Computing cohomology intersection numbers of GKZ hypergeometric systems

Saiei-Jaeyeong Matsubara-Heo

2019/12/18

Mathemamplitudes 2019

Notation

GKZ hypergeometric integral is a function in z of the following form:

$$
f_{\Gamma}(z)=\int_{\Gamma} \prod_{l=1}^{k} h_{l}(x)^{-\gamma_{l}} x^{c} \varphi
$$

$h_{l}(x)=h_{l, z^{(l)}}(x)=\sum_{j=1}^{N_{l}} z_{j}^{(l)} x^{\mathbf{a}^{(l)}(j)}$: Laurent polynomials
$x=\left(x_{1}, \ldots, x_{n}\right):$ a coordinate of $\left(\mathbb{G}_{m}\right)^{n}=\left(\mathbb{C}^{*}\right)^{n}$
$\gamma_{l} \in \mathbb{C}, c \in \mathbb{C}^{n \times 1}:$ parameters
$\varphi \in \Omega_{\left(\mathbb{G}_{m}\right)^{n}}^{n}\left(*\left\{\prod_{l} h_{l}(x)=0\right\}\right):$ algebraic n-form
Γ : a "cycle"
$z=\left(z_{j}^{(l)}\right)_{j, l}:$ generic variables

Twisted de Rham machinery

$D:=\left\{\prod_{l} h_{l}(x)=0\right\}, \quad X_{z}:=\left(\mathbb{G}_{m}\right)^{n} \backslash D, \quad \Phi:=\prod_{l=1}^{k} h_{l}(x)^{-\gamma_{l}} x^{c}$.
$\nabla_{\Phi}:=\Phi^{-1} \circ d_{x} \circ \Phi=d_{x}-\sum_{l=1}^{k} \gamma_{l} d_{x} \log h_{l}(x) \wedge+\sum_{i=1}^{n} c_{i} d \log x_{i} \wedge:$ integrable connection
$\mathrm{H}_{d R}^{n}\left(X_{z}, \nabla_{\Phi}\right):=\mathrm{H}^{n}\left(\xrightarrow{\nabla_{\Phi}} \Omega_{\left(\mathbb{G}_{m}\right)^{n}}^{\bullet}(* D) \xrightarrow{\nabla_{\Phi}}\right):$ algebraic de Rham cohomology group
$\mathcal{L}^{\vee}:=\operatorname{Ker}\left(\nabla_{\Phi}^{a n}: \mathcal{O}_{X_{z}^{a n}} \rightarrow \Omega_{X_{z}^{a n}}^{1}\right)=\mathbb{C} \Phi^{-1}:$ local system

Twisted period paring and the cohomology intersection number

The twisted period pairing

$$
\begin{array}{ccc}
\mathrm{H}_{d R}^{n}\left(X_{z}, \nabla_{\Phi}\right) \times \mathrm{H}_{n}\left(X_{z}^{a n}, \mathcal{L}\right) & \rightarrow & \mathbb{C} \\
\Psi & & \Psi \\
(\varphi, \Gamma) & \mapsto & \int_{\Gamma} \Phi \varphi
\end{array}
$$

is perfect, and some properties of hypergeometric functions can be recaptured from this viewpoint (青本 (Aomoto)).
We call the pairing
$\langle\bullet, \bullet\rangle_{c h}: \quad \mathrm{H}_{d R}^{n}\left(X_{z}, \nabla_{\Phi}\right) \times \mathrm{H}_{c}^{n}\left(X_{z}^{a n}, \mathcal{L}\right) \rightarrow$

$$
(\varphi, \psi)
$$

$$
\mapsto \quad \int_{X_{z}^{a n}} \varphi \wedge \psi
$$

the cohomology intersection pairing.

