From DIAGRAMMAR to DIAGRAMMALGEBRA

Pierpaolo Mastrolia
MathemAmplitudes 2019
University of Padova, 18.12.2019

Università

The Ubiquitous Feynman Integrals

» SCATTERING AMPLITUDES for precision physics 60 orders of magnitudes in Energy scales:
from quarks and gluons to black-hole binary systems

(a)

(b)
» one tool: Feynman diagrams crucial for Elementary Particles
and Gravitational Waves Phenomenology:
form hard scattering cross-sections to astrophysical coalescing systems

Particles and Strings

Impact

Physics and Mathematics, but also Biology
Chemistry, Statistics and Economy

Dimensionally Regulated Integrals

G. 't Hooft and M. Veltman

GENEVA
1973

$$
\begin{equation*}
I_{n}=\int d_{n} p \frac{1}{\left(p^{2}+m^{2}-i \varepsilon\right)\left[(p+k)^{2}+M^{2}-i \varepsilon\right]} \tag{13.1}
\end{equation*}
$$

k rest-frame

$$
\begin{equation*}
I_{n}=\int_{-\infty}^{\infty} d p_{0} \int_{0}^{\infty} \omega^{n-2} d \omega \frac{2 \pi}{\Gamma\left(\frac{n-1) / 2}{2}\right)}\left\{\frac{1}{\left(-p_{0}^{2}+\omega^{2}+m^{2}\right)\left[-\left(p_{0}+\mu\right)^{2}+\omega^{2}+M^{2}\right]}\right\} \tag{13.4}
\end{equation*}
$$

that I_{1} from Eq. (13.4) is an undetermined form ∞ / ∞. Let us first fix n to be in the region where the above expression exists, for instance $1.5<n<1.75$. Next we perform a partial integration with respect to ω^{2}

$$
d \omega \omega^{n-2}=\frac{1}{2} d \omega^{2}\left(\omega^{2}\right)^{(n-3) / 2}=\frac{1}{2} d \omega^{2} \frac{2}{n-1} \frac{d}{d \omega^{2}}\left(\omega^{2}\right)^{(n-1) / 2} .
$$

For n in the given domain the surface terms are zero. Using $z \Gamma(z)=\Gamma(z+1)$ and repeating this operation λ times we obtain

$$
\begin{equation*}
\mathrm{I}_{\mathrm{n}}=\frac{2 \pi(\mathrm{n}-1) / 2}{\Gamma\left(\frac{\mathrm{n}-1}{2}+\lambda\right)} \int_{-\infty}^{\infty} d p_{0} \int_{0}^{\infty} d \omega \omega^{\mathrm{n}-2+2 \lambda}\left(-\frac{\partial}{\partial \omega^{2}}\right)^{\lambda}\{\cdots\} \tag{13.5}
\end{equation*}
$$

We have derived this equation for $1<n<4$. However it is meaningful also for
$1-2 \lambda<n<4$. The ultraviolet behaviour is unchanged, but the divergence near $\omega=0$ is

- Analytic continuation
- Integration-by-parts Identites
- Graph-polynomial

Shifting integration variables $\left(p^{\prime}=p+k x\right)$, making the Wick rotation, and introducing n-dimensional polar coordinates, one computes

$$
I_{n}=\frac{i \pi^{n / 2} \Gamma\left(2-\frac{n}{2}\right)}{\Gamma(2)} \int_{0}^{1} d x \frac{1}{\left[M^{2} x+m^{2}(1-x)+k^{2} x(1-x)\right]^{2-n / 2}} .
$$

Feynman Integrals

- Momentum-space Representation

't Hooft \& Veltman

N -denominator

generic Integral

- Integration-by-parts Identites

$$
\int \prod_{i=1}^{L} d^{d} k_{i} \frac{\partial}{\partial k_{j}^{\mu}}\left(v_{\mu} \prod_{n=1}^{N} \frac{1}{D_{n}^{a_{n}}}\right)=0 \quad v_{\mu}=v_{\mu}\left(p_{i}, k_{j}\right) \quad \text { arbitrary }
$$

- IBP identities

$$
\sum_{i} b_{i} I_{a_{1}, \ldots, a_{i} \pm 1, \ldots, a_{N}}=0
$$

Laporta, Remiddi, Kuehn,
Baikov, Smirnov, Melnikov,
Gehrmann, Weinzierl, Anastasiou,...

