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Intersection theory in algebraic geometry

Characteristic classes of singular/noncompact algebraic varieties
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Characteristic classes in Intersection theory

The main message of this talk:

Intersection theory in algebraic geometry is a deep, well-established
field, with many facets.

Obvious task: Establish a direct relation with ‘Intersection theory’
as meant in this workshop.
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Intersection theory in algebraic geometry

History: (highly subjective, and a small fraction of the real thing)

m Ancient questions, such as Pappus hexagon theorem or the
problem of Apollonius (how many circles are tangent to 3
given circles?) (~2000 years ago);

m Fast forward: “Bézout’s theorem” (~1750) aka intersection
theory in projective space,
~> intersection numbers, intersection multiplicities;

m Fast forward: “Schubert calculus”, (~1880) aka intersection
theory in Grassmannians and beyond,
~> enumerative geometry
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Typical question in enumerative geometry: how many smooth
plane cubic curves are tangent to nine lines in general position?

Maillard (1872): 33,616.

m Hilbert’s 15th problem (1900): make such computations
rigorous.

m Many attempts in the XX century, with various degrees of
success. A few names: Weil ('40s) for intersection
multiplicities; Samuel; Severi; Segre; Chow ('50s) ‘moving
lemma’; Serre; Grothendieck ('50s-'60s) Riemann-Roch; etc.
Practically a who's who in algebraic geometry.

m Modern rigorous, effective theory: Fulton-MacPherson
('70s-'80s); in the language of schemes.

In particular: every algebraic scheme has a Chow group. (Think:
homology.) The Chow group of a nonsingular algebraic varieties
has a well-defined intersection product, making it into a ring.
(Think: cohomology.)
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Remarks: Differential forms are not the main tool here.
Chow's ‘moving lemma’ is also not an ingredient.

The Chow group is in general much finer than homology.
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Remarks: Differential forms are not the main tool here.
Chow's ‘moving lemma’ is also not an ingredient.

The Chow group is in general much finer than homology.

In a nutshell: Assume X, Y are cyclesin V,and X C V' is
regularly embedded; so we have a normal bundle Nx V.

Deform the embedding X C V to the zero-section X C NxV/;
and Y C V to Cxny Y C Nx V. (But don't ‘move’ anything!)
Reduced to intersecting cones with the zero-section in a vector
bundle — suitable cocktail of Chern & Segre classes.

All expected properties of intersection theory (and more) can be
proven from this definition.
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Example: Rigorous computation of the 33,616 cubics
(—. Kleiman-Speiser, 1986).

m 1990s: Intersection theory on moduli spaces of curves.

m Faber's conjectures on the tautological ring of M ,.

(Still partly open!) (and very subtle! Tommasi, ...)
m Witten's conjectures (Kontsevich's theorem) on intersection
numbers on the moduli space.
Keel ('92): Intersection theory of Mg ,, TAMS.
Manin ('94): Generating functions in algebraic geometry. . .:
e.g., Betti numbers for Mo,n-
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m Much more: Candelas-de la Ossa-Green-Parkes
~~ quantum cohomology (still in the '90s!)

m Fulton, Pandharipande, Graber, Okounkov, Behrend, Fantechi,

Intersection theory on stacks

Equivariant intersection theory

Modern ‘Schubert calculus’, combinatorial algebraic geometry

[
[

m Donaldson-Thomas invariants

[

m Characteristic classes for singular varieties
[

Intersection theory in algebraic geometry: item 14C17 in the math
reviews; about 1000 papers, ~30 pending.
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One topic among many: Characteristic classes.

Some names: Deligne-Grothendieck, Marie-Hélene Schwartz ('60s);
Mather, MacPherson, Fulton, Johnson, Brasselet, Yokura,
...('70s-'80s); (—), Parusinski, Pragacz, Schiirmann; Ohmoto,
Maxim, ... ('90s —)

Prototype: Vector bundles have Chern classes;
ci(€) = obstruction to finding rk € + 1 — i linearly independent
global sections.
V smooth compact ~~ ‘(total) Chern class of V', ¢(TV)N[V].
m Components of ¢(TV) N [V]: obstructions to defining global
frames of vector fields on V.
m Dually (up to sign): obstruction to defining linearly
independent global differential forms.
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m ¢c1(TV) = —Ky, canonical bundle.
E.g., V Calabi-Yau = ¢(TV) =0;

m Poincaré-Hopf: [ c(TV)N[V] = x(V),
topological Euler characteristic.

