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Part I

Scattering amplitudes



Amplitudes

In this talk we are interested in amplitudes of the following theories:

The zeroth copy: Bi-adjoint scalar theory

The single copy: Yang-Mills theory

The double copy: Gravity

We consider tree amplitudes with an arbitrary number of external particles n.



The single copy: Yang-Mills theory

The Lagrangian of a non-Abelian gauge theory:

LYM = −1

4
Fa

µνFaµν, Fa
µν = ∂µAa

ν−∂νAa
µ+g f abcAb

µAc
ν

Decompose the tree amplitudes An(p,ε) into group-theoretical factors and cyclic-

ordered amplitudes An(σ, p,ε):

An (p,ε) = gn−2 ∑
σ∈Sn/Zn

2 Tr(T aσ(1)...T aσ(n)) An (σ, p,ε)

with

p = (p1, ..., pn) momenta

ε = (ε1, ...,εn) polarisations

σ = (σ1, ...,σn) cyclic order



Primitive amplitudes

The primitive amplitudes are gauge-invariant and each primitive amplitude has a fixed

cyclic order of the external legs.

The primitive amplitudes are calculated from cyclic-ordered Feynman rules:

= −igµν

p2

= i [gµ1µ2 (p
µ3

1
− p

µ3

2
)+gµ2µ3 (p

µ1

2
− p

µ1

3
)+gµ3µ1 (p

µ2

3
− p

µ2

1
)]

= i [2gµ1µ3gµ2µ4 −gµ1µ2gµ3µ4 −gµ1µ4gµ2µ3]



The zeroth copy: Bi-adjoint scalar theory

A scalar field in the adjoint representation of two gauge-groups G× G̃ with Lagrange

density

L =
1

2

(

∂µφab
)(

∂µφab
)

− λ

3!
f a1a2a3 f̃ b1b2b3φa1b1φa2b2φa3b3

Decompose the tree amplitudes mn(p) into group-theoretical factors and double-

ordered amplitudes mn(σ, σ̃, p):

mn (p) = λn−2 ∑
σ∈Sn/Zn

∑
σ̃∈Sn/Zn

2 Tr(T aσ(1)...T aσ(n)) 2 Tr
(

T̃ bσ̃(1)...T̃ bσ̃(n)

)

mn (σ, σ̃, p)

The permutations σ and σ̃ denote two cyclic orders.



Double-ordered amplitudes

Flip: exchange two branches at a vertex.

1 2 3 4

5

⇔
1 4 2 3

5

Two diagrams with different external orders are equivalent, if we can transform one

diagram into the other by a sequence of flips.

The double-ordered amplitude mn(σ, σ̃, p) is computed from the Feynman diagrams

compatible with the cyclic orders σ and σ̃.

Feynman rules:

=
i

p2

= i



The double copy: Gravity

Let us consider (small) fluctuations around the flat Minkowski metric

gµν = ηµν+κhµν,

with κ =
√

32πG and consider an effective theory defined by the Einstein-Hilbert

Lagrangian

LEH = − 2

κ2

√−gR.

The field hµν describes a graviton.

The inverse metric gµν and
√−g are infinite series in hµν, therefore

LEH+LGF =
∞

∑
n=2

L
(n),

where L(n) contains exactly n fields hµν.

Thus the Feynman rules will give an infinite tower of vertices.



Feynman rules for gravity

External edge:

µ1,µ2 = εµ1
(k)εµ2

(k)

Internal edge:

µ1,µ2 ν1,ν2 =
1

2

(

ηµ1ν1
ηµ2ν2

+ηµ1ν2
ηµ2ν1

− 2

D−2
ηµ1µ2

ην1ν2

)

i

k2

Vertices:

= long expression

= even longer expression

plus Feynman rules for 5-graviton vertex, 6-graviton vertex, etc.



Graviton amplitudes

The graviton amplitudes are un-ordered, we simply factor out the coupling:

Mn (p,ε, ε̃) =
(κ

4

)n−2

Mn (p,ε, ε̃)

p = (p1, ..., pn) momenta

ε = (ε1, ...,εn) first set of spin-1 polarisation vectors

ε̃ = (ε̃1, ..., ε̃n) second set of spin-1 polarisation vectors

ε+j ε̃+j and ε−j ε̃−j describe the two polarisation states of the spin-2 graviton with index j.



Amplitudes

We consider the double ordered bi-adjoint scalar amplitudes mn(σ, σ̃, p), the single

ordered Yang-Mills amplitudes An(σ, p,ε) and the un-ordered graviton amplitudes

Mn(p,ε, ε̃).

