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What Computer Algebra can offer

Massively parallel methods

Application to classical problems

Integration-by-parts identities for Feynman integrals

Tropical mirror symmetry and Feynman integrals
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@ Open Source computer algebra system for polynomial computations,
over 30 development teams worldwide, over 140 libraries.

https://www.singular.uni-kl.de/

o Founded by G.-M. Greuel, G. Pfister, H. Schonemann. Current Head:
W. Decker
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https://www.singular.uni-kl.de/

Features of Singular

Commutative Algebra:

Grobner bases over fields and integers, free resolutions
Local computations

Normalization

Primary decomposition, factorization

Invariant theory

Non-commutative subsystem
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Features of Singular

Commutative Algebra:

@ Grobner bases over fields and integers, free resolutions
@ Local computations

@ Normalization

@ Primary decomposition, factorization

@ Invariant theory

@ Non-commutative subsystem

Algebraic and Tropical Geometry:

o Classification of Singularities
Resolution of singularities
Deformation theory

Sheaf cohomology

DeRham cohomology
Rational parametrization
Tropicalization

GIT fans
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Non-linear algebra: Grobner Bases

Division with remainder in one variable successively eliminates the highest
power.
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Non-linear algebra: Grobner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 — y? durch x? 4+ y und xy + x with respect to lexicographic
ordering.

X —y?t= 1-(+y)+(—y*—y)

x? + y

——
Yy =Yy
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Non-linear algebra: Grobner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 — y? durch x? 4+ y und xy + x with respect to lexicographic
ordering.

=yt = 1-(CHy)+ (=)

x? + y

?2?

so remainder # 0, but

X =yt ==y (P Hy) +x 0y +x) €= (C+yxy+x)
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Non-linear algebra: Grobner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 — y? durch x? 4+ y und xy + x with respect to lexicographic
ordering.

=yt = 1-(CHy)+ (=)

x? + y

72?

so remainder # 0, but
X2—y?=—y (X +y)+x(xy+x)€l:=(*+y,xy+x)

Problem: Lead terms cancel, division algorithm can’t do that.
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Non-linear algebra: Grobner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 — y? durch x? 4+ y und xy + x with respect to lexicographic
ordering.

=yt = 1-(CHy)+ (=)

x? + y

fyﬁ

so remainder # 0, but
X2—y?=—y (X +y)+x(xy+x)€l:=(*+y,xy+x)

Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y? + y to the divisor set. The result is a Grébner basis
of I. Then
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Non-linear algebra: Grobner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 — y? durch x? 4+ y und xy + x with respect to lexicographic
ordering.

=yt = 1-(CHy)+ (=)

x? + y

fyﬁ

so remainder # 0, but
X2—y?=—y (X +y)+x(xy+x)€l:=(*+y,xy+x)

Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y? + y to the divisor set. The result is a Grébner basis
of I. Then

fel< NF(f,G)=0
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The Main Computational Tool: Grobner Bases

Grobner Bases can be used for fundamental computations with ideals and
modules:

@ eliminate variables,
determine intersections,
compute syzygies (polynomial relations),

o
o
@ compute ideal quotients and saturations,
o

birational geometry.

[@ Greuel, Pfister: A Singular Introduction to Commutative Algebra.
Springer.
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Singular Online

T

*w Edit View Higtory Bookmarks Tools Help
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@ etpstfarnnsingalaruni-klde 003

. Links

‘Welcome to Singular online!

This is the official web-interface of Singular based on the
by Franziska Hinkel
Rastner and Mike Stiliman,

Toleam more about Singular (features and manual, source code
and extentions to third party software), please consult the offcial
website

Tolearn how to use Singular and in particular this web interface,
please check the tutorials below

For questions, feel free to visi our forum

(imoge coutesy of Inaginery)

ko raeia

Getting started

Using the Input Window

singular sessions and the Reset button
Advanced topics

» Tutorial: convex and tropical geometry
» Tutorial: Saturation of polynomial ideals

» Load Tutorial
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STNGULAR ’
A Computer Algebra System for Polynomial Computations /