Parametric Representation(s)

- Upon a change of integration variables

$$
=I_{a_{1}, \ldots, a_{N}=\int_{\mathcal{C}} u(\mathbf{z}) \varphi_{N}(\mathbf{z}) \quad \hat{\varphi}(\mathbf{z}) d^{N} \mathbf{z} \quad \text { differential } m \text {-form }}^{d^{N} \mathbf{z}=d z_{1} \wedge \ldots \wedge d z_{N}} \begin{aligned}
& \hat{\varphi}_{N}(\mathbf{z})=f(\mathbf{z}) \prod_{i} z_{i}^{-a_{i}} \\
& u(\mathbf{z})=\mathcal{P}(\mathbf{z})^{\gamma} \\
& \mathcal{P}(\mathbf{z})=\text { graph-Polynomial } \\
& \gamma(d)=\text { generic exponent }
\end{aligned}
$$

- Integration-by-parts: two situations may occur

$$
\begin{array}{ll}
\int_{\mathcal{C}} d\left(u(\mathbf{z}) \varphi_{N}(\mathbf{z})\right) & \left\{\begin{array}{ll}
\neq 0, \\
=0, & u(\partial \mathcal{C})=0 .
\end{array} \quad\right. \text { Baikov representation } \\
\text { IBP identities } & \sum_{i} b_{i} I_{a_{1}, \ldots, a_{i} \pm 1, \ldots, a_{N}}=0
\end{array}
$$

Vector Space Decomposition

$\nu=$ dimension of the vector space

- Vector decomposition $\quad I=\sum_{i=1}^{\nu} c_{i} J_{i}$
- Projections

$$
c_{i}= \begin{cases}I \cdot J_{i}, & J_{i} \cdot J_{j}=\delta_{i j} \\ \sum_{j=1}^{\nu} I \cdot J_{j}\left(C^{-1}\right)_{j i}, & J_{i} \cdot J_{j}=C_{i j} \neq \delta_{i j}\end{cases}
$$

- Completeness

$$
\sum_{i, j} J_{j}\left(C^{-1}\right)_{j i} J_{i}=\mathbb{I}_{\nu \times \nu}
$$

The two questions:

1) what is the vector space dimension ν ?
2) what is the scalar product "." between integrals ?

Basics of Intersection Theory

Consider an integral I over the variables $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

$$
I=\underbrace{\int_{\mathcal{C}} u(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cycle }
\end{array}} \underbrace{\varphi_{m}(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cocycle }
\end{array}}
$$

$\varphi_{m}(\mathbf{z})$ is a differential m-form
$u(\mathbf{z})$ is a multivalued function (regulating all poles of φ_{m}) $u(\partial \mathcal{C})=0$

Basics of Intersection Theory

Consider an integral I over the variables $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$

$$
I=\underbrace{\int_{\mathcal{C}} u(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cycle }
\end{array}} \underbrace{\varphi_{m}(\mathbf{z})}_{\begin{array}{c}
\text { twisted } \\
\text { cocycle }
\end{array}}
$$

$$
\varphi_{m}(\mathbf{z}) \text { is a differential } m \text {-form }
$$

$$
u(\mathbf{z}) \text { is a multivalued function (regulating all poles of } \varphi_{m} \text {) }
$$

$$
u(\partial \mathcal{C})=0
$$

There could exist many forms φ_{m} that upon integration give the same result I

- Covariant Derivatives $\omega \equiv d \log u \quad \nabla_{\omega} \equiv d+\omega \wedge \quad \nabla_{-\omega} \equiv d-\omega \wedge$
- Integrals
- Dual Integrals

$$
I=\int_{\mathcal{C}} u \varphi_{m}=\int_{\mathcal{C}} u\left(\varphi_{m}+\nabla_{\omega} \varphi_{m-1}\right)
$$

$$
\tilde{I}=\int_{\mathcal{C}} u^{-1} \phi_{m}=\int_{\mathcal{C}} u^{-1}\left(\phi_{m}+\nabla_{-\omega} \phi_{m-1}\right)
$$