Our motivation

Theorem（趙－松本（Cho－Matsumoto））
Quadratic relation is a consequence of the twisted version of Riemann－Hodge bilinear relation（twisted period relation）．

$$
\begin{aligned}
& (1-\gamma+\alpha)(1-\gamma+\beta)_{2} F_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} ; z\right){ }_{2} F_{1}\left(\begin{array}{c}
-\alpha,-\beta \\
2-\gamma
\end{array} ; z\right) \\
& \left.-\alpha \beta_{2} F_{1}\binom{\gamma-\alpha-1, \gamma-\beta-1}{\gamma}{ }_{2} F_{1}\binom{1-\gamma+\alpha, 1-\gamma+\beta}{2-\gamma} z\right) \\
= & (1-\gamma+\alpha+\beta)(1-\gamma) .
\end{aligned}
$$

$$
{ }_{2} F_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} ; z\right)=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{(\gamma)_{n}(1)_{n}} z^{n}
$$

趙 and 松本 observed that the number $(1-\gamma+\alpha+\beta)(1-\gamma)$ comes from the cohomology intersection number．

The study of cohomology intersection numbers

趙（Cho），松本（Matsumoto）

松本，岩崎（Iwasaki），喜多（Kita），吉田（Yoshida） and many others

Today（by a new method）

Twisted period relation

$\left\{\varphi_{i}\right\}_{i} \subset \mathrm{H}_{d R}^{n}\left(X_{z}, \nabla_{\Phi}\right), \quad\left\{\Gamma_{i}\right\}_{i} \subset \mathrm{H}_{n}\left(X_{z}^{a n} ; \mathcal{L}\right)$,
$\left\{\psi_{i}\right\}_{i} \subset \mathrm{H}_{c}^{n}\left(X_{z}^{a n}, \mathcal{L}\right), \quad\left\{\delta_{i}^{\vee}\right\}_{i} \subset H_{n}^{l f}\left(X_{z}^{a n} ; \mathcal{L}^{\vee}\right):$ bases
$P:=\left(\int_{\Gamma_{j}} \Phi \varphi_{i}\right), \quad P^{\vee}:=\left(\int_{\delta_{j}^{\vee}} \Phi^{-1} \psi_{i}\right)$,
$I_{c h}:=\left(\left\langle\varphi_{i}, \psi_{j}\right\rangle_{c h}\right), \quad I_{h}:=\left(\left\langle\Gamma_{i}, \delta_{j}^{\vee}\right\rangle_{h}\right)$
Proposition (Twisted period relation)

$$
I_{h}={ }^{t} P^{t} I_{c h}^{-1} P^{\vee}
$$

Regularization

$\left\{\varphi_{i}\right\}_{i} \subset \mathrm{H}_{d R}^{n}\left(X_{z}, \nabla_{\Phi}\right)$ ：computable by means of Gröbner basis（日比－西山－高山（Hibi－Nishiyama－Takayama））
$\left\{\psi_{i}\right\}_{i} \subset \mathrm{H}_{c}^{n}\left(X_{z}^{a n}, \mathcal{L}\right):$ transcendental
Theorem（Regularization）

$$
\mathrm{H}_{c}^{n}\left(X_{z}^{a n}, \mathcal{L}\right) \xrightarrow[\rightarrow]{\sim} \mathrm{H}_{d R}^{n}\left(X_{z}, \nabla_{\Phi^{-1}}\right)
$$

is true for non－resonant γ_{l} and c（Gelfand－Kapranov－Zelevinsky）．
Under regularization，we may assume $\left\{\psi_{i}\right\}_{i}$ consists of rational forms and computable．

The secondary equation

There exist matrices Ω, Ω^{\vee} whose entries are rational 1-forms such that

$$
d_{z} P=\Omega P, \quad d_{z} P^{\vee}=\Omega^{\vee} P^{\vee} \quad \text { (Gauß-Manin connection) }
$$

This is again, computable.

$$
\begin{array}{rl}
& I_{h}={ }^{t} P^{t} I_{c h}^{-1} P^{\vee}, \quad I={ }^{t} I_{c h}^{-1} \\
{ }_{\rightsquigarrow}^{d_{z}} & 0=d_{z} I+{ }^{t} \Omega I+I \Omega^{\vee} \quad \text { (the secondary equation). }
\end{array}
$$

Characterization of the c.i.n.

Theorem (M.-H.-高山 (Takayama) ArXiv1904.01253)
Under regularization condition, the secondary equation is regular. Moreover, one has an equality

$$
\{\text { rational solutions of the secondary equation }\}=\mathbb{C}^{t} I_{c h}^{-1} .
$$

The left-hand side is computable.

