APPERIMENT From Pb+Pb to photon+Pb-collisions: Understanding the Quark-Gluon Plasma with Flow Measurements from ATLAS

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

Anne M. Sickles for the ATLAS Collaboration November 26, 2019

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

Anne M. Sickles November 26, 2019

 create & study matter which is so hot that quarks and gluons are no longer confined

- Quark-Gluon Plasma: lifetime ~10-15 fm/c
 - long enough to have a time evolution and bulk properties

Run: 286665 • max. temp at the LHC well above the 155 MeV temp. at 2015-11-25 11:12 which hadrons can no longer exist

first stable beams heavy-ion collisions

Anne M. Sickles November 26, 2019

goals of the heavy ion program at the LHC

slide from U. Wiedemann, European Strategy Open Symposium, May 2019

Main goals of nuclear beams programs @ HL-LHC

(as defined in HL-LHC WG5 report: arXiv:1812.06772)

- **Characterizing the long-wavelength QGP properties** with unprecedented precision.
- Probing the inner workings of the QGP: investigating microscopic parton dynamics in hot and dense QCD matter.
- **System size dependence:** developing a unified picture of particle production and QCD dynamics from pp to AA.
- **Exploring nuclear parton densities** in a broad (x, Q^2) range and searching for onset of parton saturation.

goals of the heavy ion program at the LHC

slide from U. Wiedemann, European Strategy Open Symposium, May 2019

Main goals of nuclear beams programs @ HL-LHC

(as defined in HL-LHC WG5 report: arXiv:1812.06772)

- Characterizing the long-wavelength QGP properties with unprecedented precision.
- Probing the inner workings of the QGP: investigating microscopic parton dynamics in hot and dense QCD matter.
- **3** System size dependence: developing a unified picture of particle production and QCD dynamics from pp to AA.
- **Exploring nuclear parton densities** in a broad (x, Q^2) range and searching for onset of parton saturation.

goal for today: discuss recent ATLAS measurements with sensitivity to these questions

ATLAS heavy ion datasets

System	Year	$\sqrt{\mathrm{s}_{\mathrm{NN}}}~[\mathrm{TeV}]$	$\mathbf{L}_{\mathrm{int}}$
Pb+Pb	2010	2.76	$9 \ \mu \mathrm{b}^{-1}$
Pb+Pb	2011	2.76	0.14 nb^{-1}
p+Pb	2012	5.02	$1 \ \mu \mathrm{b}^{-1}$
p+Pb	2013	5.02	29 nb^{-1}
pp	2013	2.76	4 pb^{-1}
pp	2015, 2016	13	75 nb^{-1}
pp	2015	5.02	28 pb^{-1}
Pb+Pb	2015	5.02	0.49 nb^{-1}
p+Pb	2016	5.02	$0.5 { m ~nb^{-1}}$
p+Pb	2016	8.16	180 nb^{-1}
pp	2017	13	150 pb^{-1}
Xe+Xe	2017	5.44	$3 \ \mu \mathrm{b}^{-1}$
pp	2017	5.02	272 pb^{-1}
pp	2018	13	$193 { m pb}^{-1}$
Pb+Pb	2018	5.02	1.75 nb^{-1}

13 TeV pp is low pileup running used in correlation measurements

QGP phase

final state particles

QGP phase

geometry of each collision depends on impact parameter and event-by-event fluctuations

geometry of each collision depends on impact parameter and event-by-event fluctuations

observables sensitive to geometry provide a powerful tool to study the quark-gluon plasma

counting particles

before the collision: orientation of the nuclei

counting particles

before the collision: orientation of the nuclei

counting particles

before the collision: orientation of the nuclei

after the collision: angular distribution of particles

key is that these are *long range* correlations, **not** associated with jets or particle decays

collision geometry

PLB 707 330 (2012)

role of interactions

gas: minimal interactions isotropic expansion

fluid: lots of interactions anisotropic expansion steep pressure change

gradual pressure change

hydrodynamic modeling

eccentricity in initial state \rightarrow anisotropy in final state

role of fluctuations

Alver & Roland, Phys.Rev. C81 (2010) 054905

fluctuations in the nucleon position can create any shape of the initial nucleon positions \rightarrow not just ellipticity, ϵ_2 , but ϵ_3 , ϵ_4 , ...

decomposing geometry

decomposing geometry

decomposing geometry

 $\epsilon_2 \rightarrow v_2$ $\epsilon_3 \rightarrow v_3$

 $\epsilon_n > 2$: generated by fluctuations larger n: v_n increasingly damped by viscosity

beautiful measurements of flow

dominance of overall elliptical shape $\rightarrow v_2 > v_{n>2}$ fluctuations generate v_3 and higher EPJC 78 (2018) 997

data constrained extractions of QGP parameters

using LHC vn data to constrain shear & bulk viscosity

these (and other) analyses are a big step forward! but have assumptions about the form of the initial state, conversion to hadrons, ...

vn from geometry & fluctuations

Sievert & Noronha-Hostler, PRC 100 024904 (2019)

vn from geometry & fluctuations

Sievert & Noronha-Hostler, PRC 100 024904 (2019)

v₂: impact parameter driven, except for very small systems v₃: always driven by fluctuations so it depends on the size of the system

two-particle correlations

$\frac{dN}{d\phi} \propto 1 + 2v_N \cos[N(\phi - \Psi_N)]$	correlations of particles wrt ψ_{N}
$rac{dN_{AB}}{d\Delta\phi}\propto 1+\sum^{n}2v_{n,A}v_{n,B}\cos\left(n\Delta\phi ight)$	two-particle correlations

$$\frac{dN_{AB}}{d\Delta\phi}\propto 1+\sum^{n}2v_{n,A}v_{n,B}\cos\left(n\Delta\phi\right)$$

two-particle correlations

1911.04812

XeXe / PbPb

XeXe / PbPb

XeXe has:

smaller system: pPb collisions

0.2

2013 surprising result: v₂ & v₃ measured in pPb collisions!

