

Early Minimum-Bias Physics in ALICE – Status and Plans

Jan Fiete Grosse-Oetringhaus for the ALICE collaboration

Minimum Bias @ Early LHC Meeting 1. - 2. March 2010, CERN

Content

- ALICE's trigger for MB physics
- Event classes
- 0 bin and background
- Diffractive treatment
- Some MB results
- Plans

This talk uses Pythia 6.4.14 with tune D6T Phojet 1.12 with Pythia 6.2.14 unless otherwise indicated

ALICE – Trigger and Acceptance

- MB Tracking
 - SPD |η| < 1.4 p_T > 50 MeV/c
 - TPC
 - |η| < 0.9 p_T > 150 MeV/c

Detector Acceptance

Trigger for MB Physics

- ALICE measures MB properties for all inelastic (INEL) and non singlediffractive (NSD) events
 - "MB1" trigger for INEL: central pixel hit (SPD) or forward scintillator (V0)
 - One particle in 8 η units
 - (Trigger-)sensitive to 96-98%
 - of the inelastic x-section
 - "V0AND" trigger for NSD: both forward scintillators
- Possible ND trigger V0AND + several hits centrally
 - 90% ND and 20% SD/DD

	900 GeV		ND	SD	DD
	Pythia	MB1	100	77	92
		VOAND	98	29	49
	Phojet	MB1	100	86	98
		VOAND	98	34	66
iency					
Effic		<u>∧</u> 	<u></u>		
	0.4		• V0A	ND NSD	
	0.2		D V0A	ND SD	_
	v.2 - - -		△ MB1	INEL	
	0.0000	2 4 Gen	6 erated mul	8 tiplicity in	10 10

"0 bin" Treatment

- Significant amount of triggered events have no reconstructed vertex, no track in acceptance
- Use the number of triggered events as input for the normalization ("0 bin = measured 0")
- Correct with trigger efficiency for this bin
 MC dependence
- Assess background from control triggers
 - Single bunch passing, no bunch passing
 - Background with activity very small

Background @ 900 GeV

- Relative to accepted events in bunch crossing trigger
 - About 2.1% each in single bunch triggers
 - About 1.2% in "empty" trigger (= noise)
 - 0.02% have a vertex and tracks
 - The remaining go into the 0 bin, which can be subtracted with the control triggers
 - Bunch intensities taken into account
- Background with activity is negligible

ALICE run 104967,90,92

Diffractive Treatment Single Diffraction

- Use MC generator for corrections per process type (SD, DD, ND)
- Combine using measured weights
- Replay measurement
 conditions
 - M²/s < 0.05 for UA5 measurement
 - Weight SD such that replayed fraction matches measurement
 - Experiments have corrected for non-SD contribution in their measurements

SD, 900 GeV	Pythia	Phojet
MC fraction	22.3%	19.1%
Replay	18.9%	15.2%
Measurement	(15.3 ± 2.3)%	

*UA5: Z. Phys. C33, 175, (1986) derived from ratio of SD/NSD

Diffractive Treatment Double Diffraction

- Does DD matter?
 - Yes, unless your trigger is 100% efficient for DD
- UA5
 - Uses central gap of $|\eta| < 1 ... 3$
 - UA5 somehow corrects for their efficiency to find certain gap sizes
 - Hadron-level definition for DD not evident from the paper
- CDF
 - Measures with a gap of 3 η -units (including $\eta = 0$)

DD, 900 GeV	Pythia	Phojet
МС	12.3%	6.4%
Measurement	(8 ± 5)%	

DD, 1.8 TeV	Pythia	Phojet
МС	12.6%	5.8%
Replay $\Delta \eta^0 > 3$	6.6%	2.2%
Measurement	(7.5 ± 2.2)%	

UA5: Z. Phys. C33, 175, (1986) CDF: PRL87, 14

Diffractive Treatment - DD (2)

