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Computing cohomology intersection numbers of GKZ hypergeometric systems

Notation
GKZ hypergeometric integral is a function in z of the following
form:

fΓ(z) =

∫
Γ

k∏
l=1

hl(x)
−γlxcφ.

hl(x) = hl,z(l)(x) =
∑Nl

j=1 z
(l)
j xa

(l)(j): Laurent polynomials

x = (x1, . . . , xn): a coordinate of (Gm)n = (C∗)n

γl ∈ C, c ∈ Cn×1: parameters

φ ∈ Ωn
(Gm)n (∗{

∏
l hl(x) = 0}): algebraic n-form

Γ: a “cycle”

z = (z
(l)
j )j,l: generic variables
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Twisted de Rham machinery

D := {
∏

l hl(x) = 0}, Xz := (Gm)n \D, Φ :=
∏k

l=1 hl(x)
−γlxc.

∇Φ := Φ−1◦dx◦Φ = dx−
∑k

l=1 γldx log hl(x)∧+
∑n

i=1 cid log xi∧:
integrable connection

Hn
dR(Xz,∇Φ) := Hn

(
∇Φ→ Ω•

(Gm)n (∗D)
∇Φ→
)
: algebraic de Rham

cohomology group

L∨ := Ker
(
∇an

Φ : OXan
z

→ Ω1
Xan

z

)
= CΦ−1: local system
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Twisted period paring and the cohomology intersection
number

The twisted period pairing

Hn
dR (Xz,∇Φ)×Hn (X

an
z ,L) → C

∈ ∈

(φ,Γ) 7→
∫
ΓΦφ

is perfect, and some properties of hypergeometric functions can be
recaptured from this viewpoint (青本 (Aomoto)).
We call the pairing

⟨•, •⟩ch : Hn
dR (Xz,∇Φ)×Hn

c (X
an
z ,L) → C

∈ ∈

(φ,ψ) 7→
∫
Xan

z
φ ∧ ψ

the cohomology intersection pairing.
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Our motivation

Theorem (趙-松本 (Cho-Matsumoto))

Quadratic relation is a consequence of the twisted version of
Riemann-Hodge bilinear relation (twisted period relation).

(1− γ + α)(1− γ + β)2F1

(
α,β
γ ; z

)
2F1

(
−α,−β
2−γ ; z

)
− αβ2F1

(
γ−α−1,γ−β−1

γ ; z
)
2F1

(
1−γ+α,1−γ+β

2−γ ; z
)

=(1− γ + α+ β)(1− γ).

2F1

(
α,β
γ ; z

)
=

∞∑
n=0

(α)n(β)n
(γ)n(1)n

zn

趙 and 松本 observed that the number (1− γ + α+ β)(1− γ)
comes from the cohomology intersection number.
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The study of cohomology intersection numbers

Gauß,
Appell-Lauricella’s FD

Graßman hypergeometric
system (integral)

GKZ hypergeometric
system (integral)

趙 (Cho)、松本 (Matsumoto)

松本、岩崎 (Iwasaki)、
喜多 (Kita)、吉田 (Yoshida)
and many others

Today (by a new method)
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Twisted period relation

{φi}i ⊂ Hn
dR (Xz,∇Φ), {Γi}i ⊂ Hn (X

an
z ;L),

{ψi}i ⊂ Hn
c (X

an
z ,L), {δ∨i }i ⊂ Hlf

n (Xan
z ;L∨): bases

P :=
(∫

Γj
Φφi

)
, P∨ :=

(∫
δ∨j

Φ−1ψi

)
,

Ich := (⟨φi, ψj⟩ch), Ih :=
(
⟨Γi, δ

∨
j ⟩h
)

Proposition (Twisted period relation)

Ih = tP tI−1
ch P

∨
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Regularization

{φi}i ⊂ Hn
dR (Xz,∇Φ): computable by means of Gröbner basis (日

比-西山-高山 (Hibi-Nishiyama-Takayama))

{ψi}i ⊂ Hn
c (X

an
z ,L): transcendental

Theorem (Regularization)

Hn
c (X

an
z ,L) →̃Hn

dR (Xz,∇Φ−1)

is true for non-resonant γl and c (Gelfand-Kapranov-Zelevinsky).

Under regularization, we may assume {ψi}i consists of rational
forms and computable.
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The secondary equation

There exist matrices Ω,Ω∨ whose entries are rational 1-forms such
that

dzP = ΩP, dzP
∨ = Ω∨P∨ (Gauß-Manin connection)

This is again, computable.

