
Delivery of columnar
data to analysis systems
B. GalewskyA, R. GardnerB, M. NeubauerA, J. PivarskiC, L. GrayE

I. VukoticB, G. WattsD, M. WeinbergB

A. University of Illinois at Urbana-Champaign, B. The University of Chicago,

C. Princeton University, D. University of Washington, E. Fermilab

8/5/19

HSF Event Delivery Working Group Kickoff Meeting



Delivering data to new analysis platforms
First introduced in Feb 2018 whitepaper: delivery of data from 
lakes to clients (insulate from upstream systems, remove 
latencies, reformat, filter & possibly accelerate)

Nicely aligned with existing Event Service/ESS concepts

iDDS introduced by IRIS-HEP as framework to support 
development of both ideas

iDDS/ESS - (BNL, Wisconsin) - focuses on integration with 
PanDA WMS

iDDS/ServiceX - (Chicago, Illinois) - focuses on integration 
with Rucio and reformatting for pythonic tools & endstage 
analysis systems

Goal: reusable, containerized service components (e.g. 
caching, filters, reformatters), interchangeable between PanDA 
& generic analysis platforms (Coffea, Spark, Dask, ..)

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 2

http://bit.ly/atlas-lakes
http://bit.ly/atlas-lakes


IRIS-HEP R&D efforts in DOMA & Analysis Systems

3

● DOMA/AS groups interested in R&D for data 
delivery for analysis of columnar and other 
data formats

● Supports multiple input types (xAOD, flat 
ntuples, ...) and common data mgt (Rucio, 
XCache)

● Utilize industry standard tools (GKE, 
on-prem Kubernetes, Helm, Kafka, Redis, 
Spark, ...)

● Reproducible, portable deployments

Lindsey Gray
Fermilab

HSF Event Delivery Working Group Kickoff Meeting



Classic analysis workflow

xAOD → DAOD → flat ntuples → skimmed ntuples → histograms/plots

● First two formats are prescribed, but enormous variation in after that

Standard analysis might have “primary ntuple”

● Write ntuplization code to dump xAOD 
into flat trees with specialized objects

● Submit jobs to HTCondor by hand
● Primary ntuple then skimmed/trimmed;

some data replicated (multiple times)
● Selections/cutflows baked into analysis
● Adding new variables means throwing 

previous skim, replicating everything

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 4



Recast data so attributes of physics objects grouped into 
contiguous columns, rather than grouping by event and then object
● Much more efficient for processing!
● Updating event content (or corrections) can be done by adding columns to existing data
● Can cache only necessary data for computation; 

No longer need to load entire event in memory

Columnar data R&D efforts

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 5

However, this is a significant change for 
analyzer
● New syntax can be simpler, more expressive
● Imagine analysis code with no for() loops…



Loop-less array programming

Can do all kinds of stuff with optimized linear algebra computations
● Multidimensional slices of data
● Element-wise operations (e.g. muons_pz = muons_pt * sinh(muons_eta))
● Broadcasting (e.g. muon_phi – 2 * pi)
● Event masking, indexing, array reduction, etc.

But we don’t have a simple rectangular arrays
● Nested variable-size data structures everywhere in HEP
● Jagged arrays handle this with two 1D arrays:

○ First array contains long list of values, one per object
○ Second array contains breaks that give event boundaries

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 6



Loop-less array programming

● But this is shown to the user as a list containing lists of various lengths:

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 7



ServiceX goals

Adding components to an overall iDDS ecosystem. Input-agnostic service to enable 
on-demand data delivery.