Pairings of Cycles and Co-cycles

- Co-Homology Groups

$$
\begin{aligned}
& H_{\omega}^{m} \equiv\left\{m \text {-forms } \varphi_{\mathrm{m}} \mid \nabla_{\omega} \varphi_{\mathrm{m}}\right.=0\} /\left\{\nabla_{\omega} \varphi_{\mathrm{m}-1}\right\} \\
& H_{-\omega}^{m} \equiv\left\{m \text {-forms } \phi_{\mathrm{m}} \mid \nabla_{-\omega} \phi_{\mathrm{m}}=0\right\} /\left\{\nabla_{-\omega} \phi_{\mathrm{m}-1}\right\}
\end{aligned}
$$

- Basic building blocks

$$
\left.\left\langle\varphi_{L}\right| \equiv \varphi_{L}(\mathbf{z}) \in H_{\omega}^{m} \quad\left|\varphi_{R}\right\rangle \equiv \varphi_{R}(\mathbf{z}) \in H_{-\omega}^{m} \quad \mid \mathcal{C}_{R}\right] \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z}) \quad\left[\mathcal{C}_{L} \mid \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z})^{-1}\right.
$$

Pairings of Cycles and Co-cycles

- Co-Homology Groups

$$
\begin{aligned}
& H_{\omega}^{m} \equiv\left\{m \text {-forms } \varphi_{\mathrm{m}} \mid \nabla_{\omega} \varphi_{\mathrm{m}}=0\right\} /\left\{\nabla_{\omega} \varphi_{\mathrm{m}-1}\right\} \\
& H_{-\omega}^{m} \equiv\left\{m \text {-forms } \phi_{\mathrm{m}} \mid \nabla_{-\omega} \phi_{\mathrm{m}}=0\right\} /\left\{\nabla_{-\omega} \phi_{\mathrm{m}-1}\right\}
\end{aligned}
$$

- Basic building blocks
$\left\langle\varphi_{L}\right| \equiv \varphi_{L}(\mathbf{z}) \in H_{\omega}^{m}$

$$
\left|\varphi_{R}\right\rangle \equiv \varphi_{R}(\mathbf{z}) \in H_{-\omega}^{m}
$$

$$
\left.\mid \mathcal{C}_{R}\right] \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z}) \quad\left[\mathcal{C}_{L} \mid \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z})^{-1}\right.
$$

- Integrals :: pairings of cycles and co-cycles

$$
\left.\left\langle\varphi_{L}\right| \mathcal{C}_{R}\right] \equiv \int_{\mathcal{C}_{R}} u(\mathbf{z}) \varphi_{L}(\mathbf{z})=I
$$

- Dual Integrals :: pairings of cycles and co-cycles

$$
\left[\mathcal{C}_{L}\left|\varphi_{R}\right\rangle \equiv \int_{\mathcal{C}_{L}} u(\mathbf{z})^{-1} \varphi_{R}(\mathbf{z})=\tilde{I}\right.
$$

- Intersection numbers for cycles :: pairings of cycles $\quad\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right] \equiv$ intersection number
- Intersection numbers for co-cycles :: pairings of co-cycles $\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle \equiv \int_{\mathcal{C}} \iota\left(\varphi_{\mathrm{L}}\right) \wedge \varphi_{\mathrm{R}}$

Linear Relations

Feynman Integrals and Intersection Theory

Mizera \& P.M. (2018)
Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera \& P.M. (2019)
Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera \& P.M. (2019)

$$
I=\langle\varphi| \mathcal{C}]
$$

Consider a set of ν MIs,

$$
\left.J_{i}=\int_{\mathcal{C}} u(\mathbf{z}) e_{i}(\mathbf{z})=\left\langle e_{i}\right| \mathcal{C}\right], \quad i=1, \ldots, \nu,
$$

$$
\begin{aligned}
& I=\sum_{i=1}^{\nu} c_{i} J_{i} \\
&\langle\varphi|=\sum_{i=1}^{\nu} c_{i}\left\langle e_{i}\right|=\sum_{i, j=1}^{\nu}\left\langle\varphi \mid e_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{i}\right| \\
&=1
\end{aligned}
$$

Quadratic Relations

Riemann Twisted Periods Relations (RTPR)

