Massively Parallel Computer Algebra with Applications to Feynman Integrals

Janko Boehm
Technische Universität Kaiserslautern

December 19, 2019
supported by SFB-TRR 195

Outline

- What Computer Algebra can offer

Outline

- What Computer Algebra can offer
- Massively parallel methods
- Application to classical problems

Outline

- What Computer Algebra can offer
- Massively parallel methods
- Application to classical problems
- Integration-by-parts identities for Feynman integrals

Outline

- What Computer Algebra can offer
- Massively parallel methods
- Application to classical problems
- Integration-by-parts identities for Feynman integrals
- Tropical mirror symmetry and Feynman integrals

Singular

- Open Source computer algebra system for polynomial computations, over 30 development teams worldwide, over 140 libraries.

https://www.singular.uni-kl.de/
- Founded by G.-M. Greuel, G. Pfister, H. Schönemann. Current Head: W. Decker

Features of Singular

Commutative Algebra:

- Gröbner bases over fields and integers, free resolutions
- Local computations
- Normalization
- Primary decomposition, factorization
- Invariant theory
- Non-commutative subsystem

Features of Singular

Commutative Algebra:

- Gröbner bases over fields and integers, free resolutions
- Local computations
- Normalization
- Primary decomposition, factorization
- Invariant theory
- Non-commutative subsystem

Algebraic and Tropical Geometry:

- Classification of Singularities
- Resolution of singularities
- Deformation theory
- Sheaf cohomology
- DeRham cohomology
- Rational parametrization
- Tropicalization
- GIT fans

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power.

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power. In more than one variable we have to fix a monomial ordering (total ordering compatible with multiplication).

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power. In more than one variable we have to fix a monomial ordering (total ordering compatible with multiplication).
Divide $x^{2}-y^{2}$ durch $x^{2}+y$ und $x y+x$ with respect to lexicographic ordering.

$$
\begin{aligned}
& x^{2}-y^{2}=1 \cdot\left(x^{2}+y\right)+\left(-y^{2}-y\right) \\
& \frac{x^{2}+y}{-y^{2}-y}
\end{aligned}
$$

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power. In more than one variable we have to fix a monomial ordering (total ordering compatible with multiplication).
Divide $x^{2}-y^{2}$ durch $x^{2}+y$ und $x y+x$ with respect to lexicographic ordering.

$$
\begin{aligned}
& x^{2}-y^{2}=1 \cdot\left(x^{2}+y\right)+\left(-y^{2}-y\right) \\
& \frac{x^{2}+y}{-y^{2}-y}
\end{aligned}
$$

so remainder $\neq 0$, but

$$
x^{2}-y^{2}=-y\left(x^{2}+y\right)+x(x y+x) \in I:=\left\langle x^{2}+y, x y+x\right\rangle
$$

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power. In more than one variable we have to fix a monomial ordering (total ordering compatible with multiplication).
Divide $x^{2}-y^{2}$ durch $x^{2}+y$ und $x y+x$ with respect to lexicographic ordering.

$$
\begin{aligned}
& x^{2}-y^{2}=1 \cdot\left(x^{2}+y\right)+\left(-y^{2}-y\right) \\
& \frac{x^{2}+y}{-y^{2}-y}
\end{aligned}
$$

so remainder $\neq 0$, but

$$
x^{2}-y^{2}=-y\left(x^{2}+y\right)+x(x y+x) \in I:=\left\langle x^{2}+y, x y+x\right\rangle
$$

Problem: Lead terms cancel, division algorithm can't do that.

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power. In more than one variable we have to fix a monomial ordering (total ordering compatible with multiplication).
Divide $x^{2}-y^{2}$ durch $x^{2}+y$ und $x y+x$ with respect to lexicographic ordering.

$$
\begin{aligned}
& x^{2}-y^{2}=1 \cdot\left(x^{2}+y\right)+\left(-y^{2}-y\right) \\
& \frac{x^{2}+y}{-y^{2}-y}
\end{aligned}
$$

so remainder $\neq 0$, but

$$
x^{2}-y^{2}=-y\left(x^{2}+y\right)+x(x y+x) \in I:=\left\langle x^{2}+y, x y+x\right\rangle
$$

Problem: Lead terms cancel, division algorithm can't do that. Solution: Add $y^{2}+y$ to the divisor set. The result is a Gröbner basis of I. Then

Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest power. In more than one variable we have to fix a monomial ordering (total ordering compatible with multiplication).
Divide $x^{2}-y^{2}$ durch $x^{2}+y$ und $x y+x$ with respect to lexicographic ordering.

$$
\begin{aligned}
& x^{2}-y^{2}=1 \cdot\left(x^{2}+y\right)+\left(-y^{2}-y\right) \\
& \frac{x^{2}+y}{-y^{2}-y}
\end{aligned}
$$

so remainder $\neq 0$, but

$$
x^{2}-y^{2}=-y\left(x^{2}+y\right)+x(x y+x) \in I:=\left\langle x^{2}+y, x y+x\right\rangle
$$

Problem: Lead terms cancel, division algorithm can't do that. Solution: Add $y^{2}+y$ to the divisor set. The result is a Gröbner basis of I. Then

$$
f \in I \Longleftrightarrow N F(f, G)=0
$$

The Main Computational Tool: Gröbner Bases

Gröbner Bases can be used for fundamental computations with ideals and modules:

Example

- eliminate variables,
- determine intersections,
- compute syzygies (polynomial relations),
- compute ideal quotients and saturations,
- birational geometry.

