

ERL as Injector for FCC

O. Bruning, R. Corsini

- Most slides from Oliver -

Material also from H. Braun, K. Oide, D. Schulte, F. Zimmermann, ...

(thanks)

- Double ring e⁺e⁻ collider ~100 km
- Follows footprint of FCC-hh, except around IPs
- Asymmetric IR layout & optics to limit synchrotron
 radiation towards the detector
- Presently 2 IPs, large horizontal crossing angle 30 mrad, crab-waist optics
- Synchrotron radiation power 50 MW/beam at all beam energies; tapering of arc magnet strengths to match local energy
- Top-up injection scheme; requires booster synchrotron in collider tunnel

Baseline layout, as documented in the CDR

 Linac with 6 GeV followed by 20 GeV Pre-Booster Ring [SPS]

- Four different energies from Booster ring (45.6 GeV to 182.5 GeV)
- Injection in Booster ring at 20 GeV
- Initial fill + top-up
- Maximum current for Z-pole operation
- Rather long filling time especially for Z operation (issue with SPS occupation)

Parameter (unit)	Z		W		Н		$\overline{t\overline{t}}$	
Beam energy (GeV)	45.6		80		120		182.5	
Type of filling	Initial Top-up Initial Top-up Initial Top-up Initial Top-up				Top-up			
Linac bunches/pulse								
Linac repetition rate (Hz)	200 100							
Linac RF frequency (GHz)	2.8							
Bunch population (10^{10})	2.13	1.06	1.88	0.56	1.88	0.56	1.38	0.83
No. of linac injections	1040		1000		328		48	
PBR minimum bunch spacing (ns)) 10		10		70		477.5	
No. of PBR cycles		8 1						
No. of PBR bunches	20	2080 2000		328		48		
PBR cycle time (s)	6.3 11.1		1.1	3.7		0.9		
PBR duty factor	0.84		0.56		0.30		0.08	
No. of BR/collider bunches	16640		2000		328		48	
No. of BR cycles	10	1	10	1	10	1	20	1
Filling time (both species) (s)	1034.8	103.5	266	26.6	137.6	13.8	223.2	11.2

Future Circular Collider Study. Volume 2: The Lepton Collider (FCC-ee) Conceptual Design Report, preprint edited by M. Benedikt et al. CERN accelerator reports, CERN-ACC-2018-0057, Geneva, December 2018. Published in Eur. Phys. J. ST.

http://fcc-cdr.web.cern.ch/#FCCEE

Parameter (unit)	Z		W		H		tt	
Beam energy (GeV)	45.6		80		120		182.5	
Type of filling	Initial Top-up Initial Top-up Initial Top-up Initial Top-				Top-up			
Linac bunches/pulse								
Linac repetition rate (Hz)	2	00	100					
Linac RF frequency (GHz)	2.8							
Bunch population (10^{10})	2.13	1.06	1.88	0.56	1.88	0.56	1.38	0.83
No. of linac injections	1040		1000		328		48	
PBR minimum bunch spacing (ns)	10		10		70		477.5	
No. of PBR cycles	8 1							
No. of PBR bunches	2080 2000		328		48			
PBR cycle time (s)	6.3		11.1		3.7		0.9	
PBR duty factor	0.84		0.56		0.30		0.08	
No. of BR/collider bunches	16640		2000		328		48	
No. of BR cycles	10	1	10	1	10	1	20	1
Filling time (both species) (s)	1034.8	103.5	266	26.6	137.6	13.8	223.2	11.2

Average beam current of < 1.5 μ A

More than 4 orders of magnitude smaller than the currents in the LHeC ERL !!!

ERL Alternatives:

- Use a 5 km long racetrack suitable for 50 GeV upgrade for FCC-eh
 - Initial stage at 20 GeV to inject in Booster Ring
 - 50 GeV machine, direct injection in FCC-ee for Z mode still need Booster for W, H and tt
- Smaller machine (PERLE...) optimized as FCC injector
 - at 6 GeV to substitute linac
 - or 20 GeV to inject in Booster Ring
- Common hardware and infrastructure: one could use the FCC-ee pre-series SRF
- Installation near point L to minimize transfer line length
- In all cases the machine would be used as recirculating linac and not in ERL mode

Different Size Variations: e.g LHeC and HE-LHC-eh

Interaction region 'L' as baseline choice for FCC-eh

Conceptual Baseline Footprint

Cavity fabrication and test:

Courtesy to Frank Marhauser

Parameter	Unit	Value
Frequency	MHz	801.58
Number of cells		5
Iris/tube ID	mm	130
L _{act}	mm	917.9
$R/Q = V_{eff}/(\omega \cdot W)$	Ohm	524
G	Ohm	274.7
R/Q·G/cell		143940
$\kappa_{ }$ (2mm rms bunch length)	V/pC	2.74
E _{pk} /E _{acc}		2.26
B _{pk} /E _{acc}	mT/(MV/m)	4.20
k _{cc}	%	3.21

The first Nb 802 MHz 5-Cell cavity fabricated October 2017 at JLAB

W. KAABI

Electrons for the LHC: LHEC, FCC-eh and PERLE Workshop- Chavannes de Bogis, 24-25 October 2019

ERL Cost Items scaling with Energy: 802 MHz 5-Cell SRF

I = done, ? = option

LHeC Workshop in Chavannes de Bogis, 24th and 25th October 2019

Oliver Brüning, CERN

PERLE @ Orsay as high power ERL demonstrator

Basic unit: 5-cell cavity into 4-cavity module

Designed for 6*25mA Inside the SRF system

- \rightarrow MP, SR and Cryogenics!
- → Can be significantly downsized for µA beam currents!!!!