Example

We consider

$$
f(z)=\int_{\Gamma} \Phi \varphi
$$

$$
\Phi=\left(z_{1} x^{3}+z_{2} x^{2} y+z_{3} x^{2} y^{-1}+z_{4} x^{2}+z_{5} x\right)^{-c_{1}} x^{c_{2}} y^{c_{3}}
$$

Interesting case：$c=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{c}1 / 2 \\ 1 \\ 0\end{array}\right)$ and
$z_{1}=z_{2}=z_{3}=z_{5}=1$
\rightsquigarrow Period of a family of K3 surfaces（成宮－志賀（Narumiya－Shiga））．
\rightsquigarrow resonant and non－generic．

We set $c=\left(\begin{array}{c}1 / 2 \\ 1+\varepsilon \\ \varepsilon\end{array}\right)$ and $z_{1}=z_{2}=z_{3}=1$.

$$
\left\{\omega=\frac{d x \wedge d y}{x y}, \frac{\partial \log \Phi}{\partial z_{5}} \omega, \frac{\partial \log \Phi}{\partial z_{4}} \omega, \frac{\partial^{2} \Phi}{\partial z_{5}} / \Phi \omega\right\}
$$

is a basis of the twisted cohomology groups for generic parameters.
We can find a solution I of the secondary equation

$$
I=\left(\begin{array}{cccc}
1 & \frac{-z_{5}}{\varepsilon} & \frac{-z_{5}-1 / 4 z_{4}^{2}+1}{\varepsilon z_{4}} & 0 \\
\frac{z_{5}}{\varepsilon} & \frac{-8 z_{5}^{2}}{4 \varepsilon^{2}-\varepsilon} & c_{23} & 0 \\
\frac{z_{5}+1 / 4 z_{4}^{2}-1}{\varepsilon z_{4}} & c_{32} & \frac{-2 z_{4}^{2}+8}{4 \varepsilon^{2}-\varepsilon} & c_{34} \\
0 & 0 & c_{43} & 0
\end{array}\right)
$$

where $c_{i j}$ are rational functions in z_{4} and z_{5}.

$$
\begin{gathered}
c_{23}=\frac{(16 \varepsilon+8) z_{5}^{2}+\left((-8 \varepsilon-10) z_{4}^{2}-32 \varepsilon-24\right) z_{5}+(\varepsilon+1) z_{4}^{4}+(-8 \varepsilon-8) z_{4}^{2}+16 \varepsilon+16}{\left(4 \varepsilon^{2}-\varepsilon\right) z_{4}} \\
c_{32}=\frac{(16 \varepsilon-24) z_{5}^{2}+\left((-8 \varepsilon+6) z_{4}^{2}-32 \varepsilon+40\right) z_{5}+(\varepsilon-1) z_{4}^{4}+(-8 \varepsilon+8) z_{4}^{2}+16 \varepsilon-16}{\left(4 \varepsilon^{2}-\varepsilon\right) z_{4}} \\
c_{34}=\frac{-16 z_{5}^{3}+\left(8 z_{4}^{2}+32\right) z_{5}^{2}+\left(-z_{4}^{4}+8 z_{4}^{2}-16\right) z_{5}}{\left(4 \varepsilon^{2}-\varepsilon\right) z_{4}} \\
c_{43}=\frac{16 z_{5}^{3}+\left(-8 z_{4}^{2}-32\right) z_{5}^{2}+\left(z_{4}^{4}-8 z_{4}^{2}+16\right) z_{5}}{\left(4 \varepsilon^{2}-\varepsilon\right) z_{4}}
\end{gathered}
$$

Towards fine structure of the c.i.n.