睩 Greuel, Pfister: A Singular Introduction to Commutative Algebra. Springer.

Singular Online

OSCAR

Cornerstone of next generation Open Source Computeralgebrasystem OSCAR developed in SFB TRR 195 "Symbolic Tools in Mathematics and Their Application" :

OSCAR

Cornerstone of next generation Open Source Computeralgebrasystem OSCAR developed in SFB TRR 195 "Symbolic Tools in Mathematics and Their Application":

GAP
Groups

juliáa

POLYMAKE

Convex Geometry

ANTIC
 Number Theory

Resolution of Singularities

Hironaka used order sequence of a local Gröbner basis (standard basis) to prove existence of resolution of singularities.
闌 Hironaka (1964)
Can be turned into an effective criterion for smoothness iteratively generating a tree of charts

s.t. in every chart the smooth variety is a smooth complete intersection:

JB, Frühbis-Krüger (2017)

$$
\begin{aligned}
& \left\{\begin{array}{r}
x_{0} x_{3}-x_{1} x_{2}=0 \\
x_{1}^{2}-x_{0} x_{2}=0 \\
x_{1} x_{3}-x_{2}^{2}=
\end{array}\right\} \cap\left\{x_{0} \neq 0\right\} \\
& =\left\{\begin{array}{r}
x_{3}-x_{1} x_{2}=0 \\
x_{1}^{2}-x_{2}=
\end{array}\right\}
\end{aligned}
$$

Resolution of Singularities

If not smooth, loci for interative blowup can be found:

固 Bravo, Encinas, Villamayor (2005).
固 Frühbis-Krüger, Pfister (2007).

Resolution of Singularities

Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra by joining Singular with the workflow management system GPI-Space, developed at Fraunhofer Institute für Industrial Mathematics ITWM.

Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra by joining Singular with the workflow management system GPI-Space, developed at Fraunhofer Institute für Industrial Mathematics ITWM.
(JB, Decker, Frühbis-Krüger, Pfreundt, Rahn, Ristau, 2018.

Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra by joining Singular with the workflow management system GPI-Space, developed at Fraunhofer Institute für Industrial Mathematics ITWM.

JB, Decker, Frühbis-Krüger, Pfreundt, Rahn, Ristau, 2018.

Singular Singular Singular ... Singular

GPI-Space

- Distributed runtime system for parallel computations.

GPI-Space

- Distributed runtime system for parallel computations.

- Based on idea of separation of computation and coordination.

GPI-Space

- Distributed runtime system for parallel computations.

- Based on idea of separation of computation and coordination.
- Specialized language for coordination layer: Petri nets.

GPI-Space

- Distributed runtime system for parallel computations.

- Based on idea of separation of computation and coordination.
- Specialized language for coordination layer: Petri nets.
- In the computation layer, existing applications (e.g. Singular) can be used and mixed as long as they can be called as a C-library.

Petri nets

Introduced by Carl Adam Petri (1926-2010) in 1962 as a graphical way to describe concurrent asynchronous systems, Petri nets are bipartite, directed graphs consisting out of places and transitions. By assigning to places a number of tokens, a state is described. Transitions can fire if all input places hold a token, consume one token from each input place, and put one token on each output place.

Petri nets

Introduced by Carl Adam Petri (1926-2010) in 1962 as a graphical way to describe concurrent asynchronous systems, Petri nets are bipartite, directed graphs consisting out of places and transitions. By assigning to places a number of tokens, a state is described. Transitions can fire if all input places hold a token, consume one token from each input place, and put one token on each output place.

Example

Petri nets

Introduced by Carl Adam Petri (1926-2010) in 1962 as a graphical way to describe concurrent asynchronous systems, Petri nets are bipartite, directed graphs consisting out of places and transitions. By assigning to places a number of tokens, a state is described. Transitions can fire if all input places hold a token, consume one token from each input place, and put one token on each output place.

Example

Example

An Example of a Petri Net

Features of Petri nets

- Task parallelism:

Transitions f and g can fire in parallel:

Features of Petri nets

- Task parallelism:

Transitions f and g can fire in parallel:

- Data parallelism:

If i holds multiple tokens, t can fire in parallel:

Features of Petri nets

- Task parallelism:

Transitions f and g can fire in parallel:

- Data parallelism:

If i holds multiple tokens, t can fire in parallel:

Real world implementation:

- Transitions take time.
- Tokens can be complex data structures.
- Transitions can impose conditions on input tokens.