Ih = tP tI−1
ch P

∨, I = tI−1
ch

dz⇝ 0 = dzI +
tΩI + IΩ∨ (the secondary equation).
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Characterization of the c.i.n.

Theorem (M.-H.-高山 (Takayama) ArXiv1904.01253)

Under regularization condition, the secondary equation is regular.
Moreover, one has an equality

{rational solutions of the secondary equation} = CtI−1
ch .

The left-hand side is computable.
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Example

We consider

f(z) =

∫
Γ
Φφ

Φ = (z1x
3 + z2x

2y + z3x
2y−1 + z4x

2 + z5x)
−c1xc2yc3

Interesting case: c =

 c1
c2
c3

 =

 1/2
1
0

 and

z1 = z2 = z3 = z5 = 1

⇝Period of a family of K3 surfaces (成宮-志賀 (Narumiya-Shiga)).

⇝ resonant and non-generic.
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We set c =

 1/2
1 + ε
ε

 and z1 = z2 = z3 = 1.

{
ω =

dx ∧ dy
xy

,
∂ log Φ

∂z5
ω,
∂ log Φ

∂z4
ω,
∂2Φ

∂z5
/Φω

}
is a basis of the twisted cohomology groups for generic parameters.

We can find a solution I of the secondary equation

I =


1 −z5

ε
−z5−1/4z24+1

εz4
0

z5
ε

−8z25
4ε2−ε

c23 0
z5+1/4z24−1

εz4
c32

−2z24+8
4ε2−ε

c34
0 0 c43 0


where cij are rational functions in z4 and z5.
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c23 =
(16ε+8)z25+((−8ε−10)z24−32ε−24)z5+(ε+1)z44+(−8ε−8)z24+16ε+16

(4ε2−ε)z4

c32 =
(16ε−24)z25+((−8ε+6)z24−32ε+40)z5+(ε−1)z44+(−8ε+8)z24+16ε−16

(4ε2−ε)z4

c34 =
−16z35 + (8z24 + 32)z25 + (−z44 + 8z24 − 16)z5

(4ε2 − ε)z4

c43 =
16z35 + (−8z24 − 32)z25 + (z44 − 8z24 + 16)z5

(4ε2 − ε)z4
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Towards fine structure of the c.i.n.

Problem: we still have the ambiguity of constant multiplication.

We want to extract more explicit information of Ich.

Ih = tP tI−1
ch P

∨ ⇐⇒ Ich = P tI−1
h

tP∨

P and P∨ are solutions of GKZ system

⇝ Combinatorial structure of the secondary fan
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Newton polytope and normal fan
Ich = 1

f(z) Ĩ, f(z) ∈ C[z], Ĩ: polynomial matrix.

f(z) =
∑

α fαz
α, z = (z1, . . . , zN ).

⇝ New(f) := convex hull of {α | fα ̸= 0}.

⇝ N(f): normal fan of New(f).

Figure: New(f)

Figure: The normal fan N(f)
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Normal fan and Laurent expansion

f ⇝ New(f) ⇝ N(f) ⇝ X(N(f))

X(N(f)): (partial) toric compactification of (C∗)N

α0: vertex of New(f)
⇝ C0: cone of N(f)
⇝ torus fixed point z0 of X(N(f))
⇝

1

f(z)
=

1

fα0z
α0

(
1 +

∑
α̸=α0

f−1
α0 fαz

α−α0

)
= {Laurent expansion converging at z0}
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Expansion theorem

Theorem (M.-H. ArXiv1904.00565, M.-H.-後藤 (Goto) in
progress)

The secondary fan F is a refinement of N(f). Moreover, at each
torus fixed point z0 of X(F ),

∃(an explicit formula of Laurent expansion of Ich around z0).

F is computable (in the worst case, partially) while N(f) is
abstract.

F has a rich combinatorial structure.
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Example revisited

f(z) =

∫
Γ
Φφ

Φ = (z1x
3 + z2x

2y + z3x
2y−1 + z4x

2 + z5x)
−c1xc2yc3

c =

 1/2
1 + ε
ε

 and z1 = z2 = z3 = 1.

A solution of the secondary equation is

I =


1 −z5

ε
−z5−1/4z24+1

εz4
0

z5
ε

−8z25
4ε2−ε

c23 0
z5+1/4z24−1

εz4
c32

−2z24+8
4ε2−ε

c34
0 0 c43 0

 .
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Determining the constant

There exists a constant α such that Ich = αtI−1.