- CDF scales their and UA5 result to floating gap of 3 η-units ("Δη > 3")
- Consistent measurements
- Replay works for Pythia, but not for Phojet
- Treatment of DD remains ambiguous

		Pythia	Phojet
900	MC	12.3%	6.4%
GeV	Replay ∆η > 3	10.6%	3.6%
	UA5 scaled	(9.5 ± 6)%	
1.8	MC	12.6%	5.8%
TeV	Replay ∆η > 3	10.3%	3.5%
	CDF scaled	(10.7 ± 3.1)%	

Diffractive Treatment at Larger \sqrt{s}

- 2.36 TeV
 - Measurements at 1.8 TeV
 - For SD: E710, Phys. Lett. B301, 313 (1993)
 - Other cut on SD: $2 < M^2 < 0.05s$
 - For DD: CDF: PRL87, 14
 - Ratios SD/INEL, DD/INEL fairly constant as function of \sqrt{s}
 - No extrapolation needed from 1.8 TeV and 2.36 TeV
- 7 TeV?
 - Topic for discussion at this workshop

Towards a Hadron-Level Definition for SD

- ALICE plans to use a hadron-level definition for SD (for the correction to NSD)
 - Study difference between MC flags and hadron-level definition
- Use the UA5 definition
 - $M^2/s < 0.05$
- First observations
 - The SD bin gets other contributions
 - Small contribution from DD, ND
 - Central diffraction flows to 90% into SD (Phojet)

Systematic Uncertainties

- Use uncertainty on measurement to estimate systematic uncertainty due to unknown relative fraction
 - E.g. for SD at 900 GeV*: (15.3 ± 2.3)%
 - Large errors on DD, dominate
- For ALICE
 - Effect on INEL sample, MB1 triggered data < 1%
 - Effect on NSD sample, V0AND triggered data 2-3%
- Use Pythia / Phojet to assess different kinematics

Other Remarks

- Normalization to 1 track
 - Normalization to one measured track trivial
 - However, to compare with other experiments
 - Correct for tracking inefficiency, dead areas etc.
 - Some MC dependence comes in due to the multiplicity distribution
 - Alternative
 - Correct to events triggered in the same phase space region
 - Possible for ALICE SPD trigger because it is part of the online trigger
 - Other experiments?

- Charged primary hadrons vs. charged primary particles
 - ALICE: charged primary particles, excluding weak decays from strange particles
 - CMS: charged primary hadrons
 - Charged leptons about 1.5% of charged primaries at 900 GeV, $|\eta| < 1$ (Pythia)
 - Includes e^+e^- from π^0 etc.

Results...

Early Minimum-Bias Physics in ALICE - Jan Fiete Grosse-Oetringhaus

$dN_{ch}/d\eta \ @ 900 \ GeV$

Early Minimum-Bias Physics in ALICE - Jan Fiete Grosse-Oetringhaus

dN _{ch} /dη	dN _{ch} /dղ
----------------------	----------------------

- 900 GeV
- High-statistics measurement (90k events)
- Different triggers for NSD and INEL

ALICE, CMS: stat. and syst. uncertainty added in squares

	INEL	NSD
ALICE preliminary	3.02 ± 0.01 ± 0.07	3.58 ± 0.01 ± 0.11
ALICE published	3.10 ± 0.13 ± 0.22	3.51 ± 0.15 ± 0.25
UA5 Z. Phys. C33 1 (1986)	3.09 ± 0.05 ± ?	3.43 ± 0.05 ± ?
CMS JHEP 02 (2010) 041		3.48 ± 0.02 ± 0.13

Comparison to MC

D6T/Atlas: Pythia 6.4.14 - Perugia-0: Pythia 6.4.21 - Phojet 1.12 with Pythia 6.2.14

6 dN_{ch}/dŋ dN_{ch}/dη 5 2.36 TeV

- 41k events
- Same trigger for **INEL/NSD**
- 0 bin correction from MC
 - Larger syst. uncertainty

uncertainty added in squares

	INEL	NSD
ALICE preliminary	3.77 ± 0.01 ± 0.23	4.44 ± 0.01 ± 0.16
CMS JHEP 02 (2010) 041		4.47 ± 0.04 ± 0.16