Applications

- Classical Algebraic Geometry:
- Determining smoothness of algebraic varieties JB, Decker, Frühbis-Krüger, Ristau
- Resolution of singularities Frühbis-Krüger, Ristau, Schober

Applications

- Classical Algebraic Geometry:
- Determining smoothness of algebraic varieties JB, Decker, Frühbis-Krüger, Ristau
- Resolution of singularities Frühbis-Krüger, Ristau, Schober
- Geometric Invariant Theory: Computing GIT-fans with symmetry JB, Frühbis-Krüger, Reinbold
- Tropical Geometry: Tropicalization of algebraic varieties with symmetry
Bendle, JB, Ren
- Physics: Integration-by-parts identities for Feynman integrals Bendle, JB, Decker, Georgoudis, Rahn, Pfreundt, Wasser, Zhang
- Algebraic/Tropical Geometry, Physics: Generating functions and Recursions for Gromov-Witten invariants
JB, Bringmann, Buchholz, Goldner, Markwig, Ristau

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.
- Global properties are related to local ones in the individual charts.

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.
- Global properties are related to local ones in the individual charts.
- Use this natural parallel structure algorithmically?

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.
- Global properties are related to local ones in the individual charts.
- Use this natural parallel structure algorithmically?
- Computational basis of most algorithms is Buchberger's Algorithm.

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.
- Global properties are related to local ones in the individual charts.
- Use this natural parallel structure algorithmically?
- Computational basis of most algorithms is Buchberger's Algorithm.
- Buchberger's Algorithm has doubly exponential worst case complexity, much faster in many practical examples of interest \rightarrow unpredictable.

固 Mayr, Meyer (1982)

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.
- Global properties are related to local ones in the individual charts.
- Use this natural parallel structure algorithmically?
- Computational basis of most algorithms is Buchberger's Algorithm.
- Buchberger's Algorithm has doubly exponential worst case complexity, much faster in many practical examples of interest \rightarrow unpredictable.

國 Mayr, Meyer (1982)

- \rightarrow Single chart may dominate the run-time.

Parallelism in Algebraic Geometry

- Key concept in algebraic geometry:
- Description of schemes and sheaves in terms of coverings by charts.
- Global properties are related to local ones in the individual charts.
- Use this natural parallel structure algorithmically?
- Computational basis of most algorithms is Buchberger's Algorithm.
- Buchberger's Algorithm has doubly exponential worst case complexity, much faster in many practical examples of interest \rightarrow unpredictable.

固 Mayr, Meyer (1982)

- \rightarrow Single chart may dominate the run-time.
- Solution: Model algorithm in a parallel way s.t. it automatically finds a good cover.

Performance of smoothness certificate

Superlinear speedup for numerical Godeaux surface of codim 11 constructed by
固 Schreyer, Stenger (2018)
while Jacobian criterion not feasable.

Integration-by-parts identities for Feynman integrals

Feynman integral

subject to impuls conservation: $\underline{z_{2}}+\underline{z_{3}}-\underline{p_{2}}=0, \ldots$

Integration-by-parts identities for Feynman integrals

- In Baikov representation in terms of independent variable scalar products

$$
x_{1}=\underline{z}^{2}, \ldots, x_{8}=\underline{z}_{8}^{2}, x_{9}, x_{10}, x_{11}
$$

between vectors z_{i}, p_{j} and independent constant scalar products

$$
c_{1}, \ldots, c_{5}
$$

between p_{i},

Integration-by-parts identities for Feynman integrals

- In Baikov representation in terms of independent variable scalar products

$$
x_{1}=\underline{z}^{2}, \ldots, x_{8}=\underline{z}_{8}^{2}, x_{9}, x_{10}, x_{11}
$$

between vectors z_{i}, p_{j} and independent constant scalar products

$$
c_{1}, \ldots, c_{5}
$$

between p_{i}, integral can be expressed as linear combination of integrals of form
$\int d x_{1} \ldots \int d x_{11} \frac{\operatorname{det}(G(c, x))^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{8}^{a_{8}} \cdot x_{9}^{a_{9}} \cdot x_{10}^{a_{10}} \cdot x_{11}^{a_{11}}} \quad$ with $\quad \begin{aligned} & a_{1}, \ldots, a_{8} \leq-1 \\ & a_{9}, a_{10}, a_{11} \leq 0\end{aligned}$
where G is Gram matrix, $L=2$ genus of graph, $E=4$ number of independent external momenta.

Integration-by-parts identities for Feynman integrals

- In Baikov representation in terms of independent variable scalar products

$$
x_{1}=\underline{z}_{1}^{2}, \ldots, x_{8}=\underline{z}_{8}^{2}, x_{9}, x_{10}, x_{11}
$$

between vectors z_{i}, p_{j} and independent constant scalar products

$$
c_{1}, \ldots, c_{5}
$$

between p_{i}, integral can be expressed as linear combination of integrals of form
$\int d x_{1} \ldots \int d x_{11} \frac{\operatorname{det}(G(c, x))^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{8}^{a_{8}} \cdot x_{9}^{a_{9}} \cdot x_{10}^{a_{10}} \cdot x_{11}^{a_{11}}} \quad$ with $\quad \begin{aligned} & a_{1}, \ldots, a_{8} \leq-1 \\ & a_{9}, a_{10}, a_{11} \leq 0\end{aligned}$
where G is Gram matrix, $L=2$ genus of graph, $E=4$ number of independent external momenta.