Problem: we still have the ambiguity of constant multiplication.
We want to extract more explicit information of $I_{c h}$.

$$
I_{h}={ }^{t} P^{t} I_{c h}^{-1} P^{\vee} \Longleftrightarrow I_{c h}=P^{t} I_{h}^{-1 t} P^{\vee}
$$

P and P^{\vee} are solutions of GKZ system
\rightsquigarrow Combinatorial structure of the secondary fan

Newton polytope and normal fan

$I_{c h}=\frac{1}{f(z)} \tilde{I}, f(z) \in \mathbb{C}[z], \tilde{I}$: polynomial matrix.
$f(z)=\sum_{\alpha} f_{\alpha} z^{\alpha}, \quad z=\left(z_{1}, \ldots, z_{N}\right)$.
$\rightsquigarrow \operatorname{New}(f):=$ convex hull of $\left\{\alpha \mid f_{\alpha} \neq 0\right\}$.
$\rightsquigarrow N(f)$: normal fan of $\operatorname{New}(f)$.

Figure: $\operatorname{New}(f)$

Figure: The normal fan $N(f)$

Normal fan and Laurent expansion

$f \rightsquigarrow \operatorname{New}(f) \rightsquigarrow N(f) \rightsquigarrow X(N(f))$
$X(N(f))$: (partial) toric compactification of $\left(\mathbb{C}^{*}\right)^{N}$
α_{0} : vertex of $\operatorname{New}(f)$
$\rightsquigarrow C_{0}$: cone of $N(f)$
\rightsquigarrow torus fixed point z_{0} of $X(N(f))$
\leadsto

$$
\begin{aligned}
\frac{1}{f(z)} & =\frac{1}{f_{\alpha_{0}} z^{\alpha_{0}}\left(1+\sum_{\alpha \neq \alpha_{0}} f_{\alpha_{0}}^{-1} f_{\alpha} z^{\alpha-\alpha_{0}}\right)} \\
& =\left\{\text { Laurent expansion converging at } z_{0}\right\}
\end{aligned}
$$

Expansion theorem

Theorem (M.-H. ArXiv1904.00565, M.-H.-後藤 (Goto) in progress)
The secondary fan F is a refinement of $N(f)$. Moreover, at each torus fixed point z_{0} of $X(F)$,
$\exists\left(\right.$ an explicit formula of Laurent expansion of $I_{c h}$ around $\left.z_{0}\right)$.
F is computable (in the worst case, partially) while $N(f)$ is abstract.
F has a rich combinatorial structure.

Example revisited

$$
\begin{gathered}
f(z)=\int_{\Gamma} \Phi \varphi \\
\Phi=\left(z_{1} x^{3}+z_{2} x^{2} y+z_{3} x^{2} y^{-1}+z_{4} x^{2}+z_{5} x\right)^{-c_{1}} x^{c_{2}} y^{c_{3}} \\
c=\left(\begin{array}{c}
1 / 2 \\
1+\varepsilon \\
\varepsilon
\end{array}\right) \text { and } z_{1}=z_{2}=z_{3}=1
\end{gathered}
$$

A solution of the secondary equation is

$$
I=\left(\begin{array}{cccc}
1 & \frac{-z_{5}}{\varepsilon} & \frac{-z_{5}-1 / 4 z_{4}^{2}+1}{\varepsilon z_{4}} & 0 \\
\frac{z_{5}}{\varepsilon} & \frac{-8 z_{5}^{2}}{4 \varepsilon^{2}-\varepsilon} & c_{23} & 0 \\
\frac{z_{5}+1 / 4 z_{4}^{2}-1}{\varepsilon z_{4}} & c_{32} & \frac{-2 z_{4}^{2}+8}{4 \varepsilon^{2}-\varepsilon} & c_{34} \\
0 & 0 & c_{43} & 0
\end{array}\right) .
$$

Determining the constant

There exists a constant α such that $I_{c h}=\alpha^{t} I^{-1}$.

We can show that the $(1,1)$ entry of the matrix ${ }^{t} I^{-1}$ is $\frac{8 \varepsilon}{4 \varepsilon+1}$.
α is determined by $\left\langle\frac{d x \wedge d y}{x y}, \frac{d x \wedge d y}{x y}\right\rangle_{c h}=\alpha \frac{8 \varepsilon}{4 \varepsilon+1}$.

