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The hypergeometric differential equation
E(a, b, c) :

x(1−x)u′′+{c−(a+b+1)x}u′−abu = 0,

sometimes written as

E2,4(a), a = (a1, . . . , a4),
∑

ai = 2.
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Fundamental solutions, e.g:

u0(x) =

∫ x

0
ω, u1(x) =

∫ x

1
ω,

ω = tb−c(1− t)c−a−1(x− t)−bdt

= ta1−1(1− t)a2−1(x− t)a3−1dt.

Not single valued.
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The Schwarz map (end of 19C):

s : X 3 x 7−→ u0(x) : u1(x) ∈ P 1,

X = C − {0, 1},
P 1: the complex projective line.

Example: E(1/2, 1/2, 1) = E2,4(1/2, . . . , 1/2)

I will come back to this map later.
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By analytic continuation along a loop γ

(u0, u1) changes into (u0, u1)Mγ,

where Mγ ∈ GL(2) is called a circuit ma-
trix along γ.

The circuit matrices form a group called the
monodromy group Monod.

Easy to get a set of generators,sayMγ0,Mγ1.

The entries of the generators are rational
functions in {e2πia, e2πib, e2πic}.
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Easy: if a, b, c are real, then there is a her-
mitian matrix H , such that

MHM∗ = H, M ∈ Monod.

Though the solutions u0 and u1 are not sin-
gle valued, the quantity

(u0, u1)H

(
u0
u1

)
is single valued; H is called the invariant
hermitian form.

This form determins the image of the Schwarz
map.
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Question: Why such H exists?

For the hypergeometric equationE(a, b, c)
there is no need to ask so, because we have
explicit expression of Mγ0, Mγ1, and H .
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About thirty years ago I encountered an in-
tegrable system of linear partial differential
equations sometimes called the Aomoto-Gelfand
hypergeometric equation

E3,6(a), a = (a1, . . . , a6),
∑

aj = 3

anyway it is

of rank 6 in 4 variables.

Solutions expressed by integrals:

u(x) =

∫
D

5∏
j=1

ℓj(x)
aj−1dsdt,

ℓj(x) : linear in (s, t).
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The Schwarz map is defined by

s : C4−D 3 x 7→ u0(x) : · · · : u5(x) ∈ P5,

where D is a divisor, the singular locus of
the system.

E3,6(1/2, . . . , 1/2) is specially interesting algebro-
geometrically. In this case, there is an in-
variant hermitian form H , and the image
of s is determined as

(z0, . . . , z5)H
t(z0, . . . , z5) = 0,

(z0, . . . , z5)H(z0, . . . , z5)
∗ > 0,

a so-called type IV symmetric space.

The inverse map is an automorphic map,
which is not the subject today.
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Question: For general real parameters a, an
invariant hermitian form exists?

We found a set of generators Mj of the
Monodromy group of E3,6(a); it is a hard
work. And solved the system of linear equa-
tions

MjHM∗
j = H, j = 1, 2, ..

The result was surprisingly simple.

There must be a reason for the invariant
form to exist.
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If we can evaluate the intersection number
Di ·Dj for two loaded domains Di and Dj
of integration of two bases ui and uj, the
intersection matrix

I := (Di ·Dj) =

D1

D2
...

 (D1, D2, . . . )

is naturally invariant under small topolog-
ical changes of the domains, so invariant
under the monodromy group:

M∗IM = I, M ∈ Monod.

We found that

H = I−1

so easy so obvious.
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Today’s audience know well how to eval-
uate, I think, because on the poster of this
conference, I found a fundamental example:

Figure 1: Eevaluating an intersection number
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I and my collaborators were happy to find a
way to evaluate these intersection numbers.

But among mathematicians this was and
has been not popular at all.

So when I got an email from Sebastian Miz-
era two years ago that this can be used in
quantum field theory, I was just surprised,

thank you.
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Recall the classical Schwarz map:

s : X 3 x 7−→ u0(x) : u1(x) ∈ P 1.

For years, I felt: the target is not exactly
the correct one.

Even if the monodromy group of s is dis-
crete in GL2(C), it does not, in general, act
properly discontinuously on any non-empty
open set of the target P 1, and so the image
would be chaotic.
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The 1-dim complex projective space P 1 is
also called the Riemann sphere; yes, it is
a sphere. The group PGL2(C) acts nat-
urally on the inside of the sphere not the
skin! Inside of the sphere, the ball, is the
3-dim hyperbolic space H3 equipped with
the motion group PGL2(C).

For years, I dreamed a correct Schwarz
map with targetH3, which should be called
the hyperbolic Schwarz map.
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About twenty years ago, I got it, once it is
found, it is simple and natural, of course.

Change the equation E(a, b, c) into the so-
called SL-form:

u′′ − q(x)u = 0,

and transform it to the matrix equation

d

dx

(
u
u′

)
= Ω

(
u
u′

)
, Ω =

(
0 1

q(x) 0

)
.
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We now define the hyperbolic Schwarz map,
denoted by S, as the composition of the
(multi-valued) map

S : X 3 x 7−→ U(x)∗ U(x) ∈ Her+(2)

and the natural projection

Her+(2) → H3 := Her+(2)/R×
>0,

where

U(x) =

(
u0 u1
u′0 u′1

)
(x)

is a fundamental solution of the system,
Her+(2) the space of positive-definite Her-
mitian matrices of size 2.
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Note that the target of the hyperbolic Schwarz
map is H3, whose boundary is P 1, which
is the target of the Schwarz map.

In this sense, our hyperbolic Schwarz map
is a lift-to-the-air of the Schwarz map.

Note also that the monodromy group of
the system acts naturally on H3:

W = U(x)∗ U(x) → M∗WM, M ∈ Monod.
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The image surface (of X under S) has the
following geometrically nice properties:

• It has singularities along the image of the
curve

C := {x ∈ C; |q| = 1}.
Generic singularities of flat fronts are cus-
pidal edges and swallowtail singularities

• From an image point S(x), extend the
normal to hit the ideal boundary P1 at
two points: one is the Schwarz image
s(x), and the other is the derived Schwarz
image s′(x), where

s′ : X 3 x 7−→ u′0(x) : u
′
1(x) ∈ P1.

• If Monod is discrete in GL(2,C), then
the image is a closed surface in H3.
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Examples:

Monod = Dihedral group D2·3
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Figure 2: Image under S
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Monod = a Fuchsian group Γ(2)
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Figure 3: Image under S

Thank you
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