
Modernisation of RooFit

S. Hageboeck (CERN, EP-SFT) for the ROOT team

Introduction

○ RooFit used in all LHC (+ other) experiments
○ Express statistical models (binned / unbinned likelihoods)
○ Parameter estimation (i.e. errors!)
○ Statistical tests (e.g. Higgs Discovery)

○ Development started before ~2005 until ~2011, not touched much in
recent years

○ Challenges: Data statistics in LHC’s Run 3
○ More events to be processed (e.g. LHCb: ~10x more)
○ Higher statistics → allow for more complex models
○ Goal: speed up >= 10x 2

Slides from Monday

RooFit’s Strengths

○ Compose PDFs as trees of
functions & variables
RooFit classes can be stitched together
to evaluate complex functions

○ Each PDF can be:
○ evaluated
○ normalised
○ fitted to data
○ plotted
○ Parameter

estimation
○ Toy experiments
○ ... 3

Slides from Monday

https://root.cern.ch/doc/master/rf108__plotbinning_8C.html
https://root.cern.ch/doc/master/rf205__compplot_8C.html

RooFit’s Weakness
Likelihood:
Probability of observing the data given a
probability model

Maximum-likelihood fit:

○ Adjust parameters until likelihood
maximal

○ One virtual call per:
○ Data point
○ PDF node
○ Set of parameters tested

○ Large fit: 1M data points * 1000
elements * 1000 fit steps
= 1 trillion calls

○ + 1 billion normalisation integrals
when parameters change

4

A random PDF
from a question in the forum

Data point

Parameters

Slides from Monday

Batched function evaluations
○ Previously: A single data point is

loaded into the variables
○ The whole (minus cached branches)

expression tree is walked over
○ Execution returns to the data point,

cache line disappeared
○ Simple profiling:

50% L3 misses
○ 0 chance to vectorise computations
○ My plan:

○ Evaluate a batch of data
points in a single call

○ Exploit vectorised fp
instructions

5

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Batched and Auto-Vectorised Gaussian

6

Challenge:

○ Whether a node is a
parameter or a batch is
decided at run time
(might even change at
RT)

○ Solved with classes that
either collapse to a
constant or an array
(completely inlinable)

○ VDT math functions for
auto vectorisation

Old:

New:

- Zero or one dimensional
- Template types decide behaviour

Batched and Auto-Vectorised Gaussian

7

- Zero or one dimensional
- Template types decide behaviour

Challenge:

○ Whether a node is a
parameter or a batch is
decided at run time
(might even change at
RT)

○ Solved with classes that
either collapse to a
constant or an array
(completely inlinable)

○ VDT math functions for
auto vectorisation

Old:

New:

Batch & Vectorisation Benchmark

○ Optimised Gauss, Exp, Sum,
Poisson

○ Batches & better cache locality
result in 10x faster likelihood
computation

○ With AVX2, 16x faster LH
possible

○ (*) AVX512 should allow for
more speed up, but CPU likely
throttling

8

Single likelihood
computation CPU time / ms Error

Speed
up Error

clang 7 -O3 SSE 2867 45

286 34 10.0 1.2

clang 7 -O3 AVX2 2834 22

183 7 15.5 0.6

clang 9 -O3 AVX512 2109 29

Titan X * 125 1 16.9 0.3

L(x | P) = Gauss(x | P1) + Gauss(x | P2) +
 Exp(x | P3)

Old

New

Required changes on user side:

Slides from Monday

Batch & Vectorisation Full Fit

○ Full fit can be 7 to 10 times
faster with batches and
vectorisation

○ Results identical to 10E-14
○ Unit tests running batch

against scalar code
○ Minimal differences

expected (e.g. vdt::exp vs
std::exp)

9

Full fit + error estimation CPU time / s Speed up

clang 7 -O3 SSE 9.61

2.45 3.9

clang 7 -O3 AVX2 9.97

1.32 7.5

clang 9 -O3 AVX512 6.53

Titan X * 0.68 9.7

L(x | P) = Gauss(x | P1) + Gauss(x | P2) +
 Exp(x | P3)

Slides from Monday

Batched Function Evaluations
Now:

1. Evaluation requests batch of data
at top node

2. Nodes call down to children
3. Arrive at leaf:

a. Leaf is a parameter: return
single value

b. Leaf is an observable:
return requested data batch

10

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Batched Function Evaluations
Now:

