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Notation
GKZ hypergeometric integral is a function in z of the following

form:
/ H hi(z) " xp.
r

=1
hi(z) = hy o (z) = Zﬁ\f:zl z](-l)xa( '(9): Laurent polynomials

x = (x1,...,2,): a coordinate of (G,,)" = (C*)"
v € C, ¢ € C"*L: parameters

pE Q ( {II; h(x) = 0}): algebraic n-form

I': a “cycle”
z= (z(l)) ; i iabl
= (2;);: generic variables
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Twisted de Rham machinery

D= {[[;u(x) =0}, X.:=(Gw)"\D, @:=[Ii; hla) a".

Vo :=d lod,od = dx—Zle Yidy log hy(z) A+ D27 cidlog xiA:
integrable connection

(X, Vo) o= B (T3

(Gp)" (xD) VJf): algebraic de Rham

cohomology group

LV = Ker (V‘}{)" : OXgn — Qk?") =Cd!: local system
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Twisted period paring and the cohomology intersection

number
The twisted period pairing

H?, (X.,Ve) x H, (X0, £) — C
v w

(o,T) = fr Dy

is perfect, and some properties of hypergeometric functions can be
recaptured from this viewpoint (4 (Aomoto)).
We call the pairing

(o,0)cn: Hip(X.,Ve)x HI (X0, L) — C
w w
(s 9) = fxan o AV

the cohomology intersection pairing.
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Our motivation
Theorem (i-fAZ (Cho-Matsumoto))

Quadratic relation is a consequence of the twisted version of
Riemann-Hodge bilinear relation (twisted period relation).

(1=v+a)(1—v+B)F (a&ﬁ; z) oFy (720{_’;[3; Z)
_ a52F1 (’Y—a—l’,y"/—ﬂ—l; z) o Fy (1—7+§z_,17—7+6; z)
=(l-y+a+p8)(1-7).

as. )y N (@B n
2P (32) = 2

#H and #AZ observed that the number (1 — v+ a+ 8)(1 —7)
comes from the cohomology intersection number.
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The study of cohomology intersection numbers

GauB,
Appell-Lauricella’s Fp

h 4

GraBman hypergeometric
system (integral)

h 4

GKZ hypergeometric
system (integral)

i (Cho). #AA (Matsumoto)

A, i (Iwasaki),
=% (Kita), #H (Yoshida)
and many others

Today (by a new method)
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Twisted period relation
{eiti CHg (X2, Ve), {Ii}i C Hy (X2 L),
{4} CHP (X2, L), {6V} € HY (X" L£V): bases
pom (5 w2). 7= (170

Ieh := ((@i, Vj)en), In = <<Fi,5}/)h>

Proposition (Twisted period relation)

Ih _ tPtIC—h].PV
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Regularization
{pi}i C HjR (X.,Va): computable by means of Grobner basis (H
Fe-Pa - 1 (Hibi-Nishiyama-Takayama))
{1i}i C HZ (X2, L): transcendental

Theorem (Regularization)

He (X2, £) = Hip (X2, V1)

is true for non-resonant ~y; and ¢ (Gelfand-Kapranov-Zelevinsky).

Under regularization, we may assume {v;}; consists of rational
forms and computable.
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The secondary equation
There exist matrices €2,V whose entries are rational 1-forms such
that
d,P=QP, d,P'=Q"PY (GauB-Manin connection)

This is again, computable.

Ih:tPtI(;L]'Pv, I:tIc—hl

% 0=d,I+'QI +IQY (the secondary equation).
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Characterization of the c.i.n.

Theorem (M.-H.-= [l (Takayama) ArXiv1904.01253)

Under regularization condition, the secondary equation is regular.
Moreover, one has an equality

{rational solutions of the secondary equation} = C'I_,!.

The left-hand side is computable.
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Example

We consider
£) = [ 2
r
—C1 ,.C2

D = (212° + 202y + 2322y~ + 242? + 25x) T2y

C1 1/2
Interesting case: c= | ¢co | = 1 and
C3 0

21 =20 =23 =25 =1

===z

~~Period of a family of K3 surfaces (E=-&% (Narumiya-Shiga)).

~» resonant and non-generic.



Computing cohomology intersection numbers of GKZ hypergeometric systems

1/2
We set ¢ = 1+¢ and z1 = 29 = z3 = 1.
€
dx N\ dy 8log<I> 8log© 82
w= , w, /<I>w
xy 0zs 0z4

is a basis of the twisted cohomology groups for generic parameters.