Question: What is the ‘right’ analogue for possibly singular or
noncompact varieties?
E.g., Does My , have a natural notion of “total Chern class”?

Naive answer: Replace TV with a coherent sheaf; the sheaf

TVV = Q}, is defined for all V.

Short summary: This does not work too well.

Coherent sheaves on singular varieties don't have Chern classes.
(There are alternatives ~» Chern-Mather classes.)

Chow group / Homology of noncompact varieties: losing too much
information; e.g., can't recover Y.
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L Characteristic classes of singular/noncompact algebraic varieties

Moral: We need something less naive.

Aside: Quotients may acquire mild ‘orbifold’ singularities.
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L Characteristic classes of singular/noncompact algebraic varieties

Moral: We need something less naive.

Aside: Quotients may acquire mild ‘orbifold’ singularities.
Dixon-Harvey-Vafa-Witten: orbifold Euler number ('85).
(Batyrev '99): Generalization to stringy Euler number.

(—, deFernex-Lupercio-Nevins-Uribe '06): stringy Chern class,
whose degree is the stringy Euler number.

Interesting story, but still not the ‘right’ generalization of the
ordinary Chern class.

(E.g., V not compact ~~7?)
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.
~+ F(X) =group of integer-valued constructible functions.
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.
~+ F(X) =group of integer-valued constructible functions.

p€FX) <= ¢o=> myly,
W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.

F is a covariant functor from {varieties} to {abelian groups}!
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p€FX) <= ¢o=> myly,
W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.
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f: X — Y proper map ~ f, : F(X) — F(Y)
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.

~+ F(X) =group of integer-valued constructible functions.
peF(X) < ¢=>mwlw,

W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.
F is a covariant functor from {varieties} to {abelian groups}!
f: X — Y proper map ~ f, : F(X) — F(Y)

WCX,peyY:
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.

~+ F(X) =group of integer-valued constructible functions.
peF(X) < ¢=>mwlw,

W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.
F is a covariant functor from {varieties} to {abelian groups}!
f: X — Y proper map ~ f, : F(X) — F(Y)

WCX;peY: f(lly)(p) =
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.

~+ F(X) =group of integer-valued constructible functions.
peF(X) < ¢=>mwlw,

W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.
F is a covariant functor from {varieties} to {abelian groups}!
f: X — Y proper map ~ f, : F(X) — F(Y)

WCX;peY: f(1w)(p) = x(WnFfHp)).
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.
~+ F(X) =group of integer-valued constructible functions.

p€FX) <= ¢o=> myly,
W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.

F is a covariant functor from {varieties} to {abelian groups}!
f: X — Y proper map ~ f, : F(X) — F(Y)
WCX;peY: f(1w)(p) = x(WnFfHp)).

Fact (not difficult): (f o g)« = £, o g.
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Right generalization: Grothendieck-Deligne ('65)

X: complex projective variety.
~+ F(X) =group of integer-valued constructible functions.

p€FX) <= ¢o=> myly,
W C X closed subvarieties, myy € Z, myy # 0 for fin. many W.

F is a covariant functor from {varieties} to {abelian groups}!

f: X — Y proper map ~ f, : F(X) — F(Y)

WCX;peY: f(1w)(p) = x(WnFfHp)).

Fact (not difficult): (f o g)« = £, o g.

Remark: homology, H. (or Chow, A,) is also a covariant functor
{varieties} to {abelian groups}
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Two covariant functors {varieties} — {abelian groups}: F, H,.
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Two covariant functors {varieties} — {abelian groups}: F, H,.

Questio eligne-Grothendie

Is there a natural transformation c, : F ~» H,, such that if V is a
nonsingular variety, then ¢,(1y) = ¢(TV)N[V]?
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Questio eligne-Grothendie

Is there a natural transformation c, : F ~» H,, such that if V is a
nonsingular variety, then ¢,(1y) = ¢(TV)N[V]?

Theorem (MacPherson '74)
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Two covariant functors {varieties} — {abelian groups}: F, H,.

Questio eligne-Grothendie

Is there a natural transformation c, : F ~» H,, such that if V is a
nonsingular variety, then ¢,(1y) = ¢(TV)N[V]?

