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Singular

Open Source computer algebra system for polynomial computations,
over 30 development teams worldwide, over 140 libraries.

https://www.singular.uni-kl.de/

Founded by G.-M. Greuel, G. Pfister, H. Schönemann. Current Head:
W. Decker
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Features of Singular

Commutative Algebra:

Gröbner bases over fields and integers, free resolutions
Local computations
Normalization
Primary decomposition, factorization
Invariant theory
Non-commutative subsystem

Algebraic and Tropical Geometry:

Classification of Singularities
Resolution of singularities
Deformation theory
Sheaf cohomology
DeRham cohomology
Rational parametrization
Tropicalization
GIT fans
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Non-linear algebra: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power.

In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis
of I . Then

f ∈ I ⇐⇒ NF (f ,G ) = 0
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Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering
(total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis
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The Main Computational Tool: Gröbner Bases

Gröbner Bases can be used for fundamental computations with ideals and
modules:

Example

eliminate variables,

determine intersections,

compute syzygies (polynomial relations),

compute ideal quotients and saturations,

birational geometry.

Greuel, Pfister: A Singular Introduction to Commutative Algebra.
Springer.
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Singular Online
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OSCAR

Cornerstone of next generation Open Source Computeralgebrasystem
OSCAR developed in SFB TRR 195 ”Symbolic Tools in Mathematics and
Their Application”:
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Resolution of Singularities

Hironaka used order sequence of a local Gröbner basis (standard basis) to
prove existence of resolution of singularities.

Hironaka (1964)
Can be turned into an effective criterion for smoothness iteratively
generating a tree of charts

s.t. in every chart the smooth variety is a smooth complete intersection:
JB, Frühbis-Krüger (2017)

x0x3 − x1x2 = 0
x21 − x0x2 = 0
x1x3 − x22 = 0

 ∩ {x0 6= 0}

=

{
x3 − x1x2 = 0
x21 − x2 = 0

}
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Resolution of Singularities

If not smooth, loci for interative blowup can be found:

Bravo, Encinas, Villamayor (2005).

Frühbis-Krüger, Pfister (2007).
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Resolution of Singularities

Gluing StepResolution Step

Search for
Center of
Blowup

Blowup
in

Charts required to draw information
from resolution data

Traversal of Tree of Charts
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Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra
by joining Singular with the workflow management system GPI-Space,
developed at Fraunhofer Institute für Industrial Mathematics ITWM.

JB, Decker, Frühbis-Krüger, Pfreundt, Rahn, Ristau, 2018.

Singular

GPI-Space

Singular Singular Singular ... Singular

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 9 / 24



Massively parallel methods in computer algebra

Framework for massively parallel computations in computer algebra
by joining Singular with the workflow management system GPI-Space,
developed at Fraunhofer Institute für Industrial Mathematics ITWM.
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GPI-Space

Distributed runtime system for parallel computations.

Based on idea of separation of computation and coordination.

Specialized language for coordination layer: Petri nets.

In the computation layer, existing applications (e.g. Singular) can
be used and mixed as long as they can be called as a C-library.
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Petri nets

Introduced by Carl Adam Petri (1926–2010) in 1962 as a graphical way to
describe concurrent asynchronous systems, Petri nets are bipartite,
directed graphs consisting out of places and transitions. By assigning to
places a number of tokens, a state is described. Transitions can fire if all
input places hold a token, consume one token from each input place, and
put one token on each output place.

Example

•
off goes on on off goes on

•
on

Example

•

•

•

•

•

not active
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An Example of a Petri Net

Assassin
has a gun

Assassin
loads gun

Gun
loaded

Victim dead

Victim dies

Victim shotVictim
alive

Misfire

Gun not
loaded

Someone
unloads the gun

Fire pin
struck

Gun fires

Assassin pulls
the trigger
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Features of Petri nets

Task parallelism:
Transitions f and g can fire in parallel:

i s

f

g

l

r

j

Data parallelism:
If i holds multiple tokens, t can fire in parallel:

i t

Real world implementation:

Transitions take time.

Tokens can be complex data structures.

Transitions can impose conditions on input tokens.
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Applications

Classical Algebraic Geometry:

Determining smoothness of algebraic varieties
JB, Decker, Frühbis-Krüger, Ristau
Resolution of singularities
Frühbis-Krüger, Ristau, Schober

Geometric Invariant Theory: Computing GIT-fans with symmetry
JB, Frühbis-Krüger, Reinbold

Tropical Geometry: Tropicalization of algebraic varieties with
symmetry
Bendle, JB, Ren

Physics: Integration-by-parts identities for Feynman integrals
Bendle, JB, Decker, Georgoudis, Rahn, Pfreundt, Wasser, Zhang

Algebraic/Tropical Geometry, Physics: Generating functions and
Recursions for Gromov-Witten invariants
JB, Bringmann, Buchholz, Goldner, Markwig, Ristau
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Parallelism in Algebraic Geometry

Key concept in algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.

Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity,
much faster in many practical examples of interest → unpredictable.