All these amplitudes can be computed from Feynman diagrams.

mn (σ, σ̃, p) = i(−1)n−3+nflip(σ,σ̃) ∑
trivalent graphs G

compatible with σ and σ̃

1

D(G)
, D(G) = ∏

edges e

se,

An (σ, p,ε) = long expression,

Mn (p,ε, ε̃) = even longer expression.



Part II

Review of recent developments

1. Jacobi-like relations (BCJ numerators)

2. The scattering equations (CHY representation)

3. KLT relations

4. Positive geometries and canonical forms

5. Intersection theory



Part II.1

Jacobi-like relations



Jacobi relation

Jacobi relation:

[[

T a,T b
]

,T c
]

+
[[

T b,T c
]

,T a
]

+
[

[T c,T a] ,T b
]

= 0,

In terms of structure constants:

(

i f abe
)(

i f ecd
)

+
(

i f bce
)(

i f ead
)

+(i f cae)
(

i f ebd
)

= 0.

Graphically:

1 2 3

4

+

2 3 1

4

+

3 1 2

4

= 0



Expansion in graphs with three-valent vertices only

In Yang-Mills theory we have a three-valent and a four-valent vertex.

We may always re-write a four-valent vertex in terms of two three-valent vertices:

1

2 3

4

=

1

2 3

4

+

1

2 3

4

This is not unique!



BCJ numerators

We may write the Yang-Mills amplitude in a form

An (σ, p,ε) = i(−1)n−3 ∑
trivalent graphs G

with order σ

N(G)

D(G)
,

with numerators N(G) satisfying anti-symmetry relations and Jacobi relations:

1 2 3

4

+

2 3 1

4

+

3 1 2

4

= 0

N (G1) + N (G2) + N (G3) = 0

Bern, Carrasco, Johansson, ’10



Multi-peripheral graphs

Combining the anti-symmetry of the vertices and the Jacobi identity one has

1

2 3

4

=
1

2 3

4

−
1

3 2

4

We may express all BCJ-numerators in terms of the BCJ-numerators of multi-

peripheral graphs (or comb graphs):

1

α2 α3

...

αn−1

n



Double copy and colour-kinematics duality

If the Yang-Mills amplitude is written in terms of BCJ-numerators N(G) and group-

theoretical factors C(G)

An (p,ε) = i(−1)n−3
gn−2 ∑

trivalent graphs G

C (G)N (G)

D(G)
,

then

Mn (p,ε, ε̃) = i(−1)n−3

(κ

4

)n−2

∑
trivalent graphs G

N (G)Ñ (G)

D(G)
,

and of course

mn (p) = i(−1)n−3 λn−2 ∑
trivalent graphs G

C (G)C̃ (G)

D(G)
.

Bern, Carrasco, Johansson, ’10



Effective Lagrangian

We may construct an effective Lagrangian, which gives directly BCJ-numerators

LYM+LGF =
∞

∑
n=2

L
(n),

L(2), L(3) and L(4) agree with the standard terms and L(n≥5) are a complicated zero.

The effective Lagrangian is not unique.

Tolotti, S.W, ’13



Part II.2

The scattering equations



The Riemann sphere

The Riemann sphere is the complex plane plus the point at infinity:

Ĉ = C∪{∞}

Each g =

(

a b

c d

)

∈ PSL(2,C) acts on z ∈ Ĉ through a Möbius transformation:

g · z =
az+b

cz+d
.

Mark n distinct points (z1, ...,zn) on Ĉ.

The moduli space of genus 0 curves with n distinct marked points is denoted by

M0,n =
{

z ∈ Ĉ
n

: zi 6= z j

}

/PSL(2,C) .

M0,n is an affine algebraic variety of dimension (n−3).



The scattering equations

Set

fi (z, p) =
n

∑
j=1, j 6=i

2pi · p j

zi− z j

.

The scattering equations:

fi (z, p) = 0, 1 ≤ i ≤ n.

Only (n−3) equations of the n equations are independent.

Two solutions which are related by a Möbius-transformation are called equivalent

solutions.

There are (n−3)! inequivalent solutions not related by a Möbius-transformation.



The CHY representation

There exists two functions C(σ,z) and E(p,ε,z) on Ĉn such that

mn (σ, σ̃, p) = i

∮

C

dΩCHY C (σ,z)C (σ̃,z),

An (σ, p,ε) = i

∮

C

dΩCHY C (σ,z) E (p,ε,z),

Mn (p,ε, ε̃) = i

∮

C

dΩCHY E (p,ε,z) E (p, ε̃,z).