Development
version 4.0.
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OSCAR

Cornerstone of next generation Open Source Computeralgebrasystem

OSCAR developed in SFB TRR 195 " Symbolic Tools in Mathematics and
Their Application™:
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OSCAR

Cornerstone of next generation Open Source Computeralgebrasystem

OSCAR developed in SFB TRR 195 " Symbolic Tools in Mathematics and
Their Application™:

o<<( SINGULAR GAP
Algebraic Geometry Groups
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Resolution of Singularities

Hironaka used order sequence of a local Grobner basis (standard basis) to

prove existence of resolution of singularities.
[§ Hironaka (1964)

Can be turned into an effective criterion for smoothness iteratively
generating a tree of charts

s.t. in every chart the smooth variety is a smooth complete intersection:
[§ JB, Friihbis-Kriiger (2017)

Xo0X3 — X1 X2 = 0 \

x2—xox2=0 pN{xo #0}
x1x3 — x5 =0

o X3—X1X2:0
- X2 —x =0
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Resolution of Singularities

If not smooth, loci for interative blowup can be found:

[§ Bravo, Encinas, Villamayor (2005).
[ Friihbis-Kriiger, Pfister (2007).
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Resolution of Singularities

Resolution Step Gluing Step

Traversal of Tree of Charts

Search for| Blowup

Center of in
Blowup Charts required to draw information
A I from resolution data
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Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra
by joining SINGULAR with the workflow management system GPI-SPACE,
developed at Fraunhofer Institute fiir Industrial Mathematics ITWM.
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Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra
by joining SINGULAR with the workflow management system GPI-SPACE,
developed at Fraunhofer Institute fiir Industrial Mathematics ITWM.

ﬁ JB, Decker, Friihbis-Kriiger, Pfreundt, Rahn, Ristau, 2018.
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Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra
by joining SINGULAR with the workflow management system GPI-SPACE,
developed at Fraunhofer Institute fiir Industrial Mathematics ITWM.

ﬁ JB, Decker, Friihbis-Kriiger, Pfreundt, Rahn, Ristau, 2018.

Singular

.

GPI-Space

— T

Singular Singular Singular Singular
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GPI-Space

@ Distributed runtime system for parallel computations.

agent-n..,
delta-no...
delta-no...
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
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GPI-Space

@ Distributed runtime system for parallel computations.

w 19:41:45 19:42:30 19:43:16

agent-n..,
delta-no...
delta-no...
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no

@ Based on idea of separation of computation and coordination.
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GPI-Space

@ Distributed runtime system for parallel computations.

w 19:41:45 19:42:30 19:43:16

agent-n..,
delta-no...
delta-no...
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no
delta-no...
delta-no

@ Based on idea of separation of computation and coordination.
@ Specialized language for coordination layer: Petri nets.

@ In the computation layer, existing applications (e.g. SINGULAR) can
be used and mixed as long as they can be called as a C-library.

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 10 / 24



Introduced by Carl Adam Petri (1926-2010) in 1962 as a graphical way to
describe concurrent asynchronous systems, Petri nets are bipartite,
directed graphs consisting out of places and transitions. By assigning to
places a number of tokens, a state is described. Transitions can fire if all
input places hold a token, consume one token from each input place, and
put one token on each output place.
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Petri nets

Introduced by Carl Adam Petri (1926-2010) in 1962 as a graphical way to
describe concurrent asynchronous systems, Petri nets are bipartite,
directed graphs consisting out of places and transitions. By assigning to
places a number of tokens, a state is described. Transitions can fire if all
input places hold a token, consume one token from each input place, and
put one token on each output place.
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An Example of a Petri Net

A in

has a gun

Assassin pulls
the trigger

Fire pin

struck

Misfire
Victim

alive

Victim dies

Janko Boehm (TU-KL)

Victim shot

Gun fires

Victim dead

Massively Parallel Methods

A in
loads gun

Gun
loaded

Someone
unloads the gun

Gun not
loaded

December 19, 2019
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Features of Petri nets