Mayr, Meyer (1982)

→ Single chart may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.
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Performance of smoothness certificate

Superlinear speedup for numerical Godeaux surface of codim 11
constructed by

Schreyer, Stenger (2018)
while Jacobian criterion not feasable.

53000

33000

12200

3100

16 32 64 128 256
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Integration-by-parts identities for Feynman integrals

Feynman integral

7−→
∫

dDz1

∫
dDz5

N(p, z)

z12 · . . . · z82

subject to impuls conservation: z2 + z3 − p2 = 0, . . .
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Integration-by-parts identities for Feynman integrals

In Baikov representation in terms of independent variable scalar
products

x1 = z1
2, . . . , x8 = z8

2, x9, x10, x11

between vectors zi , pj and independent constant scalar products

c1, . . . , c5

between pi ,

integral can be expressed as linear combination of
integrals of form∫

dx1 . . .
∫

dx11
det(G (c, x))

D−L−E−1
2

xa11 · . . . · xa88 · x
a9
9 · x

a10
10 · x

a11
11

with
a1, . . . , a8 ≤ −1
a9,a10, a11 ≤ 0

where G is Gram matrix, L = 2 genus of graph, E = 4 number of
independent external momenta.

Integration-by-parts identities express huge number of such
integrals in a small number master integrals.
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Integration-by-parts identities for Feynman integrals

For ∫
dx1 . . .

∫
dxk

P
D−L−E−1

2

xa11 · . . . · xakk
with Baikov polynomial P = det(G (c, x)),

integration-by-parts identities
are obtained as

0 =
∫

dx1 · · · dxk
k

∑
i=1

∂

∂xi

(
ai (x)

P
D−L−E−1

2

xa11 · . . . · xakk

)

To avoid shifts in dimension parameter D and to retain ai ≤ 0, require( k

∑
i=1

ai (x)
∂P

∂xi

)
+ b(x)P = 0 ,

ai (x) = bi (x)xi , i = 1, . . . ,m
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Integration-by-parts identities for Feynman integrals

Syzygy equation ( k

∑
i=1

ai (x)
∂P

∂xi

)
+ b(x)P = 0 (∗)

can be solved by Laplace expansion on G .

JB, Georgoudis, Larsen, Schulze, Zhang (2018).

So for the modules

M1 = 〈a(z) with (∗)〉 M2 = 〈ziei | i ≤ m〉+ 〈ei | i > m〉

calculate (M1 ∩M2)≤d using non-linear algebra via Gröbner bases.
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Integration-by-Parts Identities for Feynman Integrals

Full pivoting semi-numeric row reduction over
R = Q(c1, . . . , cr ,D)[x1, . . . , xm]

using interpolation techniques.

Handle non-planar hexagon box:

JB, Georgoudis,. Larsen, Schönemann, Zhang (2018).

Requires massively parallel approach. More difficult:
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Reduction with partial interpolation

I find trace with full pivoting
I find degrees by univariate reduction
I dynamic replacement of bad points

in reduction
I interpolation tree controls state
I leaves are generic results
I sufficient number of interpolation

points triggers interpolation of next
parameter

Bendle, JB, Decker, Georgoudis, Rahn, Pfreundt, Wasser, Zhang,
arXiv:1908.04301
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Reduction with partial interpolation

nodes cores runtime speedup efficiency
1 1 122857.6 1.000 1.000
1 15 9837.8 12.488 0.832
2 30 4954.8 24.795 0.826
4 60 2625.4 46.794 0.779
8 120 1341.3 91.592 0.763

14 210 952.3 129.011 0.614
15 225 705.6 174.113 0.773
16 240 694.3 176.929 0.737
29 435 611.8 200.810 0.461
30 450 385.4 318.747 0.708
32 480 379.9 323.310 0.673
40 600 367.7 334.109 0.556
48 720 363.2 338.178 0.469
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Reduction with partial interpolation

Easiest of 11 cuts of the Feynman diagram. Running time of ≈ 10
minutes on 384 cores. More difficult graphs ≈ 12 hours on 384 cores using
interpolation of bidegree up to (35, 24).
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Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...
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Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn.

Klemm, Pandharipande (2007), Zinger (2007)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?
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Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Nd ,g = 1
|Aut(f )| -weighted number of degree d covers f : C → E , where C

is smooth of genus g and f has 2g − 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C )− 2 = d · (2g(E )− 2) + ∑P∈C (e(P)− 1)

Nd ,0 = 0, so have to look at g ≥ 1 invariants!
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Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E )

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0 tropical mirror theorem

Gross (2010)
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Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

JB, Bringmann, Buchholz, Markwig (2013)

JB, Goldner, Markwig (2018).
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Feynman integrals (B-side)

Definition

A Feynman graph is (for us) a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1
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Feynman integrals (B-side)

Definition (Propagator)

P(z , q) = − 1

4π2
℘(z , q)− 1

12
E2(q) for z ∈ E = C/Λ

with Weierstraß-℘-function ℘ = 1
z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
P(z+e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ntrop
d ,g = weighted number of tropical covers π : C → E where