Theorem (MacPherson '74)
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Two covariant functors {varieties} — {abelian groups}: F, H,.

Questio eligne-Grothendie

Is there a natural transformation c, : F ~» H,, such that if V is a
nonsingular variety, then ¢,(1y) = ¢(TV)N[V]?

Theorem (MacPherson '74)
Yes

Please appreciate this.
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Two covariant functors {varieties} — {abelian groups}: F, H,.

Question [Deligne-Grothendieck]

Is there a natural transformation c, : F ~» H,, such that if V is a
nonsingular variety, then ¢,(1y) = ¢(TV)N[V]?

Theorem (MacPherson '74)
Yes

Please appreciate this.

Content:
There is a functorial theory of ‘Chern classes’ for
arbitrarily singular projective varieties, satisfying the same
combinatorial properties of the topological Euler
characteristic.
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Fix a projective V (e.g., V =P"); X C V: locally closed subset.
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CsM(X) = C*(ﬂ.x) e H.V
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Fix a projective V (e.g., V =P"); X C V: locally closed subset.

14/26

Definition
The Chern-Schwartz-MacPherson class of X C V is

CsM(X) = C*(ﬂ.x) e H.V

(Finer theory: use A, rather than H,)
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Definition
The Chern-Schwartz-MacPherson class of X C V is
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(Finer theory: use A, rather than H,)

Example: Well-defined class cgyi(Mo ,) in homology of Mo,n-
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Fix a projective V (e.g., V =P"); X C V: locally closed subset.

Definition

14/26

The Chern-Schwartz-MacPherson class of X C V is

CsM(X) = C*(ﬂ.x) e H.V

(Finer theory: use A, rather than H,)

Example: Well-defined class cgyi(Mo ,) in homology of Mo,n-

(Not computed explicitly as far as | know.)
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L Characteristic classes of singular/noncompact algebraic varieties

How to compute cgpi(X)? What kind of info does it carry?
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How to compute cgpi(X)? What kind of info does it carry?

m ‘Inclusion-exclusion’. X,Y C V.

esm(X U Y) = csm(X) + csm(Y) — csm(X NY)
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csm(Z) = formula in terms of Chern classes/Segre classes

(This + inclusion-exclusion — Macaulay2 procedures to
compute cgp(X) for X projective/toric, from ideal defining X)
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How to compute cgpi(X)? What kind of info does it carry?

m ‘Inclusion-exclusion’. X,Y C V.

esm(X U Y) = csm(X) + csm(Y) — csm(X NY)

m Z C V, V nonsingular.
csm(Z) = formula in terms of Chern classes/Segre classes

(This + inclusion-exclusion — Macaulay2 procedures to
compute cgp(X) for X projective/toric, from ideal defining X)
m Z =V~ D, D=U;D; simple normal crossings.

csm(Z) = C(Ql(log D))N[V]

(+generalization to ‘free’ divisors, Liao)
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How to compute cgpi(X)? What kind of info does it carry?

m ‘Inclusion-exclusion’. X,Y C V.

esm(X U Y) = csm(X) + csm(Y) — csm(X NY)

m Z C V, V nonsingular.
csm(Z) = formula in terms of Chern classes/Segre classes

(This + inclusion-exclusion — Macaulay2 procedures to
compute cgp(X) for X projective/toric, from ideal defining X)
m Z =V~ D, D=U;D; simple normal crossings.

csm(Z) = C(Ql(log D))N[V]

(+generalization to ‘free’ divisors, Liao)
m X C P": degrees of components of cgyi(X) <> Euler
characteristics of linear sections of X.
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Functoriality: vast generalization of Poincaré-Hopf.
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Functoriality: vast generalization of Poincaré-Hopf.
V compact, so k : V — {pt} proper. Functoriality:

F(V) H.(V)
F(pt) == Z == H.(pt)

commutes.
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Functoriality: vast generalization of Poincaré-Hopf.
V compact, so k : V — {pt} proper. Functoriality:

F(V) H.(V)
F(pt) == Z == H.(pt)

commutes. For X C V locally close (note: not nec. compact!)

]]-X P CSM(X)

| |

X(X) === [ esm(X)
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L Characteristic classes of singular/noncompact algebraic varieties

Functoriality: vast generalization of Poincaré-Hopf.
V compact, so k : V — {pt} proper. Functoriality:

F(V) H.(V)
F(pt) == Z == H.(pt)

commutes. For X C V locally close (note: not nec. compact!)