We can find a solution I of the secondary equation

1 —25 —z5—1/423+1 0
3 EZ4
25 —Szg 0
I = e 4e?2—¢ €23
25+1/422—1 —222+8
£z C32 42 —¢ C34
0 0 c43 0

where ¢;; are rational functions in z; and zs.
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_ (16e+8)22+((—8e—10)22 —32e—24)z5+(e+1) 2} +(—8e—8) 22 +16e+16
€23 = (4e2—¢)zq

_ (16e—24)22+((—8e+6)22 —32e+40)z5+(e—1) 2} +(—8e+8) 22 +16e—16
€32 = (4e2—¢€)za

—1623 + (827 + 32)22 + (—2] + 827 — 16) 25
(462 — €)zy4

C34 =

1623 + (=827 — 32)22 + (2] — 827 + 16)z5
(462 - 6)24

C43 =
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Towards fine structure of the c.i.n.

Problem: we still have the ambiguity of constant multiplication.

We want to extract more explicit information of Iy.

I, ='P'I,'PY = I, =PI "PY

C

P and PV are solutions of GKZ system

~~ Combinatorial structure of the secondary fan
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Newton polytope and normal fan
I, = ﬁf f(z) € Clz], I: polynomial matrix.
f(z) =>4 faz®  z=(21,...,2N).
~» New(f) := convex hull of {a | fo # 0}.

~» N(f): normal fan of New(f).

Figure: New(f)
Figure: The normal fan N (f)
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Normal fan and Laurent expansion

[~ New(f) ~ N(f) ~ X(N(f))
X(N(f)): (partial) toric compactification of (C*)V

ap: vertex of New(f)
~+ Cp: cone of N(f)
~ torus fixed point zg of X(N(f))

1 1
f@) " g se0 (1 + X atae fo%lfaza_“)

= {Laurent expansion converging at zo}
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Expansion theorem

Theorem (M.-H. ArXiv1904.00565, M.-H.-#2]## (Goto) in
progress)

The secondary fan F' is a refinement of N(f). Moreover, at each
torus fixed point zy of X (F'),

3(an explicit formula of Laurent expansion of 1., around zp).

F is computable (in the worst case, partially) while N(f) is
abstract.

F' has a rich combinatorial structure.
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Example revisited

f(2) = /F oy

b = (zla:3 + 202y + z32?y Tt + zax® + z5x)” a2y

1/2
c= 14+¢ and 21 = 29 = 23 = 1.
€
A solution of the secondary equation is

_ —z5—1/4224+1
1 z5 z5 /Z4+ 0
€ 9 €24
—8z
zZ
7= = e c23 0

[
25+1/422—1 —222+48
€24 €32 12 ¢ C34

0 0 C43 0
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Determining the constant

There exists a constant « such that I, = oI~ L.

We can show that the (1,1) entry of the matrix ‘1~ is 725

. . dzAdy dxNd _ 8¢
« is determined by (—qu ,ny Jeh = Q-
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The secondary fan

—log |s]
C
5 — log [z4|?
~ The (partial) compactification is (C*)?, ., ., x P2
bl b 47

C ¢ |27% << 1and |z5%25) << 1
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By the general expansion formula, we get

1 dr ANdy dz Ady
(271-\/__1)2< ry | xy Yeh|zr=zp=25=25=1
1 73 Y
=5 243 € 243 €
2 {sin2 7recos7r(25)(p1( 5e)¢i(zie)
273

— —5—pa(za56) 05 (25€)
SIn- we

e

+-
sin?

o3z ) (2 s>} | 1)

me cos m(2¢)
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p1(z43€)
—2m—2n
=z4_7_2€ Z I(14+e+n)(E - 252—4 2m —2n)I'(1 + € + m)m!n!
o 5 In!
o1 (z45¢)
e o 2m2n
“ Z [(1—e+n)(3 42 —2m —2n)I'(1 — £ + m)m!n!



