Schwarz maps for the hypergeometric
function

Masaaki Yoshida (Kyushu Univ. Fukuoka Japan)

The hypergeometric differential equation
E(a,b,c)

r(1—z)u”" +{c—(a+b+1)z}u' —abu = 0,
sometimes written as

Eyala), a=(ar,...,a1), » a;=2.



Fundamental solutions, e.g:

up(z) = /0ij uy(z) = /fw,

w =t"1 — ) g — )"0t
=t (1 — )2z —)B—1at.

Not single valued.



The Schwarz map (end of 19C):
s: X 3z — ug(x): u(z) € P
X =C—-{0,1},
Pl the complex projective line.
Example: £(1/2,1/2,1) = E94(1/2,...,1/2)

[ will come back to this map later.



By analytic continuation along a loop -y
(up,w1) changes into (uq,uq)M-,

where M~ € GL(2) is called a circuit ma-
trix along ~.

The circuit matrices form a group called the
monodromy group Monod.

Fasy to get a set of generators,say M-, M-, .

The entries of the generators are rational
functions in {e2m@, 2Tl g2micy,



Easy: it a, b, c are real, then there is a her-
mitian matrix H, such that

MHM* = H, M & Monod.

Though the solutions ug and uy are not sin-
ole valued, the quantity

(ug, u1)H (g)

is single valued; H is called the invariant
hermitian form.

This form determins the image of the Schwarz
map.



Question: Why such H exists?

For the hypergeometric equation F(a, b, ¢)
there is no need to ask so, because we have
explicit expression of My, M-~,, and H.



About thirty years ago I encountered an in-
tegrable system of linear partial differential
equations sometimes called the Aomoto-Gelfand
hypergeometric equation

Essla), a=(ay,...,aq), Zaj =3

anyway 1t 18
of rank 6 in 4 variables.

Solutions expressed by integrals:

/ H 0i(2)% L dsdt,

Ci(x hnear in (s,t).



The Schwarz map is defined by
s:C*—D 3z uy(z): - :us(z) € P,
where D is a divisor, the singular locus of

the system.

E36(1/2,...,1/2)is specially interesting algebro-
geometrically. In this case, there is an in-
variant hermitian form H, and the image

of s is determined as

(Z(), Ce e 25)Ht<20, Ce e 25) — 0,
(Zo, Ceey Z5>H<ZQ, Ceey 25)* > (),
a so-called type IV symmetric space.

The inverse map is an automorphic map,
which is not the subject today:.



Question: For general real parameters a, an
invariant hermitian form exists?

We tound a set of generators M; of the
Monodromy group of E3¢(a); it is a hard
work. And solved the system of linear equa-
tions

M;HM! =H, j=1.2,.

The result was surprisingly simple.

There must be a reason for the invariant
form to exist.



If we can evaluate the intersection number
D, - D for two loaded domains D; and D
of integration of two bases u; and wu;, the
Imtersection matrix

[=(D;-Dj)=| D2 | (D1,Ds,...)

is naturally invariant under small topolog-
ical changes of the domains, so invariant
under the monodromy group:

M*IM =1, M € Monod.
We found that
H=71"1

SO easy so obvious.
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Today’s audience know well how to eval-
uate, I think, because on the poster of this
conference, I found a fundamental example:

rigwe 1: ieValuating an intersection number
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I and my collaborators were happy to find a
way to evaluate these intersection numbers.

But among mathematicians this was and
has been not popular at all.

So when I got an email from Sebastian Miz-
era two years ago that this can be used in
quantum field theory, I was just surprised,

thank you.
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Recall the classical Schwarz map:

s: X 32— ug(x):uy(z) € P

For years, I felt: the target is not exactly
the correct one.

Even if the monodromy group of s is dis-
crete in GLo(C'), it does not, in general, act
properly discontinuously on any non-empty
open set of the target PL, and so the image
would be chaotic.
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The 1-dim complex projective space Pl s
also called the Riemann sphere; yes, it is
a sphere. The group PGLy(C') acts nat-
urally on the inside of the sphere not the
skin! Inside of the sphere, the ball, is the
3-dim hyperbolic space H 3 equipped with
the motion group PGLy(C).

For years, I dreamed a correct Schwarz
map with target H?>, which should be called
the hyperbolic Schwarz map.
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About twenty years ago, I got it, once it is
found, it is simple and natural, of course.

Change the equation E(a, b, ¢) into the so-
called S L-form:

u" — q(z)u =0,

and transform it to the matrix equation

() =0 (i) 2= (o)
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We now define the hyperbolic Schwarz map,
denoted by S, as the composition of the
(multi-valued) map

S: X3z U(x) U(r) € Her ™ (2)
and the natural projection

Her™(2) — H? .= Her ™ (2)/R%,,,

where
_ [ Up uj
o= (1f 4 ) @
is a fundamental solution of the system,

Her™(2) the space of positive-definite Her-
mitian matrices of size 2.
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Note that the target of the hyperbolic Schwarz
map is H?, whose boundary is P, which
is the target of the Schwarz map.

In this sense, our hyperbolic Schwarz map
is a lift-to-the-air of the Schwarz map.

Note also that the monodromy group of
the system acts naturally on H3:

W=U(x)"U(x) - M*WM, M & Monod.
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The image surface (of X under S) has the
following geometrically nice properties:

e [t has singularities along the image of the
curve

C={xeC;lq| =1}.
Generic singularities of flat fronts are cus-

pidal edges and swallowtail singularities

e From an image point S(x), extend the
normal to hit the ideal boundary Pl at
two points: one is the Schwarz image
s(x), and the other is the derived Schwarz
image s'(x), where

s X 3z — ul(x)  u(z) € PL

o [f Monod is discrete in GL(2,C), then
the image is a closed surface in H3.
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Examples:

Monod = Dihedral group D»9.3

-1

Figure 2: Image U.Hder S
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Monod = a Fuchsian group I'(2)
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Thank you
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