- Integration-by-parts identities express huge number of such integrals in a small number master integrals.

Integration-by-parts identities for Feynman integrals

For

$$
\int d x_{1} \ldots \int d x_{k} \frac{P^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}}
$$

with Baikov polynomial $P=\operatorname{det}(G(c, x))$,

Integration-by-parts identities for Feynman integrals

For

$$
\int d x_{1} \ldots \int d x_{k} \frac{P^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}}
$$

with Baikov polynomial $P=\operatorname{det}(G(c, x))$, integration-by-parts identities are obtained as

$$
0=\int d x_{1} \cdots d x_{k} \sum_{i=1}^{k} \frac{\partial}{\partial x_{i}}\left(a_{i}(x) \frac{P^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}}\right)
$$

Integration-by-parts identities for Feynman integrals

For

$$
\int d x_{1} \ldots \int d x_{k} \frac{P^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}}
$$

with Baikov polynomial $P=\operatorname{det}(G(c, x))$, integration-by-parts identities are obtained as

$$
0=\int d x_{1} \cdots d x_{k} \sum_{i=1}^{k} \frac{\partial}{\partial x_{i}}\left(a_{i}(x) \frac{P^{\frac{D-L-E-1}{2}}}{x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}}\right)
$$

To avoid shifts in dimension parameter D and to retain $a_{i} \leq 0$, require

$$
\begin{aligned}
& \left(\sum_{i=1}^{k} a_{i}(x) \frac{\partial P}{\partial x_{i}}\right)+b(x) P=0 \\
& a_{i}(x)=b_{i}(x) x_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

Integration-by-parts identities for Feynman integrals

Syzygy equation

$$
\left(\sum_{i=1}^{k} a_{i}(x) \frac{\partial P}{\partial x_{i}}\right)+b(x) P=0
$$

can be solved by Laplace expansion on G.
目 JB, Georgoudis, Larsen, Schulze, Zhang (2018).

Integration-by-parts identities for Feynman integrals

Syzygy equation

$$
\begin{equation*}
\left(\sum_{i=1}^{k} a_{i}(x) \frac{\partial P}{\partial x_{i}}\right)+b(x) P=0 \tag{*}
\end{equation*}
$$

can be solved by Laplace expansion on G.
囬 JB, Georgoudis, Larsen, Schulze, Zhang (2018).
So for the modules

$$
M_{1}=\langle a(z) \text { with }(*)\rangle \quad M_{2}=\left\langle z_{i} e_{i} \mid i \leq m\right\rangle+\left\langle e_{i} \mid i>m\right\rangle
$$

calculate $\left(M_{1} \cap M_{2}\right)_{\leq d}$ using non-linear algebra via Gröbner bases.

Integration-by-Parts Identities for Feynman Integrals

- Full pivoting semi-numeric row reduction over

$$
R=\mathbb{Q}\left(c_{1}, \ldots, c_{r}, D\right)\left[x_{1}, \ldots, x_{m}\right]
$$

using interpolation techniques.

Integration-by-Parts Identities for Feynman Integrals

- Full pivoting semi-numeric row reduction over

$$
R=\mathbb{Q}\left(c_{1}, \ldots, c_{r}, D\right)\left[x_{1}, \ldots, x_{m}\right]
$$

using interpolation techniques.

- Handle non-planar hexagon box:

目 JB, Georgoudis,. Larsen, Schönemann, Zhang (2018).

- Requires massively parallel approach. More difficult:

Reduction with partial interpolation

- find trace with full pivoting
- find degrees by univariate reduction
- dynamic replacement of bad points in reduction
- interpolation tree controls state
- leaves are generic results
- sufficient number of interpolation points triggers interpolation of next parameter

Rendle, JB, Decker, Georgoudis, Rahn, Pfreundt, Wasser, Zhang, arXiv:1908.04301

Reduction with partial interpolation

nodes	cores	runtime	speedup	efficiency
1	1	122857.6	1.000	1.000
1	15	9837.8	12.488	0.832
2	30	4954.8	24.795	0.826
4	60	2625.4	46.794	0.779
8	120	1341.3	91.592	0.763
14	210	952.3	129.011	0.614
15	225	705.6	174.113	0.773
16	240	694.3	176.929	0.737
29	435	611.8	200.810	0.461
30	450	385.4	318.747	0.708
32	480	379.9	323.310	0.673
40	600	367.7	334.109	0.556
48	720	363.2	338.178	0.469

Reduction with partial interpolation

Easiest of 11 cuts of the Feynman diagram. Running time of ≈ 10 minutes on 384 cores. More difficult graphs ≈ 12 hours on 384 cores using interpolation of bidegree up to $(35,24)$.