Details on the definition of the measure dΩCHY:

dΩCHY =
1

(2πi)n−3

dnz

dω ∏ ′ 1

fa (z, p)
, ∏ ′ 1

fa (z, p)
= (−1)i+ j+k

(

zi− z j

)(

z j − zk

)

(zk − zi) ∏
a6=i, j,k

1

fa (z, p)
,

dω = (−1)p+q+r dzpdzqdzr
(

zp− zq

)(

zq− zr

)(

zr − zq

) .

Cachazo, He and Yuan, ’13



Global residue

The (n − 3)-independent scattering equations fi(z, p) = 0 may be re-written as a

system of (n−3) polynomial equations hi(z, p) = 0.

Dolan, Goddard, ’14

The contour integrals are global residues:

An (σ, p,ε) = i Resh′
2
,...,h′n−2

( R ) ,

where the prime denotes gauge-fixed quantities (z1 = 0,zn−1 = 1,zn = ∞).

The rational function R is given by

R = −z4

n

(

∏
i< j<n

zi j

)

C (σ,z) E (z, p,ε)

∣

∣

∣

∣

∣

z1=0,zn−1=1,zn=∞

M. Søgaard and Y. Zhang, ’16



The cyclic factor

The cyclic factor (or Parke-Taylor factor) is given by

C (σ,z) =
1

(zσ1
− zσ2

)(zσ2
− zσ3

) ...(zσn − zσ1
)
.

The cyclic factor encodes the information on the cyclic order.



The polarisation factor

The polarisation factor E (p,ε,z) encodes the information on the helicities of the

external particles.

One possibility to define this factor is through a reduced Pfaffian.

(All definitions have to agree on the solutions of the scattering equations, but may differ

away from this zero-dimensional sub-variety.)



The reduced Pfaffian

Define a (2n)× (2n) antisymmetric matrix Ψ(z, p,ε) through

Ψ(z, p,ε) =

(

A −CT

C B

)

with

Aab =

{

2pa·pb

za−zb
a 6= b,

0 a = b,
Bab =

{

2εa·εb

za−zb
a 6= b,

0 a = b,
Cab =







2εa·pb

za−zb
a 6= b,

−
n

∑
j=1, j 6=a

2εa·p j

za−z j
a = b.

Denote by Ψi j
i j the (2n− 2)× (2n− 2)-matrix, where rows and columns i and j have

been deleted (1 ≤ i < j ≤ n).

The reduced Pfaffian EPfaff(z, p,ε) is defined by

EPfaff (z, p,ε) =
(−1)i+ j

2(zi− z j)
Pf Ψi j

i j (z, p,ε) .

Cachazo, He and Yuan, ’13



Part II.3

KLT relations



Independent primitive amplitudes

How many independent primitive amplitudes An(σ, p,ε) are there for fixed momenta p

and polarisations ε ?

• There are n! external orderings.

• Cyclic invariance reduce the number to (n−1)!.

• Anti-symmetry of the vertices reduce the number to (n−2)!.
Kleiss, Kuijf, 1989

• Jacobi relations reduce the number to (n−3)!.
Bern, Carrasco, Johansson, 2008

Basis B of independent amplitudes consists of (n−3)! elements.



KLT relations

Define (n−3)!× (n−3)!-dimensional matrix mσσ̃ for σ, σ̃ ∈ B by

mσσ̃ = mn (σ, σ̃, p) .

The matrix m is invertible.

Define the KLT-matrix as the inverse of the matrix m:

S = m−1

Kawai, Lewellen, Tye, 1986,

Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove, 2010,

Cachazo, He and Yuan, 2013,

de la Cruz, Kniss, S.W., 2016



KLT relations

The KLT relations express the graviton amplitude Mn(p,ε, ε̃) through products of Yang-

Mills amplitudes An(σ, p,ε) and the KLT-matrix S:

Mn (p,ε, ε̃) = ∑
σ,σ̃∈B

An (σ, p,ε) Sσσ̃ An (σ̃, p, ε̃)

Graphically:

=



Part II.4

Positive geometries and canonical forms



Multivariate residues of differential forms

Let X be a m-dimensional variety and Y a co-dimension one sub-variety.

Let us choose a coordinate system such that Y is given locally by z1 = 0.

Assume that Ω has a pole of order 1 on Y :

Ω =
dz1

z1

∧ψ+θ.

The residue of Ω at Y is defined by

ResY (Ω) = ψ|Y .

A pole of order 1 on Y is called a logarithmic singularity on Y .



Positive geometries and canonical forms

Let X be a m-dimensional (complex) variety and X≥0 the positive part.

