Forward energy and UE&MB modeling

- What can be done with energy flow measurement in forward region ?
- Extracting diffraction and non-diffractive contribution
- Validating models of parton radiation in forward region: multiparton radiation and/or small x effects

with help from Michele Arneodo, Antonio Vilela Pereira, Krzysztof Piotrzkowski, Alexander Proskuryakov

PS: no data are shown....

Energy flow at 900 GeV

- energy flow in central region at low \sqrt{s} does not change much with tunes
- Significant effects visible in forward/backward region $|\eta| > 2$
- use this for tuning of parameters

energy flow at 7000 GeV

- Energy flow in central region at large \sqrt{s} depends on tunes
- Still large effects visible in forward/backward region $|\eta| > 2$
- "All" tunes give different results → use it for tuning

Looking for diffraction

diffraction:

- identified by rapidity gap
- Ittle energy deposit in forward regions
- make use of forward colorimetric coverage

Looking for diffraction ...

- Diffraction: rapidity gaps → no energy deposition in forward calos
- Amount of non-diffractive contribution changes with different tunes
- but also high/energy region depends on tunes...

Looking for diffraction ...

• diffractive and ND contributions are similar between tunes

Selecting diffraction

• select diffraction with E< 10 GeV in $-5 < \eta < -3$

- estimate contribution from diffraction and non diffraction
- NOTE: spectrum in PHOJET is different ...

Using a hard scale

• use dijets with $E_t > 10$ GeV, $|\eta| < 2$, only ND contributions are simulated

- hard diffractive contribution is not simulated in MC !!!!!
- tail of energy distribution is different... especially in large eta range
- sensitivity to parton radiation: initial state radiation and MPI

Using a hard scale: transverse Et-flow

- Et flow in central region ($|\eta| < 2$) is similar between the tunes
- differences (~ factor 2) show up in forward regions
- important especially low energies $\sqrt{s} = 900 \ GeV$?!?!?!

Using a hard scale

- Et flow in central region ($|\eta| < 2$) is similar between the tunes
- differences (~ factor 2) show up in forward regions
- important especially low energies $\sqrt{s} = 900 \ GeV$?!?!?!

How well do we know parton radiation in forward region ?

• parton radiation in forward region:

How well do we know parton radiation in forward region ?

Can additional radiation in forward region coming trom different parton showering (not ordered in kt) ?

• How is the \sqrt{s} dependence of transverse energy flow ?

Parton radiation in forward region

• Energy spectrum in soft processes: how large is the contribution from non-diffractive processes ?

• high energy tail can help to constrain !

Parton radiation in forward region

• Energy spectrum in hard processes: how large is the contribution from non-diffractive processes ?

• very forward region depends on parton showering etc ...

trans. energy flow at 900 GeV - HERA

trans. energy flow at 900/2360 GeV

H. Jung, Forward Energy and MB&UE modeling, UE&MB workshop, March 2010, region of $|\eta| > 2$

Energy flow in forward region

- Energy spectrum in forward region:
 - separate non-diffractive contribution (small energies)
 - sensitive to parton radiation in initial state (large energies)
 - sensitive to UE tunes
 - sensitive to parton shower approach (ordered vrs non-ordered
- Transverse energy flow
 - direct measure of multiparton activities and parton shower
 - direct comparison with Et flow in ep environment
- Energy spectrum and energy flow measurements in forward region are complementary to charged particle spectra and UE studies in central region

Extra Slides

Selecting diffraction

• select diffraction with E< 10 GeV in $-5 < \eta < -3$

- estimate contribution from diffraction and non diffraction
- NOTE: spectrum in PHOJET is different ...

Using a hard scale

• use dijets with $E_t > 10$ GeV, $|\eta| < 2$, only ND contributions are simulated

- hard diffractive contribution is not simulated in MC ...
- tail of energy distribution is different... especially in large eta range
- sensitivity to parton radiation: initial states radiation and MPI

Parton radiation in forward region

very forward region depends on parton showering etc ...