]]-X P CSM(X)

| |

X(X) =——= [ csu(X)
‘Singular/noncompact Poincaré-Hopf’
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L Characteristic classes of singular/noncompact algebraic varieties

csm known for many interesting varieties:

m Parusinski-Pragacz ('95): degeneracy loci
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csv known for many interesting varieties:
m Parusinski-Pragacz ('95): degeneracy loci

m Barthel-Brasselet-Fieseler-Kaup, —: toric varieties

m — -Mihalcea, Schiirmann, Su, Feher, Rimanyi, Weber, .. .:
Schubert varieties in Grassmannians/flag manifolds

..
Generalizations:
m Motivic Chern classes (Brasselet-Schiirmann-Yokura '04)
m Equivariant cgy classes (Ohmoto '06)
. ...

Many stories!
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L Characteristic classes of singular/noncompact algebraic varieties

csm known for many interesting varieties:

m Parusinski-Pragacz ('95): degeneracy loci
m Barthel-Brasselet-Fieseler-Kaup, —: toric varieties

m — -Mihalcea, Schiirmann, Su, Feher, Rimanyi, Weber, .. .:
Schubert varieties in Grassmannians/flag manifolds

..
Generalizations:
m Motivic Chern classes (Brasselet-Schiirmann-Yokura '04)
m Equivariant cgy classes (Ohmoto '06)
. ...

Many stories!

Rest of the talk: ‘Graph hypersurfaces’ (— -Marcolli, ~'10).
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Characteristic classes in Intersection theory

‘—cgn classes of graph hypersurfaces

csm classes of graph hypersurfaces

G: graph (think: Feynman);
edges e, ..., €, <> variables te: t1,..., tp.
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LCSM classes of graph hypersurfaces

csm classes of graph hypersurfaces

G: graph (think: Feynman);

edges e, ..., €, <> variables te: t1,..., tp.

— polynomial W¢(t1,....tn) == > 7 [[ogr te

where T ranges over maximal spanning forests of G.
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where T ranges over maximal spanning forests of G.
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‘—cgn classes of graph hypersurfaces

csm classes of graph hypersurfaces

G: graph (think: Feynman);

edges e, ..., €, <> variables te: t1,..., tp.

— polynomial W¢(t1,....tn) == > 7 [[ogr te

where T ranges over maximal spanning forests of G.
“Kirchhoff-Tutte-Symanzik” polynomial.

Example (‘banana graph'):
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‘—cgn classes of graph hypersurfaces

csm classes of graph hypersurfaces

G: graph (think: Feynman);
edges e, ..., €, <> variables te: t1,..., tp.

— polynomial W¢(t1,....tn) == > 7 [[ogr te
where T ranges over maximal spanning forests of G.
“Kirchhoff-Tutte-Symanzik” polynomial.

Example (‘banana graph'):

Vi(t) = totz + tit3 + tito.
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Characteristic classes in Intersection theory

‘—cgn classes of graph hypersurfaces

W¢(t) is homogeneous, so it defines a hypersurface in P71,

The graph hypersurface of G is the hypersurface Xg C P"!
defined by Wg(t) = 0.
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L::SM classes of graph hypersurfaces

W¢(t) is homogeneous, so it defines a hypersurface in P71,

Definition

19/26

The graph hypersurface of G is the hypersurface Xg C P"!
defined by Wg(t) = 0.

X has degree bi(G), and is irreducible if and only if G cannot be
separated as a disjoint union of two graphs, possibly joined at a
vertex.
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L

cg classes of graph hypersurfaces

W¢(t) is homogeneous, so it defines a hypersurface in P71,

19/26

Definition

The graph hypersurface of G is the hypersurface Xg C P"!
defined by Wg(t) = 0.

X has degree bi(G), and is irreducible if and only if G cannot be
separated as a disjoint union of two graphs, possibly joined at a
vertex.

Task: Study invariants of Xg.

Motivation: Extensive computations suggested that contributions
of G to Feynman amplitudes may be multiple zeta values.

Paolo Aluffi Characteristic classes in Intersection theory



Characteristic classes in Intersection theory

L

cg classes of graph hypersurfaces

W¢(t) is homogeneous, so it defines a hypersurface in P71,

19/26

Definition

The graph hypersurface of G is the hypersurface Xg C P"!
defined by Wg(t) = 0.