@ Task parallelism:
Transitions f and g can fire in parallel:
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Features of Petri nets

@ Task parallelism:
Transitions f and g can fire in parallel:

@ Data parallelism:
If i holds multiple tokens, t can fire in parallel:
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Features of Petri nets

@ Task parallelism:
Transitions f and g can fire in parallel:

@ Data parallelism:
If i holds multiple tokens, t can fire in parallel:

Real world implementation:

@ Transitions take time.
@ Tokens can be complex data structures.
@ Transitions can impose conditions on input tokens.
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Applications

o Classical Algebraic Geometry:

e Determining smoothness of algebraic varieties
JB, Decker, Frithbis-Kriiger, Ristau

o Resolution of singularities
Frihbis-Kriiger, Ristau, Schober
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Applications

o Classical Algebraic Geometry:
e Determining smoothness of algebraic varieties
JB, Decker, Frithbis-Kriiger, Ristau
o Resolution of singularities
Frihbis-Kriiger, Ristau, Schober

@ Geometric Invariant Theory: Computing GIT-fans with symmetry
JB, Frithbis-Kriiger, Reinbold

@ Tropical Geometry: Tropicalization of algebraic varieties with
symmetry
Bendle, JB, Ren

@ Physics: Integration-by-parts identities for Feynman integrals
Bendle, JB, Decker, Georgoudis, Rahn, Pfreundt, Wasser, Zhang

@ Algebraic/Tropical Geometry, Physics: Generating functions and
Recursions for Gromov-Witten invariants
JB, Bringmann, Buchholz, Goldner, Markwig, Ristau
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Parallelism in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
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Parallelism in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
o Global properties are related to local ones in the individual charts.

@ Use this natural parallel structure algorithmically?
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Parallelism in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
o Global properties are related to local ones in the individual charts.

@ Use this natural parallel structure algorithmically?

o Computational basis of most algorithms is Buchberger's Algorithm.
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Parallelism in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
o Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger's Algorithm.

Buchberger's Algorithm has doubly exponential worst case complexity,
much faster in many practical examples of interest — unpredictable.

[d Mayr, Meyer (1982)
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Parallelism in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
o Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger's Algorithm.

Buchberger's Algorithm has doubly exponential worst case complexity,
much faster in many practical examples of interest — unpredictable.

[d Mayr, Meyer (1982)

@ — Single chart may dominate the run-time.
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Parallelism in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
o Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger's Algorithm.

Buchberger's Algorithm has doubly exponential worst case complexity,
much faster in many practical examples of interest — unpredictable.

[d Mayr, Meyer (1982)

@ — Single chart may dominate the run-time.

@ Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.
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Performance of smoothness certificate

Superlinear speedup for numerical Godeaux surface of codim 11
constructed by

[§ Schreyer, Stenger (2018)
while Jacobian criterion not feasable.

53000

33000

3100
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Integration-by-parts identities for Feynman integrals

Feynman integral

subject to impuls conservation: z+z3—pr =0,...
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Integration-by-parts identities for Feynman integrals

@ In Baikov representation in terms of independent variable scalar
products
2 2
X1 =21",...,Xg = Z8", X9, X10, X11

between vectors z;, p; and independent constant scalar products
cl,...,Cs

between p;,
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Integration-by-parts identities for Feynman integrals

@ In Baikov representation in terms of independent variable scalar
products
2 2
X1=21,...,Xg = 28, X9, X10, X11

between vectors z;, p; and independent constant scalar products
cl,...,Cs

between p;, integral can be expressed as linear combination of
integrals of form

—L-E-1

det(G(c, x 2 ) a,...,ag < —1
/dx1 /dxl o ( )) 710 am with <0
X8 Xg *X10 " X11 49,410, 911 >

where G is Gram matrix, L = 2 genus of graph, E = 4 number of
independent external momenta.
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Integration-by-parts identities for Feynman integrals

