al., “eRHIC Design Study: An Electron Ion Collider at
BNL”, Tech. Rep., Sep. 2014.
W. Xu et al., “RF and Mechanical Design of 647 MHz 5-CELL BNL4
Cavity for eRHIC ERL”, in Proceedings of IPAC2016, Busan, 2014.
W. Xu et al., “Progress of 650 MHz SRF cavity for eRHIC SRF linac”, in
18th International Conference on RF Superconductivity, Lanzhou, 2017, pp.
64–66.
D. Angal-Kalinin et al., “PERLE. Powerful energy recovery linac for
experiments. Conceptual design report”, Journal of Physics G: Nuclear and
Particle Physics, vol. 45, no. 6, pp. 065 003, Jun. 2018.
J. L. Abelleira Fernandez et al., “A Large Hadron Electron Collider at
CERN Report on the Physics and Design Concepts for Machine and
Detector”, Journal of Physics G: Nuclear and Particle Physics, vol. 39, no.
7, pp. 075 001, Jul. 2012.
R. Calaga, “A design for an 802 MHz ERL Cavity,”
CERN-ACC-NOTE-2015-0015, 2015. .
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Experimental Setup
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Where is an FE-FRT likely to be most useful?

Low beam loading
machines

ERLs

Heavy Ion Accelerators

If repetitive mechanical
stresses must be avoided

Whenever you need
really fast tuning

Where easy
maintainability is a key
concern
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PERLE Case Study

Table: PERLE SC 5-cell Cavity Parameters

Parameter Value

ω0 801.58 MHz
Q0 2 × 1010

R/Q 393 Ω
QFPC 107

PRF 45 kW
Max. ∆fµ 40 Hz

Table: Material Properties at ≈ 800 MHz

Parameter Value

Max. εr 140
Min. εr 131.6
tan δ 9.1 × 10−4

∆εr
E 0.6 kV−1cm
σCu 5.96 × 10−7 S/m

Monte Carlo method applied to
FE-FRT Transmission Line Model

for 801.58 MHz.
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PERLE Case Study

PRF = V 2
c

4R/QQL

β + 1
β

[
1 +

(
2QL

∆ωµ
ω0

)2]

Pf vs QFPC for PERLE. Without
tuner and with tuner.

Table: FE-FRT properties for PERLE

Parameter Value

FoM 30
∆ft 80
QFPC 3× 108

PRF 3 kW
Pt 2.4 kW
Max. Pt 71 kVar

≈ 15 fold reduction in RF power
We can do even better at lower frequencies!
αd = 9.11× 10−8f√εr tan δ
tan δ ∝ f
Dielectric losses ∝ f 2
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How does it work?

State Ration = ∆ω12
∆BWn

State Ration = ∆Bt
2Gtn

FoM =
√

SR1 × SR2

FoM =
√

(∆Bt)2

4G1G2

FoM =
∆ω12√

∆BW1∆BW2
≈

2| sin ∆θ12
2 |√

(1− |Γ1|2)(1− |Γ2|2)
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Case Studies - eRHIC
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Case Studies - Cornell Light Source ERL
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