- Completeness for forms

$$
\begin{array}{ll}
\sum_{i, j=1}^{\nu}\left|e_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{i}\right|=\mathbb{I}_{c} & \mathbf{C}_{i j} \equiv\left\langle e_{i} \mid e_{j}\right\rangle \\
\left.\sum_{i, j=1}^{\nu} \mid \mathcal{C}_{j}\right]\left(\mathbf{H}^{-1}\right)_{i j}\left[\mathcal{C}_{i} \mid=\mathbb{I}_{h}\right. & \mathbf{H}_{i j} \equiv\left[\mathcal{C}_{i} \mid \mathcal{C}_{j}\right]
\end{array}
$$

Completeness for contours

Riemann Twisted Periods Relations (RTPR)

- Completeness for forms

$$
\sum_{i, j=1}^{\nu}\left|e_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{i}\right|=\mathbb{I}_{c} \quad \mathbf{C}_{i j} \equiv\left\langle e_{i} \mid e_{j}\right\rangle
$$

Completeness for contours

$$
\left.\sum_{i, j=1}^{\nu} \mid \mathcal{C}_{j}\right]\left(\mathbf{H}^{-1}\right)_{i j}\left[\mathcal{C}_{i} \mid=\mathbb{I}_{h} \quad \quad \mathbf{H}_{i j} \equiv\left[\mathcal{C}_{i} \mid \mathcal{C}_{j}\right]\right.
$$

- Riemann Twisted Period Relations

$$
\begin{aligned}
& \left.\left\langle\varphi_{\mathrm{L}} \mid \varphi_{\mathrm{R}}\right\rangle=\sum_{i, j}\left\langle\varphi_{\mathrm{L}}\right| \mathcal{C}_{\mathrm{R}, j}\right]\left[\mathcal{C}_{\mathrm{L}, i} \mid \mathcal{C}_{\mathrm{R}, j}\right]^{-1}\left[\mathcal{C}_{\mathrm{L}, i}\left|\varphi_{\mathrm{R}}\right\rangle\right. \\
& {\left[\mathcal{C}_{\mathrm{L}} \mid \mathcal{C}_{\mathrm{R}}\right]=\sum_{i, j}\left[\mathcal{C}_{\mathrm{L}, i}\left|\varphi_{\mathrm{R}, j}\right\rangle\left\langle\varphi_{\mathrm{L}, i} \mid \varphi_{\mathrm{R}, j}\right\rangle^{-1}\left\langle\varphi_{\mathrm{L}}\right| \mathcal{C}_{\mathrm{R}}\right]}
\end{aligned}
$$

Elliot's Identity from Intersections

The complete elliptic integrals \mathcal{K} and \mathcal{E} of the first and second kind

$$
\begin{equation*}
\mathcal{K}(r)=\frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2} ; 1 ; r^{2}\right)=\int_{0}^{\pi / 2} \frac{d \phi}{\sqrt{1-r^{2} \sin ^{2} \phi}} \quad \mathcal{E}(r)=\frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2} ; 1 ; r^{2}\right)=\int_{0}^{\pi / 2} \sqrt{1-r^{2} \sin ^{2} \phi} d \phi \tag{0,1}
\end{equation*}
$$

- Legendre Identity

$$
\mathcal{E} \mathcal{K}^{\prime}+\mathcal{E}^{\prime} \mathcal{K}-\mathcal{K} \mathcal{K}^{\prime}=\frac{\pi}{2}
$$

$$
\begin{gathered}
\mathcal{K}^{\prime}(r)=\mathcal{K}\left(r^{\prime}\right) \text { and } \mathcal{E}^{\prime}(r)=\mathcal{E}\left(r^{\prime}\right) \\
r^{2}+r^{\prime 2}=1
\end{gathered}
$$

- Elliot's Identity and Hypergeometric Functions

$$
\begin{aligned}
& F\left(\frac{1}{2}+\lambda,-\frac{1}{2}-\nu, 1+\lambda+\mu ; r\right) F\left(\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right) \\
+ & F\left(\frac{1}{2}+\lambda, \frac{1}{2}-\nu, 1+\lambda+\mu ; r\right) F\left(-\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right) \\
- & F\left(\frac{1}{2}+\lambda, \frac{1}{2}-\nu, 1+\lambda+\mu ; r\right) F\left(\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right) \\
= & \frac{\Gamma(1+\lambda+\mu) \Gamma(1+\mu+\nu)}{\Gamma\left(\lambda+\mu+\nu+\frac{3}{2}\right) \Gamma\left(\mu+\frac{1}{2}\right)} .
\end{aligned}
$$

the choice $\lambda=\mu=v=0$ gives the Legendre relation.