π has degree d ,
C is a tropical curve (metric 3-valent graph) of genus g ,
has 2g − 2 simple ramifications (3-valent vertices) at fixed points
p1, ..., p2g−2 ∈ E ,

with multiplicity mult(π) =
1

|Aut(π)| · ∏
e∈edges(C )

w(e)

Tropical covers are balanced w.r.t. weights w(e):

Ntrop
d ,g are intersection numbers on tropical moduli space.
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w(e)

Tropical covers are balanced w.r.t. weights w(e):

Ntrop
d ,g are intersection numbers on tropical moduli space.
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Correspondence Theorem

Theorem (BBBM ’17)

Nd ,g = Ntrop
d ,g by correspondence of tropical and algebraic covers.
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Tropical Hurwitz numbers – Example

Ntrop
3,3 = ?

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

2g − 2 = 4 vertices
3g − 3 = 6 edges
no bridges (weight 0 edges would be contracted):
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Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4
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Tropical Hurwitz numbers – Example

Ntrop
3,3 = 112 + 48 = 160

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·
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2 · 2 · 2 = 2 mult(π) = 22 = 4
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Multivariate Feynman integrals

Definition (Multivariate Feynman integrals)

IΓ,Ω(q1, ..., q3g−3) =
∫

γ2g−2
...
∫

γ1

(
3g−3

∏
k=1

P(z+k − z−k , qk )

)
dzΩ(1)...dzΩ(2g−2)

Example

For

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

we have to integrate

P(z1− z2, q1) ·P(z1− z2, q2) ·P(z1− z3, q3) ·P(z2− z4, q4) ·P(z3− z4, q5) ·P(z3− z4, q6)
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Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM ’17)

If Γ is any trivalent Feynman graph, then

∑
a

Ntrop
a,Γ,Ω q2a = IΓ,Ω(q1, ..., q3g−3)

Setting qi = q we get (using the action of Aut(Γ) on labeled covers):

Corollary (Tropical mirror theorem)

∑
d

Ntrop
d ,g q2d = ∑

Γ

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = Bg for all g .
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Computing Feynman integrals

By coordinate change xk = exp(iπzk),

path γk becomes circle around 0,
factor 1

xk
, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’17)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w )q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy )2w
for a > 0

Theorem (BBBM ’17)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k )
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Quasi-modularity

Corollary (BBBM 2017, Goujard-Möller 2016)

For all Feynman graphs Γ of genus g and all orders Ω the function IΓ,Ω is
a quasi-modular form (IΓ,Ω ∈ Q[E2,E4,E6]) of uniform weight 6g − 6.

Eisenstein series E2k = 1− 4k
B2k ∑∞

n=1
σ2k−1(n)q

2n σ2k−1(n) = ∑m|n m
2k−1

E2 = 1− 24q2 − 72q4 − ...
E4 = 1 + 240q2 + 2160q4 + ...
E6 = 1− 504q2 − 16632q4 − ...

Example

IΓ = ∑Ω IΓ,Ω for Γ = is a linear combination of the weight 12

monomials
E2
6 , E3

4 , E2E4E6, E2
2E

2
4 , E3

2E6, E4
2E4, E6

2

Via Feynman integral compute

IΓ = 32q4 + 1792q6 + 25344q8 + 182272q10 + 886656q12 +O(q14)
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For all Feynman graphs Γ of genus g and all orders Ω the function IΓ,Ω is
a quasi-modular form (IΓ,Ω ∈ Q[E2,E4,E6]) of uniform weight 6g − 6.

Eisenstein series E2k = 1− 4k
B2k ∑∞

n=1
σ2k−1(n)q

2n σ2k−1(n) = ∑m|n m
2k−1

E2 = 1− 24q2 − 72q4 − ...
E4 = 1 + 240q2 + 2160q4 + ...
E6 = 1− 504q2 − 16632q4 − ...

Example

IΓ = ∑Ω IΓ,Ω for Γ = is a linear combination of the weight 12

monomials
E2
6 , E3

4 , E2E4E6, E2
2E

2
4 , E3

2E6, E4
2E4, E6

2

Via Feynman integral compute

IΓ = 32q4 + 1792q6 + 25344q8 + 182272q10 + 886656q12 +O(q14)

Janko Boehm (TU-KL) Massively Parallel Methods December 19, 2019 24 / 24



Quasi-modularity

Example (cont.)

Solving a linear system of equations yields

IΓ =
16

1492992

(
4E2

6 + 4E3
4 − 12E2E4E6 − 3E2

2E
2
4 + 4E3

2E6 + 6E4
2E4 − 3E6

2

)
.

⇒ Can compute IΓ(q) fast up to arbitrary high order:

IΓ = 32q4 + 1792q6 + 25344q8 + 182272q10 + 886656q12

+ 3294720q14 + 10246144q16 + 27353088q18

+ 66497472q20 + 145337600q22 + ...
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