Comparison to MC

D6T/Atlas: Pythia 6.4.14 - Perugia-0: Pythia 6.4.21 - Phojet 1.12 with Pythia 6.2.14

Increase from 0.9 to 2.36 TeV

• $dN_{ch}/d\eta$ in $|\eta| < 0.5$

Larger increase of multiplicity at mid-rapidity as in MC generators

in %	INEL	NSD
ALICE preliminary*	24.8 ± 0.5 ± 7.6	$24.0 \pm 0.5 \pm 4.5$
CMS JHEP 02 (2010) 041		28.4 ± 1.4 ± 2.6
Pythia D6T (109)	19.7	18.7
Pythia ATLAS CSC (306)	19.2	18.3
Pythia Perugia-0 (320)	19.6	18.5
Phojet	17.5	14.5

Stat. uncertainty on MC values < 0.1%

* systematic uncertainty overestimated (correlations not taken into account, yet)

Multiplicity Distributions

- 900 GeV
- Work in progress
- RAW spectra
- MCs propagated through detector response

Phojet remarkably close to data

Multiplicity Distributions

- 2.36 TeV
- Work in progress
- RAW spectra
- MCs propagated through detector response

Tail grows faster than expected

Other Ongoing Analysis Effort

- Charged particle pseudorapidity density + multiplicity distribution (0.9 + 2.36 TeV)
- Charged particle p_T
- Identified particles $p_T(\pi, K, p)$
- Strangeness production (K⁰, Λ, Ξ, Φ)
- Baryon-antibaryon asymmetry
- Bose-Einstein correlations
- π^0 spectra
- Event structure
- Azimuthal correlations
- η-φ correlations

Summary

- Data from LHC at 0.9 and 2.36 TeV leads to a rich set of analyses and MB results
- First MB results presented
 - Treatment of diffraction is time-consuming and partly ambiguous
 - We can challenge the MCs already at 2.36 TeV
 - Other comparison plots for this WG to be produced when analyses are in final stage

Credits for help with preparing this talk: Sparsh Navin, Martin Poghosyan, Andreas Morsch, Michele Floris

Early Minimum-Bias Physics in ALICE - Jan Fiete Grosse-Oetringhaus

Silicon Pixel Detector (SPD)

- Two innermost layers of the Inner Tracking System (ITS)
- Radii of 3.9/7.6 cm $(|\eta| < 2.0/1.4)$
- 9.8 M channels
- MB trigger (Fast OR) + Highmultiplicity trigger
- Tracklet: 2 points + vertex
- Very efficient down to p_T ~ 30 MeV/c
- Nominal efficiency 99%
 - but ~ 12 % need hardware fixes

Time Projection Chamber (TPC)

- Largest TPC in the world (90 m³)
- 0.85 m < r < 2.5 m
- |η| < 0.9 (1.5)
- 560 K channels, up to 160 clusters per track
- Tracking & PID
- Laser system for calibration and alignment

$dN_{ch}/d\eta$ Measurement

- Basically $\frac{dN_{ch}}{d\eta} = \frac{\text{Tracks}}{\text{Events}}$ if the detector was perfect
- But... there is
 - Detector acceptance, tracking efficiency
 - Decay, energy loss, stopping
 - Vertex reconstruction efficiency/bias, trigger efficiency/bias
 - Low momentum cut-off
- Three corrections needed
 - Track-to-particle correction
 - p_T cut-off (only TPC)
 - Vertex reconstruction correction
 - Trigger bias correction

Primary Particles = charged particles produced in the collision and their decay products excluding weak decays from strange particles

Correction on Track Level

Corrections

- Track-to-particle correction
 - Acceptance of the SPD clearly visible
 - Average factor ~ 1.3 (central region)
 - Function of η, z-position of event vertex (vtx-z)
- Trigger-bias correction
 - Corrects towards
 - Inelastic events
 - NSD events
 - Event and track level
 - Function of multiplicity, vtx-z