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...
- String theory: Candelas-Horowitz-Strominger-Witten '85, Candelasde la Ossa-Green-Parkes ' $91, \ldots$

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in \mathbb{P}^{4}, \ldots) and $g \in \mathbb{N}_{0}$:

- Mirror constructions: Greene-Plesser '90, Batyrev '93,...
- String theory: Candelas-Horowitz-Strominger-Witten '85, Candelasde la Ossa-Green-Parkes ' $91, \ldots$
- Algebraic/symplectic geometry: Fulton-Pandharipande '95, Kontsevich '95, Behrend-Fantechi '97,...

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)
 $\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$ Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,.. . (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n}.
Elemm, Pandharipande (2007), Zinger (2007)

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,.. . (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n}.
Klemm, Pandharipande (2007), Zinger (2007)
Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \geq 2$?

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,... (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n}.
Elemm, Pandharipande (2007), Zinger (2007)
Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \geq 2$?
- Geometric understanding of mirror theorem beyond combinatorics?

Mirror theorems

Theorem (Givental '96, Lian-Liu-Yau '97, Gathmann '03)

$\mathbb{A}_{0}=\mathbb{B}_{0}$ for quintic hypersurface in \mathbb{P}^{4}.
$\Rightarrow \mathbb{A}_{0}(q)=23 \cdot 5^{3}+\left(4874 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{2^{3}}\right) \cdot q+\left(2537651 \cdot 5^{3}+\frac{23 \cdot 5^{3}}{3^{3}}\right) \cdot q^{2}+\ldots$
Is enumerative geometry result on X : number of lines, conics, cubics,.. . (number of genus 0 curves on X of degree d, delicate counting).

Similar theorems for $g=0,1$ in case of degree $n+1$ hypersurfaces in \mathbb{P}^{n}.
Klemm, Pandharipande (2007), Zinger (2007)
Questions:

- Mirror theorems for other Calabi-Yau varieties and $g \geq 2$?
- Geometric understanding of mirror theorem beyond combinatorics?
- What are the B-model integrals?

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic). Here, Gromov-Witten numbers are numbers of covers:

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic). Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

$N_{d, g}=\frac{1}{|\operatorname{Aut}(f)|}$-weighted number of degree d covers $f: C \rightarrow E$, where C is smooth of genus g and f has $2 g-2$ simple ramifications points.

$$
\text { according to Riemann-Hurwitz formula } 2 g(C)-2=d \cdot(2 g(E)-2)+\sum_{P \in C}(e(P)-1)
$$

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic). Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

$N_{d, g}=\frac{1}{|\operatorname{Aut}(f)|}$-weighted number of degree d covers $f: C \rightarrow E$, where C is smooth of genus g and f has $2 g-2$ simple ramifications points.
according to Riemann-Hurwitz formula $2 g(C)-2=d \cdot(2 g(E)-2)+\sum_{P \in C}(e(P)-1)$
$N_{d, 0}=0$, so have to look at $g \geq 1$ invariants!

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

$$
\mapsto \quad \operatorname{trop}(E)
$$

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

Tropical point of view

How to understand all $N_{g, d}$? Pass to tropical geometry:

For $X=\mathbb{P}^{2}$ (building block of C-Y) and $g=0$ tropical mirror theorem
國 Gross (2010)

Tropical Mirror Symmetry

國 JB, Bringmann, Buchholz, Markwig (2013)
目 JB, Goldner, Markwig (2018).

Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph Γ of genus g.

Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph Γ of genus g.
$\operatorname{By} g(\Gamma)=1-|\operatorname{vert}(\Gamma)|+|\operatorname{edges}(\Gamma)|$ and $3|\operatorname{vert}(\Gamma)|=2|\operatorname{edges}(\Gamma)|$

$$
|\operatorname{vert}(\Gamma)|=2 g-2 \quad|\operatorname{edges}(\Gamma)|=3 g-3
$$

Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph Γ of genus g.
$\operatorname{By} g(\Gamma)=1-|\operatorname{vert}(\Gamma)|+|\operatorname{edges}(\Gamma)|$ and $3|\operatorname{vert}(\Gamma)|=2|\operatorname{edges}(\Gamma)|$

$$
|\operatorname{vert}(\Gamma)|=2 g-2 \quad|\operatorname{edges}(\Gamma)|=3 g-3
$$

Fix labeling z_{i} for vertices and q_{i} for edges.

Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph Γ of genus g.

$$
\begin{gathered}
\operatorname{By} g(\Gamma)=1-|\operatorname{vert}(\Gamma)|+|\operatorname{edges}(\Gamma)| \text { and } 3|\operatorname{vert}(\Gamma)|=2|\operatorname{edges}(\Gamma)| \\
|\operatorname{vert}(\Gamma)|=2 g-2 \quad|\operatorname{edges}(\Gamma)|=3 g-3
\end{gathered}
$$

Fix labeling z_{i} for vertices and q_{i} for edges.