@ In Baikov representation in terms of independent variable scalar
products
2 2
X1=21,...,Xg = 28, X9, X10, X11

between vectors z;, p; and independent constant scalar products
cl,...,Cs
between p;, integral can be expressed as linear combination of

integrals of form

—L-E-1

det(G(c, x 2 ) a,...,ag < —1
/dx1 /dxl o ( )) 710 am with <0
X8 Xg *X10 " X11 49,410, 911 >

where G is Gram matrix, L = 2 genus of graph, E = 4 number of
independent external momenta.

o Integration-by-parts identities express huge number of such
integrals in a small number master integrals.
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Integration-by-parts identities for Feynman integrals

For
D—L—E-1

P
/Xm.../kam

with Baikov polynomial P = det(G(c, x)),
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Integration-by-parts identities for Feynman integrals

For
DLEl

/Xm /ka ETe ak

with Baikov polynomial P = det(G(c,x)), integration-by-parts identities
are obtained as

D—L—E-1
O—/dx1 dxkz ( )al—>
s Xk
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Integration-by-parts identities for Feynman integrals

For
DLEl

/Xm /ka ETe ak

with Baikov polynomial P = det(G(c,x)), integration-by-parts identities
are obtained as

D—L—E-1
O—/dx1 dxkz ( )al—>
s Xk

To avoid shifts in dimension parameter D and to retain a; < 0, require

(ia;(x)g—z) + b(x)P =0,

i=1

a,-(x): ,'(X)X,', izl,...,m
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Integration-by-parts identities for Feynman integrals

Syzygy equation
< Y ai(x ) +b(x)P =0 (%)

can be solved by Laplace expansion on G.

@ JB, Georgoudis, Larsen, Schulze, Zhang (2018).

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 20 / 24



Integration-by-parts identities for Feynman integrals

Syzygy equation
( Y ai(x ) + b(x)P =0

can be solved by Laplace expansion on G.

I

@ JB, Georgoudis, Larsen, Schulze, Zhang (2018).
So for the modules

M; = (a(z) with (*)> My = (z,-e,- | I < m> + (e,- | I > m)

calculate (M; N My)<4 using non-linear algebra via Grobner bases.
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Integration-by-Parts ldentities for Feynman Integrals

o Full pivoting semi-numeric row reduction over
R = Q(cl,...,c,, D)[Xl, ,Xm]
using interpolation techniques.
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Integration-by-Parts ldentities for Feynman Integrals

o Full pivoting semi-numeric row reduction over
R = Q(cl,...,c,, D)[Xl, ,Xm]
using interpolation techniques.
@ Handle non-planar hexagon box:px

@ JB, Georgoudis,. Larsen, Schonemann, Zhang (2018).
@ Requires massively parallel approach. More difficult:

P2 Pa
3 Z5
Z8
) p3 26
27
. 24
n Ps
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Reduction with partial interpolation

» find trace with full pivoting ;

» find degrees by univariate reduction ? e Lt st :

» dynamic replacement of bad points QS """" *
in reduction QP @)

» interpolation tree controls state

» leaves are generic results

» sufficient number of interpolation

points triggers interpolation of next o ’j

param eter i )
: [interpolate discard
T | ivalia C if not i.valid

ﬁ Bendle, JB, Decker, Georgoudis, Rahn, Pfreundt, Wasser, Zhang,
arXiv:1908.04301

S b
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Reduction with partial interpolation

nodes | cores || runtime | speedup | efficiency
1 1 || 122857.6 1.000 1.000
1 15 9837.8 12.488 0.832
2 30 4954.8 24.795 0.826
4 60 2625.4 46.794 0.779
8 120 1341.3 91.592 0.763
14 210 0952.3 | 129.011 0.614
15 225 705.6 | 174.113 0.773
16 240 694.3 | 176.929 0.737
29 435 611.8 | 200.810 0.461
30 450 385.4 | 318.747 0.708
32 480 379.9 | 323.310 0.673
40 600 367.7 | 334.109 0.556
48 720 363.2 | 338.178 0.469
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Reduction with partial interpolation