smaller system: pPb collisions

0.2

2013 surprising result: v₂ & v₃ measured in pPb collisions! evidence for QGP formation or something else?

looking for vn in smaller systems

b⁻¹

PRL 110 182302 (2013) PRL 116 172301 (2016)

v₂ & v₃ in proton-proton collisions

0.1

0.0

geometry and hydrodynamics in small systems

PHENIX, Nature Phys. 15 (2019) 214

*v*₂, *v*₃ clearly tied to geometry through hydrodynamic calculations

photon-Pb collisions

direct $\gamma\text{-Pb}$ collision

resolved γ -Pb collision

multiplicity in γ -Pb collisions

OnXn: at least 1 neutron in one ZDC and 0 in the other

$$\begin{split} \Sigma \Delta \eta_{\text{gap}} &: \text{sum of all gaps (including tracks \& clusters)} > 0.5 \\ & \text{require: } \Sigma_{Y} \Delta \eta_{\text{gap}} &: > 2.5 \& \Sigma_{A} \Delta \eta_{\text{gap}} < 3 \end{split}$$

ATLAS-CONF-2019-022

γ-Pb event display

Pb

template fitting

simultaneous fit to low (LM) and high (HM) multiplicity distributions

v2 in photon-nucleus collisions

 $v_2(\gamma Pb) < v_2(pp) < v_2(pPb)$

could be sensitive to different geometries than in pp/pPb collisions

shrinking the QGP

from Pb-Pb collisions to pp hydrodynamic calculations can describe the data

v_2 measurement in γ -Pb collisions are a provocative frontier...

the different role of geometry and fluctuations provides an opportunity to constrain the properties of the QGP

image: C. Shen (QM19)

heavy quarks

- charm and bottom quarks are interesting because their v_n values are sensitive to how much these more massive quark flow with the QGP
- ATLAS has measured the μ^{\pm} from the decay of charm and bottom hadrons (combined)

charm & bottom v₂, separately

much larger Run2 dataset!

charm $v_2 > bottom v_2$

charm & bottom v₂ in pp collisions

what about in pp collisions? overall v_2 is smaller than in PbPb collisions & the size of the system is also smaller

charm $v_2 > bottom v_2 \approx 0$

can we see how the jets experience different path lengths?

jet quenching

 R_{AA} = number of jets in PbPb collisions/ pp collisions scaled by nuclear thickness function $R_{AA} = 1 \rightarrow$ jets in PbPb collisions like pp collisions

picture: energy is lost from the jet cone as jets interact with the QGP

jet quenching

picture: energy is lost from the jet cone as jets interact with the QGP

...

path length dependence of jet quenching

jets of a given p_T are more likely to make it out if they go through

the short side

more energy loss

PRL 111 152301 (2013)

path length dependence of jet quenching

jets of a given p_T are more likely to make it out if they go through

the short side

path length dependence of jet quenching

jets of a given p_T are more likely to make it out if they go through

the short side

 $\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2)$

jets also have v₂

more energy loss

jet v_2 attributed to path length dependence of jet energy loss but no quantitive model to explain both the R_{AA} and the v_2 of jets

1910.13978

1910.13978

PbPb: $v_2 > 0 \& R_{PbPb} < 1$ pPb: $v_2 > 0 \& R_{pPb} \approx 1$

1910.13978

PbPb: $v_2 > 0 \& R_{PbPb} < 1$ pPb: $v_2 > 0 \& R_{pPb} \approx 1$

do the v_2 in PbPb and pPb collisions have the same origin? is the picture of $\Delta E(L)$ in PbPb right?

1910.13978

PbPb: $v_2 > 0 \& R_{PbPb} < 1$ pPb: $v_2 > 0 \& R_{pPb} \approx 1$

do the v_2 in PbPb and pPb collisions have the same origin? is the picture of $\Delta E(L)$ in PbPb right?

light ion collisions with a different geometry but the same size as pPb could help clarify this

- from PbPb \rightarrow pp collisions: observation of v_n describable with hydrodynamics
 - constraining the properties of the quark-gluon plasma
 - XeXe and OO collisions provide a way to understand the interplay between geometry and fluctuations
 - provocative new measurement of v_2 in γ -Pb collisions!
- differences between v₂ for charm and bottom quarks observed
 - no significant $v_2(b \rightarrow \mu)$ in pp collisions
 - opportunity to understand the dynamics of the QGP!
- similarity of v_2 at high p_T in PbPb and pPb collisions despite very different system size and jet quenching
 - not understood
 - OO collisions would provide a key guide for jet quenching in small systems

- from PbPb \rightarrow pp collisions: observation of v_n describable with hydrodynamics
 - constraining the properties of the quark-gluon plasma
 - XeXe and OO collisions provide a way to understand the interplay between geometry and fluctuations
 - provocative new measurement of v_2 in γ -Pb collisions!
- differences between v₂ for charm and bottom quarks observed
 - no significant $v_2(b \rightarrow \mu)$ in pp collisions
 - opportunity to understand the dynamics of the QGP!
- similarity of v_2 at high p_T in PbPb and pPb collisions despite very different system size and jet quenching
 - not understood
 - OO collisions would provide a key guide for jet quenching in small systems

we're looking forward to more analyses from Run 2 data and new opportunities in Run 3

backups

N^{rec}

1708.03559