Example

Feynman integrals (B-side)

Definition (Propagator)

$$
P(z, q)=-\frac{1}{4 \pi^{2}} \wp(z, q)-\frac{1}{12} E_{2}(q) \quad \text { for } z \in E=\mathbb{C} / \Lambda
$$

Feynman integrals (B-side)

Definition (Propagator)

$$
P(z, q)=-\frac{1}{4 \pi^{2}} \wp(z, q)-\frac{1}{12} E_{2}(q) \quad \text { for } z \in E=\mathbb{C} / \Lambda
$$

with Weierstra β - \wp-function $\wp=\frac{1}{z^{2}}+\ldots$ and the Eisenstein series

$$
E_{2}=1-24 \sum_{d=1}^{\infty} \sigma_{1}(d) q^{2 d}=1-24 q^{2}-72 q^{4}-\ldots \quad \sigma_{1}(d)=\sum_{m \mid d} m
$$

Feynman integrals (B-side)

Definition (Propagator)

$$
P(z, q)=-\frac{1}{4 \pi^{2}} \wp(z, q)-\frac{1}{12} E_{2}(q) \quad \text { for } z \in E=C / \Lambda
$$

with Weierstra β - \wp-function $\wp=\frac{1}{z^{2}}+\ldots$ and the Eisenstein series

$$
E_{2}=1-24 \sum_{d=1}^{\infty} \sigma_{1}(d) q^{2 d}=1-24 q^{2}-72 q^{4}-\ldots \quad \sigma_{1}(d)=\sum_{m \mid d} m
$$

Definition (Feynman integral)

For ordering $\Omega \in S_{2 g-2}$ of integration paths on E

$$
I_{\Gamma, \Omega}=\int_{\gamma_{2 g-2}} \ldots \int_{\gamma_{1}}\left(\prod_{e \in \operatorname{edges}(\Gamma)} P\left(z_{e}^{+}-z_{e}^{-}, q\right)\right) d z_{\Omega(1)} \ldots d z_{\Omega(2 g-2)}
$$

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
with multiplicity $\quad \operatorname{mult}(\pi)=\frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
with multiplicity $\quad \operatorname{mult}(\pi)=\frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$
Tropical covers are balanced w.r.t. weights $w(e)$:

Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

$N_{d, g}^{\text {trop }}=$ weighted number of tropical covers $\pi: C \rightarrow E$ where

- π has degree d,
- C is a tropical curve (metric 3 -valent graph) of genus g,
- has $2 g-2$ simple ramifications (3-valent vertices) at fixed points $p_{1}, \ldots, p_{2 g-2} \in E$,
with multiplicity $\quad \operatorname{mult}(\pi)=\frac{1}{|\operatorname{Aut}(\pi)|} \cdot \prod_{e \in \operatorname{edges}(C)} w(e)$
Tropical covers are balanced w.r.t. weights $w(e)$:

$N_{d, g}^{\text {trop }}$ are intersection numbers on tropical moduli space.

Correspondence Theorem

Theorem (BBBM '17)
 $N_{d, g}=N_{d, g}^{\text {trop }}$ by correspondence of tropical and algebraic covers.

Correspondence Theorem

Theorem (BBBM '17)

$N_{d, g}=N_{d, g}^{\text {trop }}$ by correspondence of tropical and algebraic covers.

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=?
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=?
$$

Two trivalent, connected combinatorial types (non-metric graphs)

of genus $g=3$ with

- $2 g-2=4$ vertices
- $3 g-3=6$ edges
- no bridges

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=?
$$

Two trivalent, connected combinatorial types (non-metric graphs)

of genus $g=3$ with

- $2 g-2=4$ vertices
- $3 g-3=6$ edges
- no bridges (weight 0 edges would be contracted):

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=
$$

$\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36$

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2 \cdot 2=2$

$\operatorname{mult}(\pi)=2^{2}=4$

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6$
$\operatorname{mult}(\pi)=2^{2} \cdot 3=12$

Tropical Hurwitz numbers - Example

$$
N_{3,3}^{\text {trop }}=112+48=160
$$

$\operatorname{mult}(\pi)=2^{2} \cdot 3^{2}=36$

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2^{2} \cdot 3=6$
$\operatorname{mult}(\pi)=2^{2} \cdot 3=12$
$\operatorname{mult}(\pi)=2^{2}=4$

$\operatorname{mult}(\pi)=\frac{1}{2} \cdot 2 \cdot 2=2$

Multivariate Feynman integrals

Definition (Multivariate Feynman integrals)

$$
I_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)=\int_{\gamma_{2 g-2}} \ldots \int_{\gamma_{1}}\left(\prod_{k=1}^{3 g-3} P\left(z_{k}^{+}-z_{k}^{-}, q_{k}\right)\right) d z_{\Omega(1)} \ldots d z_{\Omega(2 g-2)}
$$

Multivariate Feynman integrals

Definition (Multivariate Feynman integrals)

$$
\digamma_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)=\int_{\gamma_{2 g-2}} \ldots \int_{\gamma_{1}}\left(\prod_{k=1}^{3 g-3} P\left(z_{k}^{+}-z_{k}^{-}, q_{k}\right)\right) d z_{\Omega(1)} \ldots d z_{\Omega(2 g-2)}
$$