-
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pa(z45€)
_z—% Z Z4—2m—2n
1 ST —e+n)(5 —2m —2n)L(1 4+ + m)m!n!
(105/(2475)
_Z% Z4—2m—2n
i F(1+e+n)(3 —2m—2n)(1 — e +m)mln!
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p3(24;€)
! m,n>0 F(l —e+t n)F(% + 2 —2m — 2n)F(1 —ec+ m)mlnl
¥3 (24, )
% Z Z4_2m 2n |
& L(1+e+n)(3 -2 —2m —2n)I'(1 + & + m)m!n!
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By expansion formula, we have

1 dx ANdy dx N dy 32
(27T\/—_1)2< Ty ) Ty >ch |21222=Z3=Z5:1,Z4=OO — 1——1652
Since <dx£/dy, dxxAdy) ch IS a priori a constant, we have

1 <da:/\dy dav/\dy> _ 32
2ry/—1)2" zy = wy T T 1682

In other words, the cohomology intersection matrix is equal to

Iy = (2rV—-1) ——— 11,

1—45)
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The limit

Taking the limit of (1), we get

47 0 0 =
~ 0 0 7 O0)¢zy
P 0 x 0 0 oV = 64.
= 0 0 0

D = (B, Dy, D3, Dy)

¢V = (2}, 25, By, Bf)
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The elements of the vector ® are as follows.

(o iroo((2))

5 1 .
by = P3= ﬁ—\/a(ﬁﬁlzo + (log z4) $1)

~ 1
¢y = ﬁ—\/z(dxo + (log z4) ¥}y + (log 24) o)
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~ ~ 1

o= Po— —
2 3 NCNEr

oo (364288, Lo (L1
Py = (45045 2y =29 2)) "

S 0 o (1)

2
Zy

S, 3 1\
oy = 2+zz+o<(z4))

(¢ho + (log z4) Py )
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®40

/
¢n

/
Pao

Y= a

2 (66352873472 — 32818705920~ 4 40581040502

1
(¢ho + (log z4) ¢y + (log 24)l)5)

15
—20290520257% — 328187059201 <__22>

-+81162081007¢ﬂ0)<}—£;>

15\ 2 1
440581040501 <—-2§> > /2029052025+—C)<2)
2y
1457152 15 1
A SN () Y ) L
(4%% 18y ( 2>>++O<ﬁ)

6 1\*
e sio((2))
24 Z4
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The elements of the vector ®V are as follows.

. N
by = by =V2
T

(¢20 + (log z4)21)

oy = 2\/Z_4(¢40+(10gz4)¢41+(10gZ4)2¢42)-

ﬁ
2

/ o
Here, ¢;; and ¢;; are power series in z; ~.
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As for @1, it can be related to Thomae's and GauB’
hypergeometric series by a simple transformation

= 2
7r1/2zim<1>1(24) _ 3F2(1/4’21{f’3/4; 16/2,2) _ (2F1(1/Si3/8; 16/z§))

The last identity is the Clausen’s identity.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!
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Regular triangulation

Each cone of the secondary fan F' has a combinatorial
interpretation.

k
o) = [ TImt) ot = [ hia)ate.

A

(@) = hy o (z) = 2N, 202200)

- A= (@O()] -+ [aD (M)
1 1 0 0
0 oj1r --- 1 0 0
~ A=
0 0jo --- 0 1 1
A A, Ay
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For a cone C of the secondary fan F', we can assign a (regular)
polyhedral triangulation of the convex body
A4 = convex hull of {a(1),...,a(N)}.

3

1 = {123,134, 145}
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Hypergeometric series at the torus fixed point

o CA{l,...,N}: an (n + k)-dimensional simplex, i.e., the square
matrix A, = (a(j));eo is invertible.

7
d:= :
Vi
c
—47'd Z g A7 Aoz )m
0o(2) =2z,
25, F(0 45T+ dgm)m

T is said to be unimodular if det A, = +1 for any simplex o € T'.
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Theorem (M.-H. ArXiv1904.00565)

Suppose that four vectors a,a’ € Z"*! b, b’ € Z**! and a
unimodular regular triangulation T are given. If the parameter d is
generic, one has an identity

<xahbd?a:7 xa’hb’d?x%h
@ry—1)"
=(=1) Py (= B~y — B x
ﬂ_nJrk . ’}/—b . _,y_b/

Zﬁ%pa Z5 + Yo | 25 +a

sopsin TA; d cT+a c
near the torus fixed point corresponding to T'. Here,
@:%A"'/\%r(’Y*b)bz L) pd

x I'(v—b)’
oyt — o (v—b)
TN T T
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What is behind the proof?

The key is the construction of a good basis of H,,(X; L).

Standard way of computing is the method of stationary phase
(Lefschetz thimbles)

= I}, is an identity matrix, P and PV are computed through
stationary phase approximation (H 4, Mizera).

Combinatorial method based on multidimensional Pochhammer
cycles

= orthogonal decomposition of the twisted homology groups

Hn (X5 L) = @aeT Hy oo Hn(Xz; ﬁv) = @aeT H7\1/,o“

= I, is not an identity matrix but still computable. P and PV are
series solutions.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!