The secondary fan

\rightsquigarrow The (partial) compactification is $\left(\mathbb{C}^{*}\right)_{z_{1}, z_{2}, z_{3}}^{3} \times \mathbb{P}_{z_{4}^{2}, z_{5}}^{2}$

$$
C \leftrightarrow\left|z_{4}^{-2}\right| \ll 1 \text { and }\left|z_{4}^{-2} z_{5}\right| \ll 1
$$

By the general expansion formula, we get

$$
\begin{align*}
& \left.\frac{1}{(2 \pi \sqrt{-1})^{2}}\left\langle\frac{d x \wedge d y}{x y}, \frac{d x \wedge d y}{x y}\right\rangle_{c h}\right|_{z_{1}=z_{2}=z_{3}=z_{5}=1} \\
= & \frac{1}{2}\left\{\frac{\pi^{3}}{\sin ^{2} \pi \varepsilon \cos \pi(2 \varepsilon)} \varphi_{1}\left(z_{4} ; \varepsilon\right) \varphi_{1}^{\vee}\left(z_{4} ; \varepsilon\right)\right. \\
& -\frac{2 \pi^{3}}{\sin ^{2} \pi \varepsilon} \varphi_{2}\left(z_{4} ; \varepsilon\right) \varphi_{2}^{\vee}\left(z_{4} ; \varepsilon\right) \\
& \left.+\frac{\pi^{3}}{\sin ^{2} \pi \varepsilon \cos \pi(2 \varepsilon)} \varphi_{3}\left(z_{4} ; \varepsilon\right) \varphi_{3}^{\vee}\left(z_{4} ; \varepsilon\right)\right\} . \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \varphi_{1}\left(z_{4} ; \varepsilon\right) \\
= & z_{4}^{-\frac{1}{2}-2 \varepsilon} \sum_{m, n \geq 0} \frac{z_{4}^{-2 m-2 n}}{\Gamma(1+\varepsilon+n) \Gamma\left(\frac{1}{2}-2 \varepsilon-2 m-2 n\right) \Gamma(1+\varepsilon+m) m!n!} \\
& \varphi_{1}^{\vee}\left(z_{4} ; \varepsilon\right) \\
= & z_{4}^{\frac{1}{2}+2 \varepsilon} \sum_{m, n \geq 0} \frac{z_{4}^{-2 m-2 n}}{\Gamma(1-\varepsilon+n) \Gamma\left(\frac{3}{2}+2 \varepsilon-2 m-2 n\right) \Gamma(1-\varepsilon+m) m!n!}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{2}\left(z_{4} ; \varepsilon\right) \\
= & z_{4}^{-\frac{1}{2}} \sum_{m, n \geq 0} \frac{z_{4}^{-2 m-2 n}}{\Gamma(1-\varepsilon+n) \Gamma\left(\frac{1}{2}-2 m-2 n\right) \Gamma(1+\varepsilon+m) m!n!} \\
& \varphi_{2}^{\vee}\left(z_{4} ; \varepsilon\right) \\
= & z_{4}^{\frac{1}{2}} \sum_{m, n \geq 0} \frac{z_{4}^{-2 m-2 n}}{\Gamma(1+\varepsilon+n) \Gamma\left(\frac{3}{2}-2 m-2 n\right) \Gamma(1-\varepsilon+m) m!n!}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{3}\left(z_{4} ; \varepsilon\right) \\
= & z_{4}^{-\frac{1}{2}+2 \varepsilon} \sum_{m, n \geq 0} \frac{z_{4}^{-2 m-2 n}}{\Gamma(1-\varepsilon+n) \Gamma\left(\frac{1}{2}+2 \varepsilon-2 m-2 n\right) \Gamma(1-\varepsilon+m) m!n!} . \\
& \varphi_{3}^{\vee}\left(z_{4} ; \varepsilon\right) \\
= & z_{4}^{\frac{1}{2}-2 \varepsilon} \sum_{m, n \geq 0} \frac{z_{4}^{-2 m-2 n}}{\Gamma(1+\varepsilon+n) \Gamma\left(\frac{3}{2}-2 \varepsilon-2 m-2 n\right) \Gamma(1+\varepsilon+m) m!n!} .
\end{aligned}
$$