Example

For

we have to integrate

$$
P\left(z_{1}-z_{2}, q_{1}\right) \cdot P\left(z_{1}-z_{2}, q_{2}\right) \cdot P\left(z_{1}-z_{3}, q_{3}\right) \cdot P\left(z_{2}-z_{4}, q_{4}\right) \cdot P\left(z_{3}-z_{4}, q_{5}\right) \cdot P\left(z_{3}-z_{4}, q_{6}\right)
$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '17)

If Γ is any trivalent Feynman graph, then

$$
\sum_{\underline{a}} N_{a, \Gamma, \Omega}^{\text {trop }} q^{2 a}=I_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)
$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '17)

If Γ is any trivalent Feynman graph, then

$$
\sum_{\underline{a}} N_{a, \Gamma, \Omega}^{\text {trop }} q^{2 a}=I_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)
$$

Setting $q_{i}=q$ we get (using the action of $\operatorname{Aut}(\Gamma)$ on labeled covers):

Corollary (Tropical mirror theorem)

$$
\sum_{d} N_{d, g}^{\text {trop }} q^{2 d}=\sum_{\Gamma} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\Omega} l_{\Gamma, \Omega}(q)
$$

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM '17)

If Γ is any trivalent Feynman graph, then

$$
\sum_{\underline{a}} N_{a, \Gamma, \Omega}^{\text {trop }} q^{2 \underline{a}}=I_{\Gamma, \Omega}\left(q_{1}, \ldots, q_{3 g-3}\right)
$$

Setting $q_{i}=q$ we get (using the action of $\operatorname{Aut}(\Gamma)$ on labeled covers):
Corollary (Tropical mirror theorem)

$$
\sum_{d} N_{d, g}^{\text {trop }} q^{2 d}=\sum_{\Gamma} \frac{1}{|\operatorname{Aut}(\Gamma)|} \sum_{\Omega} l_{\Gamma, \Omega}(q)
$$

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves $\mathbb{A}_{g}=\mathbb{B}_{g}$ for all g.

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 ,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , factor $\frac{1}{x_{k}}$,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , factor $\frac{1}{x_{k}}$, integral becomes residue,

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , factor $\frac{1}{x_{k}}$, integral becomes residue, difference becomes quotient.

Proposition (BBBM '17)

$$
P(x, q)=\frac{x^{2}}{\left(x^{2}-1\right)^{2}}+\sum_{a=1}^{\infty} \sum_{w \mid a} w\left(x^{2 w}+x^{-2 w}\right) q^{2 a}
$$

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , factor $\frac{1}{x_{k}}$, integral becomes residue, difference becomes quotient.

Proposition (BBBM '17)

$$
P(x, q)=\frac{x^{2}}{\left(x^{2}-1\right)^{2}}+\sum_{a=1}^{\infty} \sum_{w \mid a} w\left(x^{2 w}+x^{-2 w}\right) q^{2 a}
$$

$$
P_{a}(x, y):= \begin{cases}\frac{x^{2} y^{2}}{\left(x^{2}-y^{2}\right)^{2}} & \text { for } a=0 \\ \sum_{w \mid a} w \frac{x^{4 w}+y^{4 w}}{(x y)^{2 w}} & \text { for } a>0\end{cases}
$$

Computing Feynman integrals

By coordinate change $x_{k}=\exp \left(i \pi z_{k}\right)$, path γ_{k} becomes circle around 0 , factor $\frac{1}{x_{k}}$, integral becomes residue, difference becomes quotient.

Proposition (BBBM '17)

$$
P(x, q)=\frac{x^{2}}{\left(x^{2}-1\right)^{2}}+\sum_{a=1}^{\infty} \sum_{w \mid a} w\left(x^{2 w}+x^{-2 w}\right) q^{2 a}
$$

$$
P_{a}(x, y):= \begin{cases}\frac{x^{2} y^{2}}{\left(x^{2}-y^{2}\right)^{2}} & \text { for } a=0 \\ \sum_{w \mid a} w \frac{x^{4 w}+y^{4 w}}{(x y)^{2 w}} & \text { for } a>0\end{cases}
$$

Theorem (BBBM '17)

$$
N_{\underline{a}, \Gamma, \Omega}^{\text {trop }}=\text { const }_{x_{\Omega(2 g-2)}} \ldots \text { const }_{x_{\Omega(1)}} \prod_{k=1}^{3 g-3} P_{a_{k}}\left(x_{k}^{+}, x_{k}^{-}\right)
$$

Quasi-modularity

Corollary (BBBM 2017, Goujard-Möller 2016)

For all Feynman graphs Γ of genus g and all orders Ω the function $\Gamma_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of uniform weight $6 g-6$.