400 -
ideal spcedup ——
speedup ———
300
g 200
£
&
100
0 H H H
0 100 200 300 400 500 600 700
1
expected maximum efficiency
0.8 efficiency
g 06
& 04
5]
0.2
0
0 100 200 300 400 500 600 700

cores

Easiest of 11 cuts of the Feynman diagram. Running time of ~ 10
minutes on 384 cores. More difficult graphs =~ 12 hours on 384 cores using
interpolation of bidegree up to (35, 24).
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Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in IP4,...) and g € Ny :
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For Calabi-Yau variety X (elliptic curve, quintic in IP4,...) and g € Ny :

mirror construction

@ Mirror constructions: Greene-Plesser '90, Batyrev '93,...
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Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in IP4,...) and g € Ny :

mirror construction

@ Mirror constructions: Greene-Plesser '90, Batyrev '93,...
@ String theory: Candelas-Horowitz-Strominger-Witten '85, Candelas-
de la Ossa-Green-Parkes '91,...
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Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in IP4,...) and g € Ny :

mirror construction

@ Mirror constructions: Greene-Plesser '90, Batyrev '93,...

@ String theory: Candelas-Horowitz-Strominger-Witten '85, Candelas-
de la Ossa-Green-Parkes '91,...

@ Algebraic/symplectic geometry: Fulton-Pandharipande '95,
Kontsevich '95, Behrend-Fantechi '97,...

Janko Boehm (TU-KL) Massively Parallel Methods
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Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.
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Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.

= Ao(q) = 2353 + (4874-5% + B5) . g 1 (2537651 5% + BF). g2 4 .
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Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.

= Ao(q) = 2353 + (4874-5% + B5) . g 1 (2537651 5% + BF). g2 4 .

Is enumerative geometry result on X: number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d, delicate counting).
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Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.

= Ao(q) = 2353 + (4874-5% + B5) . g 1 (2537651 5% + BF). g2 4 .

Is enumerative geometry result on X: number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g = 0,1 in case of degree n+ 1 hypersurfaces in P".

[@ Klemm, Pandharipande (2007), Zinger (2007)
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Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.

= Ao(q) = 2353 + (4874-5% + B5) . g 1 (2537651 5% + BF). g2 4 .

Is enumerative geometry result on X: number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g = 0,1 in case of degree n+ 1 hypersurfaces in P".

[@ Klemm, Pandharipande (2007), Zinger (2007)

Questions:

@ Mirror theorems for other Calabi-Yau varieties and g > 27
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Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.

= Ao(q) =23-5% + (487453 + B5%) . g+ (2537651 .57 + B5) . g2 4 .

Is enumerative geometry result on X: number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g = 0,1 in case of degree n+ 1 hypersurfaces in P".

[@ Klemm, Pandharipande (2007), Zinger (2007)

Questions:

@ Mirror theorems for other Calabi-Yau varieties and g > 27

@ Geometric understanding of mirror theorem beyond combinatorics?

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 24 / 24



Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

Aq = By for quintic hypersurface in P*.

= Ao(q) =23-5% + (487453 + B5%) . g+ (2537651 .57 + B5) . g2 4 .
Is enumerative geometry result on X: number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for g = 0,1 in case of degree n+ 1 hypersurfaces in P".

[@ Klemm, Pandharipande (2007), Zinger (2007)

Questions:

@ Mirror theorems for other Calabi-Yau varieties and g > 27
@ Geometric understanding of mirror theorem beyond combinatorics?

@ What are the B-model integrals?
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Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:
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Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Ngg = m—weighted number of degree d covers f : C — E, where C
is smooth of genus g and f has 2g — 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C) —2=d - (2g(E) —2) + Y pec(e(P) — 1)
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Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Ngg = m—weighted number of degree d covers f : C — E, where C

is smooth of genus g and f has 2g — 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C) —2 =d - (2g(E) —2) + Y pec(e(P) —1)

Ngo = 0, so have to look at g > 1 invariants!
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Tropical point of view

How to understand all Ng 47 Pass to tropical geometry:

E — trop(E)

X\
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Tropical point of view

How to understand all Ng 47 Pass to tropical geometry:

E — trop(E)

Mirror Theorem

Correspondence Theorem Tropical Mirror Theorem

[ tropical Gromov-Witten invariants J
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Tropical point of view