A m-form Ω is called a canonical form if

1. For m = 0 one has Ω =±1.

2. The only singularities of Ω are on the boundary of X≥0.

3. The singularities are logarithmic.

4. The residue of Ω on a boundary component is again the canonical form of a (m−1)-
dimensional positive geometry.

Arkani-Hamed, Bai, Lam, ’17,

Abreu, Britto, Duhr, Gardi, Matthew, ’19

Salvatori, Stanojevic, ’19



Part II.5

Intersection theory



The CHY representation

The CHY half-integrands C(σ,z) and E(p,ε,z) transform under PSL(2,C)-
transformations as

F (g · z) =

(

n

∏
j=1

(cz j +d)2

)

F (z)

Therefore, the (n−3)-forms

Ωcyclic (σ,z) = C (σ,z)
dnz

dω
, Ωpol (p,ε,z) = E (p,ε,z)

dnz

dω
.

are PSL(2,C)-invariant.

Remark: We may add to C(σ,z) and E(p,ε,z) terms which vanish on the solutions of

the scattering equations.



Intersection theory

Consider a space X of dimension m, equipped with a connection ∇ = d +η.

The connection one-form η is called the twist.

Elements of

Hm (X ,∇) = { ϕ | ∇ϕ = 0 }/{ ∇ξ }

are called twisted co-cycles.

The intersection number of two twisted co-cycles is defined by

(ϕ1,ϕ2) =
1

(2πi)m

∫

X

ι(ϕ1)∧ϕ2,

where ι maps ϕ1 to a twisted co-cycle in the same cohomology class but with compact

support.

Cho, Matsumoto, ’95; Aomoto, Kita, ’94 (jap.), ’11 (engl.); Yoshida, ’97



Intersection theory

Apply this to X =M0,n and take

η =
n

∑
i=1

fi (z, p)dzi.

Then

mn (σ, σ̃, p) = i
(

Ωcyclic (σ,z),Ωcyclic (σ̃,z)
)

,

An(σ, p,ε) = i
(

Ωcyclic (σ,z),Ωpol (p,ε,z)
)

,

Mn(p,ε, ε̃) = i
(

Ωpol (p,ε,z),Ωpol (p, ε̃,z)
)

.

(Mizera, ’17)

Remark: We may still add to Ωcyclic and Ωpol terms which vanish on the solutions of

the scattering equations.



Part III

Geometric interpretation of scattering amplitudes



Geometric interpretation of tree amplitudes

There exist two (n−3)-forms Ωcyclic(σ,z) and Ωpol(p,ε,z) on the compactified moduli

space M0,n such that

1. The twisted intersection numbers give the amplitudes for the bi-adjoint

scalar theory (cyclic, cyclic), Yang-Mills theory (cyclic,polarisation) and gravity

(polarisation,polarisation).

2. The only singularities of the scattering forms are on the divisor M0,n\M0,n.

3. The singularities are logarithmic.

4. The residues at the singularities factorise into two scattering forms of lower points.

L. de la Cruz, A. Kniss, S.W., ’17



The scattering forms

The cyclic scattering form is defined by

Ωcyclic (σ,z) = C (σ,z)
dnz

dω
, C (σ,z) =

1

(zσ1
− zσ2

)(zσ2
− zσ3

) ...(zσn − zσ1
)
.

The polarisation scattering form is defined by

Ωpol (p,ε,z) = E (p,ε,z)
dnz

dω
, E (p,ε,z) = ∑

κ∈S
(1,n)
n−2

C (κ,z) Ncomb (κ) ,

where the sum is now over all permutations keeping κ1 = 1 and κn = n fixed.

L. de la Cruz, A. Kniss, S.W., ’17



Wrap-up

The n-graviton amplitude is given by

Mn (p,ε, ε̃) = i(−1)n−3 ∑
trivalent graphs G

N (G) Ñ (G)

D(G)
colour-kinematics duality

= i

∮

C

dΩCHY E (p,ε,z) E (p, ε̃,z) CHY representation

= ∑
σ,σ̃∈B

An (σ, p,ε) Sσσ̃ An (σ̃, p, ε̃) KLT relation

= i
(

Ωpol (p,ε,z) ,Ωpol (p, ε̃,z)
)

intersection number



Conclusions

• Clear geometric picture of tree-level amplitudes within the bi-adjoint scalar theory,

Yang-Mills theory and gravity for any number of external particles n.

• Scattering amplituds are given as intersection numbers of two scattering forms. Are

the scattering forms more fundamental?

• Relations between bi-adjoint scalar theory, Yang-Mills theory and gravity are not

manifest in the action as a coordinate space integral over a Lagrange density.

Should we not find and work with a formulation, which makes these structures

manifest from the beginning?
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