1. Evaluation requests batch of data
at top node

2. Nodes call down to children
3. Arrive at leaf:

a. Leaf is a parameter: single
value

b. Leaf is an observable:
Returns requested data batch

4. Node starts computing using batch
and parameter data
a. Makes its own batch memory

and fills it

11

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Batched Function Evaluations
Now:

1. Evaluation requests batch of data
at top node

2. Nodes call down to children
3. Arrive at leaf:

a. Leaf is a parameter: single
value

b. Leaf is an observable:
Returns requested data batch

4. Node starts computing using batch
and parameter data
a. Makes its own batch memory

and fills it
b. Returns batch

12

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Batched Function Evaluations
Now:

1. Evaluation requests batch of data
at top node

2. Nodes call down to children
3. Arrive at leaf:

a. Leaf is a parameter: single
value

b. Leaf is an observable:
Returns requested data batch

4. Node starts computing using batch
and parameter data
a. Makes its own batch memory

and fills it
b. Returns batch

5. Propagate up
13

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Questions about the Batch Memory

What does a node need to know to
manage its batch results?

○ Batch begin index
○ Batch size

○ (Possibly: thread ID)

14

Requirements:

○ Detect whether this batch was
already computed & return

○ Reuse memory
○ Handle multiple range requests

○ [Not supported] Re-use batch
memory for different batches

Reuse Batch Memory
Future requirement:

○ For very large datasets, might have
to call multiple times

○ Leafs - trivial: return request
○ Nodes:

○ Need to map nth batch on
node-local memory

○ Would currently create new
memory

○ Nodes don't know caller's intents:
○ No stride information
○ No notion of #batch
○ No idea about #workers
○ Will batch be needed again?

15

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Reuse Batch Memory
Further complication:

○ Batch size might change between
requests

○ Will currently allocate even more
memory

Possible solution:

○ Index memory with something like
a worker ID

○ Always reuse
○ Resize if necessary
○ Invalidate batch results when

jumping to the next data batch

16

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Reuse Batch Memory
More complications:

○ Request might be fulfilled only
partially

○ Think RNTuple as storage backend
○ Maximal batch size that can

be returned is decompressed
basket

17

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Reuse Batch Memory
More complications:

○ Request might be fulfilled only
partially

○ Think RNTuple as storage backend
○ Maximal batch size that can

be returned is decompressed
basket

18

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Reuse Batch Memory
More complications:

○ Request might be fulfilled only
partially

○ Think RNTuple as storage backend
○ Maximal batch size that can

be returned is decompressed
basket

○ Handled gracefully by top caller,
re-request missing range

19

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Cache-Efficient Memory Management
More complications:

○ Request might be fulfilled only
partially

○ Think RNTuple as storage backend
○ Maximal batch size that can

be returned is decompressed
basket

○ Handled gracefully by top caller,
re-request missing range

20

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Cache-Efficient Memory Layout
Is it possible to:

○ Assign a block of memory (e.g. page
size / cache size) to different nodes
of the PDF?

○ Would keep data extremely local
(L1 / L2)

○ Needs some planning and extra
passes over the PDF tree

○ Is maybe less flexible w.r.t. changes
in batch size and parallel evaluation

○ Boost performance?

21

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

My Plan for RooFit

1. Fix the most pressing issues
2. LinkedList → std::vector<RooAbsArg*>

○ Much more memory friendly, faster to iterate/allocate/destroy/index access

3. Batched evaluation
○ Walk expression tree only once for all data points
○ Reduce number of virtual calls by factor of batch size
○ No change of state, no copying subtree (→ threads)
○ Data come as std::vector<double> and are accessed consecutively (cache-friendly)

4. Vectorise loops inside batches
5. Batched & threaded generation of toy data

○ Bottleneck for some analyses

6. Threads

https://sft.its.cern.ch/jira/browse/ROOT-9815

22

ROOT 6.18

ROOT 6.16

This depends on
today's discussion

Up to 10x speed up

Slides from Monday

https://sft.its.cern.ch/jira/browse/ROOT-9815

Backup

The Challenge II

○ RooLinkedList:
○ Remove/add/replace before and after

current iterator
○ No reallocations → iterator valid

○ Solution: Legacy-to-STL adapters count
○ Can remove/add after iterator
○ Can replace everywhere
○ Safe also if reallocating
○ But: Will break when removing/adding

before iterator

24