By expansion formula, we have

$$
\left.\frac{1}{(2 \pi \sqrt{-1})^{2}}\left\langle\frac{d x \wedge d y}{x y}, \frac{d x \wedge d y}{x y}\right\rangle_{c h}\right|_{z_{1}=z_{2}=z_{3}=z_{5}=1, z_{4}=\infty}=\frac{32}{1-16 \varepsilon^{2}} .
$$

Since $\left\langle\frac{d x \wedge d y}{x y}, \frac{d x \wedge d y}{x y}\right\rangle_{c h}$ is a priori a constant, we have

$$
\frac{1}{(2 \pi \sqrt{-1})^{2}}\left\langle\frac{d x \wedge d y}{x y}, \frac{d x \wedge d y}{x y}\right\rangle_{c h}=\frac{32}{1-16 \varepsilon^{2}} .
$$

In other words, the cohomology intersection matrix is equal to

$$
I_{c h}=(2 \pi \sqrt{-1})^{2} \frac{4}{\varepsilon(1-4 \varepsilon)}{ }^{t} I^{-1}
$$

The limit

Taking the limit of (1), we get

$$
\begin{gather*}
\tilde{\Phi}\left(\begin{array}{cccc}
4 \pi^{3} & 0 & 0 & \pi \\
0 & 0 & \pi & 0 \\
0 & \pi & 0 & 0 \\
\pi & 0 & 0 & 0
\end{array}\right){ }^{t} \tilde{\Phi}^{\vee}=64 \tag{2}\\
\tilde{\Phi}=\left(\tilde{\Phi}_{1}, \tilde{\Phi}_{2}, \tilde{\Phi}_{3}, \tilde{\Phi}_{4}\right) \\
\tilde{\Phi}^{\vee}=\left(\tilde{\Phi}_{1}^{\vee}, \tilde{\Phi}_{2}^{\vee}, \tilde{\Phi}_{3}^{\vee}, \tilde{\Phi}_{4}^{\vee}\right)
\end{gather*}
$$

The elements of the vector $\tilde{\Phi}$ are as follows.

$$
\begin{gathered}
\tilde{\Phi}_{1}=\frac{1}{\sqrt{\pi} \sqrt{z_{4}}}\left(1+\frac{3}{2 z_{4}^{2}}+O\left(\left(\frac{1}{z_{4}}\right)^{4}\right)\right) \\
\tilde{\Phi}_{2}=\tilde{\Phi}_{3}=\frac{1}{\sqrt{\pi} \sqrt{z_{4}}}\left(\phi_{20}^{\prime}+\left(\log z_{4}\right) \phi_{21}^{\prime}\right) \\
\tilde{\Phi}_{4}=\frac{1}{\sqrt{\pi} \sqrt{z_{4}}}\left(\phi_{40}^{\prime}+\left(\log z_{4}\right) \phi_{41}^{\prime}+\left(\log z_{4}\right)^{2} \phi_{42}^{\prime}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \tilde{\Phi}_{2}=\tilde{\Phi}_{3}=\frac{1}{\sqrt{\pi} \sqrt{z_{4}}}\left(\phi_{20}^{\prime}+\left(\log z_{4}\right) \phi_{21}^{\prime}\right) \\
& \phi_{20}^{\prime}=\left(\frac{364288}{45045}-2 \gamma-2 \psi^{(0)}\left(-\frac{15}{2}\right)\right)+ \\
& \frac{\frac{169093}{30030}-3 \gamma-3 \psi^{(0)}\left(-\frac{15}{2}\right)}{z_{4}^{2}}+O\left(\left(\frac{1}{z_{4}}\right)^{4}\right) \\
& \phi_{21}^{\prime}= 2+\frac{3}{z_{4}^{2}}+O\left(\left(\frac{1}{z_{4}}\right)^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\Phi}_{4}=\frac{1}{\sqrt{\pi} \sqrt{z_{4}}}\left(\phi_{40}^{\prime}+\left(\log z_{4}\right) \phi_{41}^{\prime}+\left(\log z_{4}\right)^{2} \phi_{42}^{\prime}\right) \\
& \phi_{40}= 2\left(66352873472-32818705920 \gamma+4058104050 \gamma^{2}\right. \\
&-2029052025 \pi^{2}-32818705920 \psi^{(0)}\left(-\frac{15}{2}\right) \\
&+8116208100 \gamma \psi^{(0)}\left(-\frac{15}{2}\right) \\
&\left.+4058104050 \psi^{(0)}\left(-\frac{15}{2}\right)^{2}\right) / 2029052025+O\left(\frac{1}{z_{4}^{2}}\right) \\
& \phi_{41}^{\prime}=\left(\frac{1457152}{45045}-8 \gamma-8 \psi^{(0)}\left(-\frac{15}{2}\right)\right)++O\left(\frac{1}{z_{4}^{2}}\right) \\
& \phi_{42}^{\prime}= 4+\frac{6}{z_{4}^{2}}+O\left(\left(\frac{1}{z_{4}}\right)^{4}\right)
\end{aligned}
$$