X has degree bi(G), and is irreducible if and only if G cannot be
separated as a disjoint union of two graphs, possibly joined at a
vertex.

Task: Study invariants of Xg.

Motivation: Extensive computations suggested that contributions
of G to Feynman amplitudes may be multiple zeta values.

This was verified for ‘small’ graphs (~ up to 13 edges)!
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L

cg classes of graph hypersurfaces

W¢(t) is homogeneous, so it defines a hypersurface in P71,

19/26

Definition

The graph hypersurface of G is the hypersurface Xg C P"!
defined by Wg(t) = 0.

X has degree bi(G), and is irreducible if and only if G cannot be
separated as a disjoint union of two graphs, possibly joined at a
vertex.

Task: Study invariants of Xg.

Motivation: Extensive computations suggested that contributions
of G to Feynman amplitudes may be multiple zeta values.

This was verified for ‘small’ graphs (~ up to 13 edges)!

Fact (Belkale-Brosnan; Brown; ...): not true!
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L

cg classes of graph hypersurfaces

Feynman contribution of G: a period of the complement of Xg.

20/26 Paolo Aluffi Characteristic classes in Intersection theory



Characteristic classes in Intersection theory

L

cg classes of graph hypersurfaces

Feynman contribution of G: a period of the complement of Xg.
Periods are controlled by the motive of Xg.
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L

cg classes of graph hypersurfaces

Feynman contribution of G: a period of the complement of Xg.
Periods are controlled by the motive of Xg.

‘Motive’ ~» a universal Euler characteristic, dominating all
invariants satisfying (e.g.) inclusion-exclusion. (Such as periods!).
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Feynman contribution of G: a period of the complement of Xg.
Periods are controlled by the motive of Xg.

‘Motive’ ~» a universal Euler characteristic, dominating all
invariants satisfying (e.g.) inclusion-exclusion. (Such as periods!).

E.g.: W defined over Z, hence over Fy.

Ng(G) == #{(t1, ..., tn) € Fg|Wg(t1,..., ts) =0}
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L

20/26

sM classes of graph hypersurfaces

Feynman contribution of G: a period of the complement of Xg.
Periods are controlled by the motive of Xg.

‘Motive’ ~» a universal Euler characteristic, dominating all
invariants satisfying (e.g.) inclusion-exclusion. (Such as periods!).

E.g.: W defined over Z, hence over Fy.

Ng(G) == #{(t1, ..., tn) € Fg|Wg(t1,..., ts) =0}

Original conjecture = N,4(G) is a polynomial in q.
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L

20/26

cg classes of graph hypersurfaces

Feynman contribution of G: a period of the complement of Xg.
Periods are controlled by the motive of Xg.

‘Motive’ ~» a universal Euler characteristic, dominating all
invariants satisfying (e.g.) inclusion-exclusion. (Such as periods!).

E.g.: W defined over Z, hence over Fy.

Ng(G) == #{(t1, ..., tn) € Fg|Wg(t1,..., ts) =0}

Original conjecture = N,4(G) is a polynomial in q.

(Kontsevich?) Is the motive of Xg a mixed-Tate motive?
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L

20/26

cg classes of graph hypersurfaces

Feynman contribution of G: a period of the complement of Xg.
Periods are controlled by the motive of Xg.

‘Motive’ ~» a universal Euler characteristic, dominating all
invariants satisfying (e.g.) inclusion-exclusion. (Such as periods!).

E.g.: W defined over Z, hence over Fy.
Ng(G) == #{(t1, ..., tn) € Fg|Wg(t1,..., ts) =0}
Original conjecture = N,4(G) is a polynomial in q.

(Kontsevich?) Is the motive of Xg a mixed-Tate motive?

Disproved!
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L

cg classes of graph hypersurfaces

Next obvious questions: For what G is it true (<> for which QFTs
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Next obvious questions: For what G is it true (<> for which QFTs
would Feynman contributions be multiple zeta values. . .)

Operations on G preserving mixed-Tate property?
Broad theme: Study properties of G which only depend on Xg:

Algebro-geometric Feynman rules.
The cgm class is also a generalized Euler characteristic.