How to understand all Ng 47 Pass to tropical geometry:

E — trop(E)

Mirror Theorem

Correspondence Theorem Tropical Mirror Theorem

[ tropical Gromov-Witten invariants J

For X = IP? (building block of C-Y) and g = 0 tropical mirror theorem
[ Gross (2010)
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Tropical Mirror Symmetry

Correspondence
Theorem

Refined Tropical
Mirror Theorem

( tropical Hurwitz numbers Hnumbers of labeled tropical covers)

[ JB, Bringmann, Buchholz, Markwig (2013)
[@ JB, Goldner, Markwig (2018).
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Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph T’ of genus g.
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Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph T’ of genus g.

By g(I') =1 — |vert(I')| + |edges(T)| and 3 |vert(T")| = 2 |edges(T)|

|vert(T')| =2g — 2 ledges(T')| = 3g — 3
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Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph T’ of genus g.

By g(I') =1 — |vert(I')| + |edges(T)| and 3 |vert(T")| = 2 |edges(T)|
|vert(T')| =2g — 2 ledges(T')| = 3g — 3

Fix labeling z; for vertices and q; for edges.
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Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph T’ of genus g.

By g(I') =1 — |vert(T')| + |edges(T')| and 3 |vert(T')| = 2 |edges(T)|
|vert(T')| =2g — 2 ledges(T')| = 3g — 3
Fix labeling z; for vertices and q; for edges.

Example

21 9z

az de

2 qs %

v
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Feynman integrals (B-side)

Definition (Propagator)

1 1
P(Z,q)z—?p(z,q)——Eg(q) forze E=C/A
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Feynman integrals (B-side)

Definition (Propagator)

1 1
P(Z,q)=—4—7_[2p(z,q)—ﬁE2(q) forze E=C/A

with WeierstraB-g-function p = % + ... and the Eisenstein series

Ey=1-24Y%  01(d)g?d =1 —24¢% —72¢* — ... 01(d) = Lmjgm
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Feynman integrals (B-side)

Definition (Propagator)

1 1
P(Z,q)=—4—n2p(z,q)—ﬁE2( q) forze E=C/A

with WeierstraB-g-function p = % + ... and the Eisenstein series

Er=1-24%% 1 01(d)q?? =1—24¢% — 72¢* — ...

Definition (Feynman integral)

01(d) = Lpjg m

/

/

7Y

For ordering () € S>;_»> of integration paths on E //

//ng -2

(ze*—z

/
Y2g-2 T

eeedges

e q)) dzqy(1)---dZo (2 -2)

v
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where

o 7T has degree d,
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where

o 7T has degree d,
e C is a tropical curve (metric 3-valent graph) of genus g,
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where

o 7T has degree d,
e C is a tropical curve (metric 3-valent graph) of genus g,
@ has 2g — 2 simple ramifications (3-valent vertices) at fixed points

p11 1p2g—2 6 Ev
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where

o 7T has degree d,
e C is a tropical curve (metric 3-valent graph) of genus g,
@ has 2g — 2 simple ramifications (3-valent vertices) at fixed points

p11 1p2g—2 6 Ev

1
ecedges(C)
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where

o 7T has degree d,
e C is a tropical curve (metric 3-valent graph) of genus g,
@ has 2g — 2 simple ramifications (3-valent vertices) at fixed points

p11 1p2g—2 6 Ev

1
ecedges(C)

Tropical covers are balanced w.r.t. weights w(e):

2
L:1 L:1/2
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ng“;p = weighted number of tropical covers 77 : C — E where

o 7T has degree d,
e C is a tropical curve (metric 3-valent graph) of genus g,
@ has 2g — 2 simple ramifications (3-valent vertices) at fixed points

p11 1p2g—2 6 Ev

1
ecedges(C)

Tropical covers are balanced w.r.t. weights w(e):

2
L:1 L:1/2

tro . . . .
N, gp are intersection numbers on tropical moduli space.
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Correspondence Theorem

Theorem (BBBM '17)

Ny g = N:,rc;p by correspondence of tropical and algebraic covers.
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Correspondence Theorem

Theorem (BBBM '17)

Ny g = N:,rc;p by correspondence of tropical and algebraic covers.