We can show that the (1, 1) entry of the matrix tI−1 is 8ε
4ε+1 .

α is determined by ⟨dx∧dyxy , dx∧dyxy ⟩ch = α 8ε
4ε+1 .
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The secondary fan

O
− log |z4|2

− log |z5|

C

⇝ The (partial) compactification is (C∗)3z1,z2,z3 × P2
z24 ,z5

C ↔ |z−2
4 | << 1 and |z−2

4 z5| << 1
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By the general expansion formula, we get

1

(2π
√
−1)2

⟨dx ∧ dy
xy

,
dx ∧ dy
xy

⟩ch|z1=z2=z3=z5=1

=
1

2

{
π3

sin2 πε cosπ(2ε)
φ1(z4; ε)φ

∨
1 (z4; ε)

− 2π3

sin2 πε
φ2(z4; ε)φ

∨
2 (z4; ε)

+
π3

sin2 πε cosπ(2ε)
φ3(z4; ε)φ

∨
3 (z4; ε)

}
. (1)
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φ1(z4; ε)

=z
− 1

2
−2ε

4

∑
m,n≥0

z−2m−2n
4

Γ(1 + ε+ n)Γ(12 − 2ε− 2m− 2n)Γ(1 + ε+m)m!n!

φ∨
1 (z4; ε)

=z
1
2
+2ε

4

∑
m,n≥0

z−2m−2n
4

Γ(1− ε+ n)Γ(32 + 2ε− 2m− 2n)Γ(1− ε+m)m!n!
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φ2(z4; ε)

=z
− 1

2
4

∑
m,n≥0

z−2m−2n
4

Γ(1− ε+ n)Γ(12 − 2m− 2n)Γ(1 + ε+m)m!n!

φ∨
2 (z4; ε)

=z
1
2
4

∑
m,n≥0

z−2m−2n
4

Γ(1 + ε+ n)Γ(32 − 2m− 2n)Γ(1− ε+m)m!n!
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φ3(z4; ε)

=z
− 1

2
+2ε

4

∑
m,n≥0

z−2m−2n
4

Γ(1− ε+ n)Γ(12 + 2ε− 2m− 2n)Γ(1− ε+m)m!n!
.

φ∨
3 (z4; ε)

=z
1
2
−2ε

4

∑
m,n≥0

z−2m−2n
4

Γ(1 + ε+ n)Γ(32 − 2ε− 2m− 2n)Γ(1 + ε+m)m!n!
.
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By expansion formula, we have

1

(2π
√
−1)2

⟨dx ∧ dy
xy

,
dx ∧ dy
xy

⟩ch |z1=z2=z3=z5=1,z4=∞ =
32

1− 16ε2
.

Since ⟨dx∧dyxy , dx∧dyxy ⟩ch is a priori a constant, we have

1

(2π
√
−1)2

⟨dx ∧ dy
xy

,
dx ∧ dy
xy

⟩ch =
32

1− 16ε2
.

In other words, the cohomology intersection matrix is equal to

Ich = (2π
√
−1)2

4

ε(1− 4ε)
tI−1.
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The limit

Taking the limit of (1), we get

Φ̃


4π3 0 0 π
0 0 π 0
0 π 0 0
π 0 0 0

 tΦ̃∨ = 64. (2)

Φ̃ = (Φ̃1, Φ̃2, Φ̃3, Φ̃4)

Φ̃∨ = (Φ̃∨
1 , Φ̃

∨
2 , Φ̃

∨
3 , Φ̃

∨
4 )
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The elements of the vector Φ̃ are as follows.

Φ̃1 =
1√
π
√
z4

(
1 +

3

2z24
+O

((
1

z4

)4
))

Φ̃2 = Φ̃3 =
1√
π
√
z4

(ϕ′20 + (log z4)ϕ
′
21)

Φ̃4 =
1√
π
√
z4

(ϕ′40 + (log z4)ϕ
′
41 + (log z4)

2ϕ′42)
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Φ̃2 = Φ̃3 =
1√
π
√
z4

(ϕ′20 + (log z4)ϕ
′
21)

ϕ′20 =

(
364288

45045
− 2γ − 2ψ(0)

(
−15

2

))
+

169093
30030 − 3γ − 3ψ(0)

(
−15

2

)
z24

+O

((
1

z4

)4
)

ϕ′21 = 2 +
3

z24
+O

((
1

z4

)4
)
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Φ̃4 =
1√
π
√
z4

(ϕ′40 + (log z4)ϕ
′
41 + (log z4)