The elements of the vector $\tilde{\Phi}^{\vee}$ are as follows.

$$
\begin{gathered}
\tilde{\Phi}_{1}^{\vee}=\frac{2 \sqrt{z_{4}}}{\sqrt{\pi}}\left(1-\frac{1}{2 z_{4}^{2}}+O\left(\left(\frac{1}{z_{4}}\right)^{4}\right)\right) \\
\tilde{\Phi}_{2}^{\vee}=\tilde{\Phi}_{3}^{\vee}=\frac{2 \sqrt{z_{4}}}{\sqrt{\pi}}\left(\phi_{20}+\left(\log z_{4}\right) \phi_{21}\right) \\
\tilde{\Phi}_{4}^{\vee}=\frac{2 \sqrt{z_{4}}}{\sqrt{\pi}}\left(\phi_{40}+\left(\log z_{4}\right) \phi_{41}+\left(\log z_{4}\right)^{2} \phi_{42}\right)
\end{gathered}
$$

Here, $\phi_{i j}$ and $\phi_{i j}^{\prime}$ are power series in z_{4}^{-2}.

As for $\tilde{\Phi}_{1}$, it can be related to Thomae's and Gauß' hypergeometric series by a simple transformation

$$
\pi^{1 / 2} z_{4}^{1 / 2} \tilde{\Phi}_{1}\left(z_{4}\right)={ }_{3} F_{2}\left(\begin{array}{c}
1 / 4,2 / 4,3 / 4 \\
1,1
\end{array} ; 16 / z_{4}^{2}\right)=\left({ }_{2} F_{1}\left(\begin{array}{c}
1 / 8,3 / 8 \\
1
\end{array} 16 / z_{4}^{2}\right)\right)^{2}
$$

The last identity is the Clausen's identity.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Regular triangulation

Each cone of the secondary fan F has a combinatorial interpretation.

$$
\begin{gathered}
f_{\Gamma}(z)=\int_{\Gamma} \prod_{l=1}^{k} h_{l}(x)^{-\gamma_{l}} x^{c} \varphi=\int_{\Gamma} h(x)^{-\gamma} x^{c} \varphi . \\
h_{l}(x)=h_{l, z^{(l)}(x)=\sum_{j=1}^{N_{l}} z_{j}^{(l)} x^{\mathbf{a}^{(l)}(j)}}^{\rightsquigarrow A_{l}=\left(\mathbf{a}^{(l)}(1)|\cdots| \mathbf{a}^{(l)}\left(N_{l}\right)\right)} \\
\rightsquigarrow A=\left(\begin{array}{ccc|ccc|c|ccc}
1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\hline 0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\
\hline & \vdots & & & \vdots & & \ddots & & \vdots & \\
\hline 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 \\
\hline & A_{1} & & A_{2} & & \cdots & & A_{k}
\end{array}\right) \\
=(\mathbf{a}(1)|\cdots| \mathbf{a}(N))
\end{gathered}
$$

For a cone C of the secondary fan F, we can assign a (regular) polyhedral triangulation of the convex body
$\Delta_{A}=$ convex hull of $\{\mathbf{a}(1), \ldots, \mathbf{a}(N)\}$.