Tailored for nearly-interactive, high-performance array-based analyses

● Provide uniform interface to data storage services; users don't need to know how or where data is 
stored

● Capable of on-the-fly data transformations into variety of formats (ROOT files, HDF5, Arrow buffers, 
Parquet files, …)

● Pre-processing functionality: Unpack compressed formats, filter events in place, project data columns

Support for columnar analyses. Start from any format, extract only needed columns

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 8



Users specify needed events/columns and desired output format

● Use metadata tags (real/sim data, year, energy, run number, …)
● Any required preselection

ServiceX components

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 9

ServiceX 

● Queries backend (Rucio) to find data
● Gives unique token to identify request
● Access data from storage through XCache
● Validates request
● Perform data transformations
● Keeps track of data delivered and

processed; ensures all events processed



ServiceX implementation

System designed to be modular
● Can switch out modules to transform different types of input data, swap schedulers, …

Implemented as central service in Kubernetes cluster on GCP
● Easy to deploy: Just use Helm chart to define plugins to run
● Will deploy on k8s-based IRIS-HEP Scalable Systems Lab (SSL) when available 
● Reproducible pattern for deployment on Kubernetes clusters (e.g. Tier2s, institutional k8s T3?)

Composed of multiple deployments: API server, DID finder, transformer, Kafka manager, …
● API server: Interface for users, manages requests via DB
● DID finder: Queries data lake via Rucio, writes ROOT files to XCache
● Transformer: Takes input files from Xcache, outputs in various formats (flat trees, Awkward arrays, 

Parquet, Arrow tables, …)
● Kafka manager: Receives input from producer (currently transformer) and makes topics available to 

consumers (analysis jobs)
8/5/19 HSF Event Delivery Working Group Kickoff Meeting 10



Create requests via web interface
Status of requests shown via 
Kibana

Early prototype up and running - UI

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 11

Transforming



Currently deployed on Kubernetes clusters on 
GKE

Independent auto-scaling of components based 
on load

Caching of inputs using XCache

Transformation product is also persistified by 
Kafka

Implemented backpressure for large requests

Additional K8s cluster running Spark to perform 
analysis step.

Uses Awkward array tools to perform calculations 
on columns

Early prototype up and running - backend

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 12



Current work

● Switching transformer to compiled C++ to speed up read/write
● Testing scaling of service with multiple large concurrent requests
● Benchmarking at scale: send outputs to many analyzers (3, 10, 30, 100, …)
● Implementing swapable components: transformers, message brokers (Kafka and Redis), …
● Stability testing (e.g. randomly killing worker nodes)
● Performance optimization

○ Have moved transformer to SSL-River cluster; 256 GB / node
○ A lot of potential gain from separately optimizing each piece of the service

Future goals
● Post-transformation caching for often-reused requests (if proven beneficial)
● Coordinate development of common components for iDDS/ESS HPC production use cases 
● Extending to more input formats

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 13



Backup slides

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 14



ServiceX features

• System efficiently serves only requested columns; allows simple filtering

• Each piece of system can automatically scale, independently from others
• E.g. Cluster spins up from one to ten transformers, depending on request size

• Ultimate goal is to transform variety of input formats (xAOD, HDF5, CMS formats 
like miniAOD, …)

• Want this to be useful to ATLAS community; start by implementing transformers for xAOD
• With groundwork laid, easy to create transformers for CMS data (maybe other 

experiments…?)

8/5/19 1515HSF Event Delivery Working Group Kickoff Meeting



ServiceX input architecture

• API server
• Provides RESTful interface for users
• Communicates with Elasticsearch (eventually RabbitMQ?)

• DID finder
• Read from input queue: Query data lake via Rucio
• Write filenames/locations to transform queue: Transfer ROOT files to XCache

• Dependencies
• Data lake (read by Rucio)
• Xcache (input for transformer)

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 16



ServiceX transform architecture

• Transformer
• Takes input from transform queue; downloads files from Xcache

• Container-based; one instance per input file

• Currently focused on reading xAOD
• Outputs in various formats: Flat trees, Awkward arrays, Parquet, Arrow tables, …
• Efficiently serves only requested columns; allows simple filtering filtering

• Columnar cache (CC)
• Holds transformed columns

• K8s volume, multi-user, R/W-many

• Becomes more useful as column reuse by users increases

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 17



ServiceX output architecture

• Cache manager
• Listens to CC for row ranges ready to be published
• Reads Arrow tables from CC
• Writes to Kafka; uses request token as topic name

• Kafka
• Receives Awkward arrays / Arrow tables from producer (currently transformer)
• Makes topics available to consumers (analysis jobs)
• Messaging/indexing

8/5/19 HSF Event Delivery Working Group Kickoff Meeting 18