2ϕ′42)

ϕ40 = 2
(
66352873472− 32818705920γ + 4058104050γ2

−2029052025π2 − 32818705920ψ(0)

(
−15

2

)
+8116208100γψ(0)

(
−15

2

)
+4058104050ψ(0)

(
−15

2

)2
)
/2029052025 +O

(
1

z24

)
ϕ′41 =

(
1457152

45045
− 8γ − 8ψ(0)

(
−15

2

))
++O

(
1

z24

)
ϕ′42 = 4 +

6

z24
+O

((
1

z4

)4
)
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The elements of the vector Φ̃∨ are as follows.

Φ̃∨
1 =

2
√
z4√
π

(
1− 1

2z24
+O

((
1

z4

)4
))

Φ̃∨
2 = Φ̃∨

3 =
2
√
z4√
π

(ϕ20 + (log z4)ϕ21)

Φ̃∨
4 =

2
√
z4√
π

(ϕ40 + (log z4)ϕ41 + (log z4)
2ϕ42).

Here, ϕij and ϕ′ij are power series in z−2
4 .
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As for Φ̃1, it can be related to Thomae’s and Gauß’
hypergeometric series by a simple transformation

π1/2z
1/2
4 Φ̃1(z4) = 3F2(

1/4,2/4,3/4
1,1 ; 16/z24) =

(
2F1(

1/8,3/8
1

; 16/z24)
)2
.

The last identity is the Clausen’s identity.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!
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Regular triangulation
Each cone of the secondary fan F has a combinatorial
interpretation.

fΓ(z) =

∫
Γ

k∏
l=1

hl(x)
−γlxcφ =

∫
Γ
h(x)−γxcφ.

hl(x) = hl,z(l)(x) =
∑Nl

j=1 z
(l)
j xa

(l)(j)

⇝ Al =
(
a(l)(1)| · · · |a(l)(Nl)

)

⇝ A =


1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 · · · 1

A1 A2 · · · Ak


= (a(1)| · · · |a(N))
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For a cone C of the secondary fan F , we can assign a (regular)
polyhedral triangulation of the convex body
∆A = convex hull of {a(1), . . . ,a(N)}.

1

2

3

4

5

= {123, 134, 145}
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Hypergeometric series at the torus fixed point

σ ⊂ {1, . . . , N}: an (n+ k)-dimensional simplex, i.e., the square
matrix Aσ = (a(j))j∈σ is invertible.

d :=


γ1
...
γk
c


φσ(z) := z−A−1

σ d
σ

∑
m∈Zσ̄

≥0

(z−A−1
σ Aσ̄

σ zσ̄)
m

Γ(1σ −A−1
σ (d+Aσ̄m))m!

T is said to be unimodular if detAσ = ±1 for any simplex σ ∈ T .
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Theorem (M.-H. ArXiv1904.00565)

Suppose that four vectors a,a′ ∈ Zn×1,b,b′ ∈ Zk×1 and a
unimodular regular triangulation T are given. If the parameter d is
generic, one has an identity

⟨xahb dx
x , x

a′
hb

′ dx
x ⟩ch

(2π
√
−1)n

=(−1)|b|+|b′|γ1 · · · γk(γ − b)b(−γ − b′)b′×∑
σ∈T

πn+k

sinπA−1
σ d

φσ

(
z;

(
γ − b
c+ a

))
φσ

(
z;

(
−γ − b′

−c+ a′

))
near the torus fixed point corresponding to T . Here,
dx
x = dx1

x1
∧ · · · ∧ dxn

xn
, (γ − b)b = Γ(γ)

Γ(γ−b) , and

(−γ − b′)b′ = Γ(−γ)
Γ(−γ−b′)
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What is behind the proof?

The key is the construction of a good basis of Hn(Xz;L).

Standard way of computing is the method of stationary phase
(Lefschetz thimbles)
⇒ Ih is an identity matrix, P and P∨ are computed through
stationary phase approximation (青本, Mizera).

Combinatorial method based on multidimensional Pochhammer
cycles
⇒ orthogonal decomposition of the twisted homology groups
Hn(Xz;L) =

⊕
σ∈T Hn,σ, Hn(Xz;L∨) =

⊕
σ∈T H∨

n,σ.
⇒ Ih is not an identity matrix but still computable. P and P∨ are
series solutions.
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THANK YOU VERY MUCH FOR YOUR ATTENTION!