Hypergeometric series at the torus fixed point

$\sigma \subset\{1, \ldots, N\}:$ an $(n+k)$-dimensional simplex, i.e., the square matrix $A_{\sigma}=(\mathbf{a}(j))_{j \in \sigma}$ is invertible.

$$
\begin{gathered}
d:=\left(\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{k} \\
c
\end{array}\right) \\
\varphi_{\sigma}(z):=z_{\sigma}^{-A_{\sigma}^{-1} d} \sum_{\mathbf{m} \in \mathbb{Z}_{\geq 0}^{\bar{\sigma}}} \frac{\left(z_{\sigma}^{-A_{\sigma}^{-1} A_{\bar{\sigma}}} z_{\bar{\sigma}}\right)^{\mathbf{m}}}{\Gamma\left(\mathbf{1}_{\sigma}-A_{\sigma}^{-1}\left(d+A_{\bar{\sigma}} \mathbf{m}\right)\right) \mathbf{m}!}
\end{gathered}
$$

T is said to be unimodular if $\operatorname{det} A_{\sigma}= \pm 1$ for any simplex $\sigma \in T$.

Theorem (M.-H. ArXiv1904.00565)

Suppose that four vectors $\mathbf{a}, \mathbf{a}^{\prime} \in \mathbb{Z}^{n \times 1}, \mathbf{b}, \mathbf{b}^{\prime} \in \mathbb{Z}^{k \times 1}$ and a unimodular regular triangulation T are given. If the parameter d is generic, one has an identity

$$
\begin{aligned}
& \frac{\left\langle x^{\mathbf{a}} h^{\mathbf{b}} \frac{d x}{x}, x^{\mathbf{a}^{\prime}} h^{\mathbf{b}^{\prime}} \frac{d x}{x}\right\rangle_{c h}}{(2 \pi \sqrt{-1})^{n}} \\
= & (-1)^{|\mathbf{b}|+\left|\mathbf{b}^{\prime}\right|} \gamma_{1} \cdots \gamma_{k}(\gamma-\mathbf{b})_{\mathbf{b}}\left(-\gamma-\mathbf{b}^{\prime}\right)_{\mathbf{b}^{\prime}} \times \\
& \sum_{\sigma \in T} \frac{\pi^{n+k}}{\sin \pi A_{\sigma}^{-1} d} \varphi_{\sigma}\left(z ;\binom{\gamma-\mathbf{b}}{c+\mathbf{a}}\right) \varphi_{\sigma}\left(z ;\binom{-\gamma-\mathbf{b}^{\prime}}{-c+\mathbf{a}^{\prime}}\right)
\end{aligned}
$$

near the torus fixed point corresponding to T. Here, $\frac{d x}{x}=\frac{d x_{1}}{x_{1}} \wedge \cdots \wedge \frac{d x_{n}}{x_{n}},(\gamma-\mathbf{b})_{\mathbf{b}}=\frac{\Gamma(\gamma)}{\Gamma(\gamma-\mathbf{b})}$, and
$\left(-\gamma-\mathbf{b}^{\prime}\right)_{\mathbf{b}^{\prime}}=\frac{\Gamma(-\gamma)}{\Gamma\left(-\gamma-\mathbf{b}^{\prime}\right)}$

What is behind the proof?

The key is the construction of a good basis of $\mathrm{H}_{n}\left(X_{z} ; \mathcal{L}\right)$.
Standard way of computing is the method of stationary phase (Lefschetz thimbles) $\Rightarrow I_{h}$ is an identity matrix, P and P^{\vee} are computed through stationary phase approximation (青本, Mizera).

Combinatorial method based on multidimensional Pochhammer cycles
\Rightarrow orthogonal decomposition of the twisted homology groups
$\mathrm{H}_{n}\left(X_{z} ; \mathcal{L}\right)=\bigoplus_{\sigma \in T} \mathrm{H}_{n, \sigma}, \mathrm{H}_{n}\left(X_{z} ; \mathcal{L}^{\vee}\right)=\bigoplus_{\sigma \in T} \mathrm{H}_{n, \sigma}^{\vee}$.
$\Rightarrow I_{h}$ is not an identity matrix but still computable. P and P^{\vee} are series solutions.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