Multiplicity Measurement

$P(N_{ch}) = \frac{\text{Events with multiplicity } N_{ch}}{\text{All events}}$

- Efficiency, acceptance
 - Resolution vs. bin size \rightarrow bin flow
 - Correction by unfolding
- Detector response

$$M = RT$$

- Probability that a collision with the true multiplicity *t* is measured as an event with the multiplicity *m*
- Vertex reconstruction, trigger bias correction
 - Like for $dN_{ch}/d\eta$, but in unfolded variables (true multiplicity) because it is applied after unfolding

Challenges with Unfolding

- Example with a simple quadratic response matrix R
- True distribution (Gaussian is assumed) converted to measured distribution using R
- 10,000 measurements generated
- R is inverted and used to infer the 'true' distribution
 → large statistical fluctuations

Unfolding using χ^2 -Minimization

$$\chi^{2}(\mathbf{U}) = \sum_{m} \left(\frac{\mathbf{M}_{m} - \sum_{t} \mathbf{R}_{mt} \mathbf{U}_{t}}{e_{m}} \right)^{2} + \beta \mathbf{R}(\mathbf{U})$$

- One free parameters per bin for unfolded spectrum U_t
- Regularization
 - Prefer constant
 - Least curvature
 - Reduced cross-entropy (MRX) (optional: a-priori distribution ε) (Nucl.Instrum.Meth. A340:400-412,1994)

$$\begin{aligned} & \mathsf{Regularizations} \\ \mathsf{R}(\mathsf{U}) = \sum_{t} (a_{t})^{2} \\ & a_{t} = \frac{\mathsf{U}_{t}^{'}}{\sqrt{\mathsf{U}_{t}}} = \frac{\mathsf{U}_{t} - \mathsf{U}_{t-1}}{\sqrt{\mathsf{U}_{t}}} \\ & a_{t} = \frac{\mathsf{U}_{t}^{''}}{\sqrt{\mathsf{U}_{t}}} = \frac{\mathsf{U}_{t-1} + 2\mathsf{U}_{t} - \mathsf{U}_{t+1}}{\sqrt{\mathsf{U}_{t}}} \\ & \mathsf{R}(\hat{\mathsf{U}} = \mathsf{U}/\sum_{t} \mathsf{U}_{t}) = \sum_{t} \hat{\mathsf{U}}_{t} \ln \frac{\hat{\mathsf{U}}_{t}}{\varepsilon_{t}} \end{aligned}$$

Unfolding using Bayesian Method

Bayesian method (based on Bayes' theorem) (e.g. Nucl.Instrum.Meth.A362:487-498,1995)

$$\begin{split} \widetilde{R}_{tm} &= \frac{R_{mt}P_{t}}{\sum_{t'}R_{mt'}P_{t'}} \\ U_{t} &= \sum_{m}\widetilde{R}_{tm}M_{m} \\ \widehat{U}_{t} &= (1-\alpha)U_{t} + \\ \frac{\alpha}{3}(U_{t-1} + U_{t} + U_{t+1}) \text{ (optional)} \end{split}$$

Limited number of iterations provides implicit regularization (V. Blobel, hep-ex/0208022)

- $\underset{\sim}{R}_{mt} \quad \text{Response matrix}$
- $\widetilde{R}_{\rm tm}$ Smearing matrix
- **P**_t **Prior distribution (guess)**
- $\boldsymbol{M}_{\boldsymbol{m}}$ $\,$ Measured distribution $\,$
- $\boldsymbol{U}_t \quad \text{Unfolded distribution}$
- α Weight parameter

Iterative method:

- 1. Choose prior distribution P_t
- 2. Calculate $\widetilde{R}_{tm}, U_t, \hat{U}_t$
- 3. Replace P_t by \hat{U}_t ; go to 2.