ARAY

1
===
v
< >
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Tropical Hurwitz numbers — Example

N trop
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Tropical Hurwitz numbers — Example

N trop

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with
@ 2g — 2 = 4 vertices
@ 3g —3 =6 edges
@ no bridges
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Tropical Hurwitz numbers — Example

N trop

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with
@ 2g — 2 = 4 vertices
@ 3g —3 =6 edges
@ no bridges (weight 0 edges would be contracted):

% 00
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Tropical Hurwitz numbers — Example

trop __
N3,3 -
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Tropical Hurwitz numbers — Example

N =

mult(7t) = 22 32 =136 muIt 1.22.3=¢6 mult (7t
% 2

mult (7t mult(r) = 2% =
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Tropical Hurwitz numbers — Example

N“"P =112+ 48 = 160

-@‘

mult(7t —22 32 =36 muIt 1.22.3=¢6 mult (7t
mult (7t mult(r) = 2% =
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Multivariate Feynman integrals

Definition (Multivariate Feynman integrals)

3g-3

kalat, ... q3g-3) = / / < H P(zf -z, qk)> dzoy(1)--d20(2g—2)
V2g—2 T\ k=1

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 24 / 24



Multivariate Feynman integrals

Definition (Multivariate Feynman integrals)

3g—-3
kra(gL ... 93g-3) =/ / (H P(z¢ —Zk.qk)> dzgy(1)-- 02024 -2)
Y2g-2 71 k=1

Example
For zn N

_ 2 g 4
we have to integrate

P(zi—2z0,q1)  P(zi — 22, q2) - P(z1 — 23, q3) - P(20 — 24, qa) - P(23 — 24, G5) - P(23 — 24, G6)

v
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Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '17)

If T is any trivalent Feynman graph, then

Z’Vtmg g = Ira(qr, - g3g-3)
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Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '17)

If T is any trivalent Feynman graph, then

ZN;?F’Q g2 =k a(q1, ..., g3g-3)
a

Setting g; = g we get (using the action of Aut(T') on labeled covers):

Corollary (Tropical mirror theorem)

trop 2d __ 1
ZNd,g q - ; |Aut(1—')| %Ir,a(q)

d
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Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '17)

If T is any trivalent Feynman graph, then

ZN;?I)Q g2 =k a(q1, ..., g3g-3)
a

Setting g; = g we get (using the action of Aut(T') on labeled covers):

Corollary (Tropical mirror theorem)

trop 2d __ 1
ZNd,g q - ; |Aut(1—')| %Ir,a(q)

d

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = By for all g.
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Computing Feynman integrals

By coordinate change x, = exp(imtzy),
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Computing Feynman integrals

By coordinate change x, = exp(i7tzx), path 7, becomes circle around 0,
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Computing Feynman integrals

By coordinate change x, = exp(i7tzx), path 7, becomes circle around 0,
factor X—lk
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Computing Feynman integrals

By coordinate change x, = exp(i7tzx), path 7, becomes circle around 0,
factor X—lk integral becomes residue,
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Computing Feynman integrals

By coordinate change x, = exp(i7tzx), path 7, becomes circle around 0,
factor 71k integral becomes residue, difference becomes quotient.

Proposition (BBBM '17)
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Computing Feynman integrals

By coordinate change x, = exp(i7tzx), path 7, becomes circle around 0,
factor 71k integral becomes residue, difference becomes quotient.

Proposition (BBBM '17)

P(x,q) = (X2XT)2 + Z Z w(x®W 4 x2%) g2

a=1lwla

2,2
x2y =
2=y2) fora=20

Pa(le) = { 4w

4w
Ywla W% for a >0
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Computing Feynman integrals

By coordinate change x, = exp(i7tzx), path 7, becomes circle around 0,
factor 71k integral becomes residue, difference becomes quotient.