Quasi-modularity

Corollary (BBBM 2017, Goujard-Möller 2016)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of uniform weight $6 g-6$.

$$
\text { Eisenstein series } \quad E_{2 k}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{2 n} \quad \sigma_{2 k-1}(n)=\sum_{m \mid n} m^{2 k-1}
$$

Quasi-modularity

Corollary (BBBM 2017, Goujard-Möller 2016)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of uniform weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{2 n} \quad \sigma_{2 k-1}(n)=\sum_{m \mid n} m^{2 k-1}$
$E_{2}=1-24 q^{2}-72 q^{4}-\ldots$
$E_{4}=1+240 q^{2}+2160 q^{4}+\ldots$
$E_{6}=1-504 q^{2}-16632 q^{4}-\ldots$

Quasi-modularity

Corollary (BBBM 2017, Goujard-Möller 2016)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of uniform weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{2 n} \quad \sigma_{2 k-1}(n)=\sum_{m \mid n} m^{2 k-1}$
$E_{2}=1-24 q^{2}-72 q^{4}-\ldots$
$E_{4}=1+240 q^{2}+2160 q^{4}+\ldots$
$E_{6}=1-504 q^{2}-16632 q^{4}-\ldots$

Example

$I_{\Gamma}=\sum_{\Omega} I_{\Gamma, \Omega}$ for $\Gamma=\square$ is a linear combination of the weight 12 monomials

$$
E_{6}^{2}, E_{4}^{3}, E_{2} E_{4} E_{6}, E_{2}^{2} E_{4}^{2}, E_{2}^{3} E_{6}, E_{2}^{4} E_{4}, E_{2}^{6}
$$

Quasi-modularity

Corollary (BBBM 2017, Goujard-Möller 2016)

For all Feynman graphs Γ of genus g and all orders Ω the function $I_{\Gamma, \Omega}$ is a quasi-modular form ($I_{\Gamma, \Omega} \in \mathbb{Q}\left[E_{2}, E_{4}, E_{6}\right]$) of uniform weight $6 g-6$.

Eisenstein series $\quad E_{2 k}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{2 n} \quad \sigma_{2 k-1}(n)=\sum_{m \mid n} m^{2 k-1}$
$E_{2}=1-24 q^{2}-72 q^{4}-\ldots$
$E_{4}=1+240 q^{2}+2160 q^{4}+\ldots$
$E_{6}=1-504 q^{2}-16632 q^{4}-\ldots$

Example

$I_{\Gamma}=\sum_{\Omega} I_{\Gamma, \Omega}$ for $\Gamma=\square$ is a linear combination of the weight 12 monomials

$$
E_{6}^{2}, E_{4}^{3}, E_{2} E_{4} E_{6}, E_{2}^{2} E_{4}^{2}, E_{2}^{3} E_{6}, E_{2}^{4} E_{4}, E_{2}^{6}
$$

Via Feynman integral compute

$$
I_{\Gamma}=32 q^{4}+1792 q^{6}+25344 q^{8}+182272 q^{10}+886656 q^{12}+O\left(q^{14}\right)
$$

Quasi-modularity

Example (cont.)

Solving a linear system of equations yields

$$
I_{\Gamma}=\frac{16}{1492992}\left(4 E_{6}^{2}+4 E_{4}^{3}-12 E_{2} E_{4} E_{6}-3 E_{2}^{2} E_{4}^{2}+4 E_{2}^{3} E_{6}+6 E_{2}^{4} E_{4}-3 E_{2}^{6}\right) .
$$

Quasi-modularity

Example (cont.)

Solving a linear system of equations yields

$$
I_{\Gamma}=\frac{16}{1492992}\left(4 E_{6}^{2}+4 E_{4}^{3}-12 E_{2} E_{4} E_{6}-3 E_{2}^{2} E_{4}^{2}+4 E_{2}^{3} E_{6}+6 E_{2}^{4} E_{4}-3 E_{2}^{6}\right)
$$

\Rightarrow Can compute $I_{\Gamma}(q)$ fast up to arbitrary high order:

$$
\begin{aligned}
I_{\Gamma} & =32 q^{4}+1792 q^{6}+25344 q^{8}+182272 q^{10}+886656 q^{12} \\
& +3294720 q^{14}+10246144 q^{16}+27353088 q^{18} \\
& +66497472 q^{20}+145337600 q^{22}+\ldots
\end{aligned}
$$

References

嗇 J．Boehm，W．Decker，A．Frühbis－Krüger，F．－J．Pfreundt，M．Rahn，L． Ristau．Towards Massively Parallel Computations in Algebraic Geometry．arXiv：1808．09727．
固 J．Boehm，A．Georgoudis，K．J．Larsen，M．Schulze，Y．Zhang． Complete sets of logarithmic vector fields for integration－by－parts identities of Feynman integrals．Phys．Rev．D 98 （2018）．
J．Boehm，A．Georgoudis，K．J．Larsen，H．Schönemann，Y．Zhang． Complete integration－by－parts reductions of the non－planar hexagon－box via module intersections．J．High Energ．Phys． 09 （2018）．
（R．Bendle，J．Boehm，W．Decker，A．Georgoudis，M．Rahn，F．－J． Pfreundt，Y．Zhang．Integration－by－parts reductions of Feynman integrals using Singular and GPI－Space．arXiv：1908．04301
围 J．Boehm，K．Bringmann，A．Buchholz，H．Markwig，Tropical mirror symmetry for elliptic curves，J．Reine Angew．Math． 732 （2017）．
（R．Boehm，Ch．Goldner，H．Markwig，Tropical mirror symmetry in dimension one．arXiv：1809．10659