... but not controlled by the motive. (Reason: ‘moving target’)
— motivation to study csm(Xe)-

Can cgyr be used to construct an algebro-geometric Feynman rule?
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(joint with Matilde Marcolli)

Example: G =T, ‘banana graph’, n edges. Then

csm(P" N T,) = ((1 = H)" + nH) N [P7]
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(joint with Matilde Marcolli)

S

Example: G =T, ‘banana graph’, n edges. Then
csm(P" N T,) = ((1 = H)" + nH) N [P7]

Here H is the hyperplane class, so this means

(P 1) =1+ ()2 - ()4 £ P
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cg classes of graph hypersurfaces

(joint with Matilde Marcolli)

S

Example: G =T, ‘banana graph’, n edges. Then
csm(P" N T,) = ((1 = H)" + nH) N [P7]
Here H is the hyperplane class, so this means
(P 1) =1+ ()2 - ()4 £ P

‘Proof’: Never mind. W <> Cremona transfromation; use
functoriality. ..
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cg classes of graph hypersurfaces

(joint with Matilde Marcolli)

S

Example: G =T, ‘banana graph’, n edges. Then
csm(P" N T,) = ((1 = H)" + nH) N [P7]

Here H is the hyperplane class, so this means

(P 1) =1+ ()2 - ()4 £ P

‘Proof’: Never mind. W <> Cremona transfromation; use
functoriality. ..

One moral is that the work needed to compute the motive of I,
can often be retooled to say something about cgyp.
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Remark: In particular, x(F,) = (—=1)""* for n > 1.
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Remark: In particular, x(F,) = (—=1)""* for n > 1.
(1 have never seen a graph G for which y(P""1 \ Xg) # 0 or +1.)

Companion algebro-geometric Feynman rule?

Definition
Cq(t) determined by

csm(P" 1\ Xg) = (H"Cs(1/H)) N [P" Y

This satisfies Cg,116,(t) = Cg,(t)Ce,(t).
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cg classes of graph hypersurfaces

Remark: In particular, x(F,) = (—=1)""* for n > 1.
(1 have never seen a graph G for which y(P""1 \ Xg) # 0 or +1.)

Companion algebro-geometric Feynman rule?

Definition
Cq(t) determined by

csm(P" 1\ Xg) = (H"Cs(1/H)) N [P" Y

This satisfies Cg,116,(t) = Cg,(t)Co,(t).
The corresponding ‘propagator’ is 1 + t.
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Properties (— - Marcolli):
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m Cg(t) monic, degree = n:=#edges
m Coeff. of t""1in Cg(t) = n— b1(G)
m G forest, n edges = Cg(t) = (1+t)"
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G not a forest = C5(0) =0
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G forest, n edges = Cg(t) = (1+1t)"

G not a forest = C5(0) =0

CL(0) = x(P"* ~ Xo)

G’ obtained from G by splitting/attaching edges:
Cg/(t) =t CG(t)
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cg classes of graph hypersurfaces

Properties (— - Marcolli):

Cc(t) monic, degree = n:=#-edges

Coeff. of t""1in Cg(t) = n— b1(G)

G forest, n edges = Cg(t) = (1+1t)"

G not a forest = C(0) =0

CL(O) = X(F" 1~ Xe)

G’ obtained from G by splitting/attaching edges:
Cg/(t) =t Cg(t)

G not 1-particle irreducible = Cg(—1) =0
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Theorem (—)

e edges of G, satisfying unfortunate technical conditions. Then

Ce,(t) = (2t = 1)Cq(t) — t(t — 1)Coe(t) + Cge(t)

Goe: double edge e
G \ e: delete e
G/e: contract e
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cg classes of graph hypersurfaces

Theorem (—)

e edges of G, satisfying unfortunate technical conditions. Then

Ce,(t) = (2t = 1)Cq(t) — t(t — 1)Coe(t) + Cge(t)

Goe: double edge e
G \ e: delete e
G/e: contract e

Question: are the ‘unfortunate technical conditions’ necessary?
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Several natural questions!

m Can construct a “cgy class” in twisted cohomology?
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cg classes of graph hypersurfaces

Several natural questions!
m Can construct a “cgy class” in twisted cohomology?
m ‘Twisted' algebro-geometric Feynman rules?

m Do relations among cq classes of relevant loci imply relations
of corresponding Feynman amplitudes?
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Thank you for your attention!
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