Without ERL configuration PERLE could feature easily 6 re-circulations and could reach ~ 6 GeV beam energy with a small footprint facility, using 2*2 4-cavity Cryo Modules

```
→ Estimated cost ~ 50-100M€
```


Super Conducting Recirculating Linac with Energy Recovery

Designed for 6*25mA Inside the SRF system

- → MP, SR and Cryogenics!
- → Can be significantly downsized for µA beam currents!!!!

- → 1072 cavities; 134 cryo modules per linac
- \rightarrow ~ 9 km underground tunnel installation with more than 4500 magnets or 3 return arcs

SRF is the main cost driver for the 60 GeV configuration:

- ➔ Reducing the electron beam energy can almost half the ERL cost
- → Design and build the arcs for higher beam energy to allow for later upgrades
- ➔ Provide free space in the linac sections for later upgrades

30 GeV to 50 GeV variation:

- → Reducing the initial SRF cost by 50%
- → Provide upgrade potential for up to 50 GeV → total cost reduction ca. 40%
- → Overall size reduction from 1/3rd to 1/5th of the LHC circumference

The LHeC ERL SRF could be re-used for the first installation phase of FCC-ee and/or [part of it] as an FCC-ee injector and as ERL for the FCC-eh option

Baseline Assumptions:

Limit the Wall-plug Power consumption of the ERL to 100 MW

- Assume 50% of that are required for SR [rest for cryo and magnets] documented in the LHeC CDR

Synchrotron Radiation Power per arc:

$$P_{arc} = \frac{N_b}{n_b} \frac{e^2 \gamma^4}{6 \epsilon_0 \rho}$$

Scales with E⁴ and r⁻¹ → ~ 40% of SR power comes from high energy return arc - Assume 50 MW limit for energy consumption for SR losses

→ scale return arc radius of curvature for a given beam energy to stay within this limit

Civil Engineering:

LEP cost as a reference \rightarrow inflation adapted cost

Plus two estimates from external consultant companies:

Amberg for LHeC and ILF for FCC related CE → ~ 25kCHF / m for scaling

SRF Tunnel:

Scales with E. For CE costing we assume a 50% tariff for the CE to account for the RF power generation

Magnet and vacuum system:

The full magnets and vacuum system had been costed for the LHeC CDR: 140 MCHF for the complete LHeC system $\rightarrow \sim 11.15$ kCHF per arc meter

Different Size Variations: e.g LHeC Preliminary cost estimates based on XFEL, LCLS-II budgets

IE LHC: Workshop on the LHeC. FCC-er

These estimates also fit well with estimates from CBETA and ESS studies:

→ SRF is the main cost driver up to energies of 70GeV!!!

The E⁴ dependence on the arc length only becomes dominant for beam energies above 75 GeV

Nominal 60 GeV Configuration

30 GeV to 50 GeV Variation

Budget Item	Cost	Budget Item	Cost 30GeV	→ 50GeV
SRF System	805MCHF	SRF System	402MCHF	+268MCHF
SRF R&D and Proto Typing	31MCHF	SRF R&D and Proto Typing	31MCHF	
Injector	40MCHF	Injector	40MCHF	
Magnet and Vacuum System	215MCHF	Magnet and Vacuum System	103MCHF	
SC IR magnets	105MCHF	SC IR magnets	105MCHF	
Dump System and Source	5MCHF	Dump System and Source	5MCHF	
Cryogenic Infrastructure	100MCHF	Cryogenic Infrastructure	41.5MCHF	+28MCHF
General Infrastructure and installation	69MCHF	General Infrastructure and installation	58MCHF	
Civil Engineering	353MCHF	Civil Engineering	256MCHF	
Total	1723MCHF	Total	1042MCHF	→ 1338MCHF

→ The scaled ERL circumference corresponds to 1/5th of the LHC circumference: 5.4 km

Without ERL configuration and with the much reduced beam current compared to FCC-eh one can significantly save on the cryogenics.

Furthermore, one does not need to consider the cost for the IR magnets and the SRF prototyping.

→ ~200 MCHF lower cost

Recirculating Linac Operation:

Already demonstrated by CEBAF and could be extended to more re-circulations

SRF current limitations:

We assume for the SRF system a maximum beam current of 150 mA that limits the number of re-circulations for the ERL operation \rightarrow 3 for FCC-eh

➔ For the injector application one could go to higher number of re-circulations and reduce the SRF installation accordingly

For example:

6 re-circulations would allow to half the SRF installation but would require a doubling of the magnet and vacuum cost \rightarrow ca. 240MCHF further cost reduction

Dedicated PERLE like injector at 6GeV:

- → between 50 MCHF and 100 MCHF based on PERLE model
- → Could be cheaper if the linac could use pre-series SRF modules from FCC-ee
- ➔ Not re-usable as electron machine for future eh option
- → Re-usable as a future electron beam facility [e.g. QCD]

50 GeV to 60 GeV recirculating linac:

- → between 800 MCHF and 900 MCHF based on LHeC and FCC-eh cost model
- → Could allow direct injection into FCC-ee for Z physics operation
- → Could be cheaper if one could use SRF from FCC-ee [pre-series and or top/H]
- → Re-usable as electron machine for future eh option
- → Re-usable as a future electron beam facility [e.g. QCD]

FCC-ee Injector Collaboration

- Proposed starting point is consolidation and analysis of present baseline scheme that matches exactly the bunch number and fill pattern requirements that came out of the collider luminosity optimization.
- Should be good starting point for investigations of alternative designs and future optimization.

First Proposals Already Appeared

FCC-ee injector, second look at Linac

D. Schulte – June 26, FCC Week 2019 @ Brussels

O. Brüning