Proposition (BBBM '17)

P(x,q) = ﬁ + 2 Z w(x®W 4 x2%) g2

a=1lwla

o f 0
Yo vl or a =
Pa(x,y) == { S

4w
Ywla W% for a >0

Theorem (BBBM '17)

3g—3
trop __ N
Nt = CONStyy o -+ CONSxg, ;) H Pa, (X X )
k=1

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 24 / 24



Quasi-modularity

Corollary (BBBM 2017, Goujard-Mdller 2016)

For all Feynman graphs I' of genus g and all orders ) the function Ir ¢ is
a quasi-modular form (Ir o € Q|Ez, Ea, Eg|) of uniform weight 6g — 6.
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Quasi-modularity

Corollary (BBBM 2017, Goujard-Mdller 2016)

For all Feynman graphs I' of genus g and all orders ) the function Ir ¢ is
a quasi-modular form (Ir o € Q|Ez, Ea, Eg|) of uniform weight 6g — 6.

Eisenstein series Epy = 1 — é—sz;@ 1(72k,1(n)q2" ook—1(n) = Zm‘n m?2k—1
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Quasi-modularity

Corollary (BBBM 2017, Goujard-Mdller 2016)

For all Feynman graphs I' of genus g and all orders ) the function Ir ¢ is
a quasi-modular form (Ir o € Q|Ez, Ea, Eg|) of uniform weight 6g — 6.

Eisenstein series

4k yoo
Exx=1-35-) . 10%-1(n)q

Ey =1—24¢%> —72¢* — ...
E4 = 1+ 240¢° + 2160g* + ...
Es =1 —504¢% — 16632q¢* — ...

2n 2k—1

02k-1(n) = Lmjam
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Quasi-modularity

Corollary (BBBM 2017, Goujard-Mdller 2016)

For all Feynman graphs I' of genus g and all orders ) the function Ir ¢ is
a quasi-modular form (Ir o € Q|Ez, Ea, Eg|) of uniform weight 6g — 6.

Eisenstein series Ep, =1 — ,%Z:j 102k71(”)q2n ook—1(n) = Zm‘n m2k—1
E> =1—24g% —72¢* — ...
E4 = 1+ 240¢° + 2160g* + ...
Es = 1 —504¢% — 16632q* — ...

Example

IFr=Yahkaqforl = @ is a linear combination of the weight 12
monomials

E2, E}, ExE4 Es, ESE?, ESEs, EsEs, ES

v
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Quasi-modularity

Corollary (BBBM 2017, Goujard-Mdller 2016)

For all Feynman graphs I' of genus g and all orders ) the function Ir ¢ is
a quasi-modular form (Ir o € Q|Ez, Ea, Eg|) of uniform weight 6g — 6.

Eisenstein series Epy = 1 — é—sz:j 1(72k,1(n)q2” ook—1(n) = Lm|n m?2k—1
Ey =1—24¢%> —72¢* — ...
E4 = 1+ 240¢° + 2160g* + ...
Es = 1 —504¢% — 16632q* — ...

IFr=Yahkaqforl = <D> is a linear combination of the weight 12
monomials

E2, E}, ExE4 Es, ESE?, ESEs, EsEs, ES
Via Feynman integral compute

I = 32¢* + 17924° + 253444° + 1822724 + 886656¢* + O(g'*)

v
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Quasi-modularity

Example (cont.)

Solving a linear system of equations yields

16

_ o 2 8 _ - 22 3 . 6
' = 1492002 (482 +4E} — 12664 B — 3E3E + 4E3 o + 665 £ — 365 ) .
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Quasi-modularity

Example (cont.)

Solving a linear system of equations yields

16

_ o 2 8 _ - 22 3 . 6
' = 1492002 (482 +4E} — 12664 B — 3E3E + 4E3 o + 665 £ — 365 ) .

= Can compute Ir(q) fast up to arbitrary high order:

Iy = 32g* + 1792¢° + 253444° + 1822729 + 88665642
+3294720q'* + 10246144¢® + 2735308848
+ 66497472¢%° + 145337600¢%2 + ...
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