Elliot's Identity from Intersections

- Hypothesys: too close to RTPR to be accidental

Elliot's Identity from Intersections

- Hypothesys: too close to RTPR to be accidental P.M.
- Proof Matsumoto

$$
\begin{aligned}
& \text { Matsumoto } \\
& \begin{array}{ll}
\varphi_{1}=\frac{d t}{t}, \quad \varphi_{2}=\frac{d t}{t(1-r t)}=\left(\frac{1}{t}-\frac{1}{t-1 / r}\right) d t \\
u(t)=t^{1 / 2+\lambda}(1-t)^{-1 / 2+\mu}(1-r t)^{1 / 2+\nu}, & \psi_{1}
\end{array}=\frac{d t}{1-t}=\frac{-d t}{t-1}, \quad \psi_{2}=\frac{d t}{t(1-t)}=\left(\frac{1}{t}-\frac{1}{t-1}\right) d t . \\
& \gamma
\end{aligned}
$$

- Riemann Twisted Period Relation

$$
{ }^{t} \Pi_{\omega}{ }^{t} H_{c}^{-1} \Pi_{-\omega}=H_{h} .
$$

$$
\left(\int_{0}^{1} u(t) \varphi_{1}, \int_{0}^{1} u(t) \varphi_{2}\right)^{t} H_{c}^{-1}\binom{\int_{-\infty}^{0} \frac{1}{u(t)} \psi_{1}}{\int_{-\infty}^{0} \frac{1}{u(t)} \psi_{2}}=\frac{-1}{e^{2 \pi \sqrt{-1} \lambda}+1}
$$

$\left(F\left(\frac{1}{2}+\lambda,-\frac{1}{2}-\nu, 1+\lambda+\mu ; r\right), F\left(\frac{1}{2}+\lambda, \frac{1}{2}-\nu, 1+\lambda+\mu ; r\right)\right) \cdot\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right) \cdot\binom{F\left(\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right)}{F\left(-\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right)}$
$=\frac{\Gamma(\lambda+\mu+1) \Gamma(\mu+\nu+1)}{\Gamma\left(\lambda+\mu+\nu+\frac{3}{2}\right) \Gamma\left(\mu+\frac{1}{2}\right)}$

Elliot's Identity from Intersections

- Hypothesys: too close to RTPR to be accidental P.M.
- Proof Matsumoto

$$
\begin{aligned}
& \text { Matsumoto } \\
& \begin{array}{ll}
\varphi_{1}=\frac{d t}{t}, \quad \varphi_{2}=\frac{d t}{t(1-r t)}=\left(\frac{1}{t}-\frac{1}{t-1 / r}\right) d t \\
u(t)=t^{1 / 2+\lambda}(1-t)^{-1 / 2+\mu}(1-r t)^{1 / 2+\nu}, & \psi_{1}=\frac{d t}{1-t}=\frac{-d t}{t-1}, \quad \psi_{2}=\frac{d t}{t(1-t)}=\left(\frac{1}{t}-\frac{1}{t-1}\right) d t \\
\gamma & =(0,1) \otimes u(t) \text { and } \delta=(-\infty, 0) \otimes 1 / u(t)
\end{array}
\end{aligned}
$$

- Riemann Twisted Period Relation

$$
{ }^{t} \Pi_{\omega}{ }^{t} H_{c}^{-1} \Pi_{-\omega}=H_{h} .
$$

$$
\left(\int_{0}^{1} u(t) \varphi_{1}, \int_{0}^{1} u(t) \varphi_{2}\right)^{t} H_{c}^{-1}\binom{\int_{-\infty}^{0} \frac{1}{u(t)} \psi_{1}}{\int_{-\infty}^{0} \frac{1}{u(t)} \psi_{2}}=\frac{-1}{e^{2 \pi \sqrt{-1} \lambda}+1}
$$

$\left(F\left(\frac{1}{2}+\lambda,-\frac{1}{2}-\nu, 1+\lambda+\mu ; r\right), F\left(\frac{1}{2}+\lambda, \frac{1}{2}-\nu, 1+\lambda+\mu ; r\right)\right) \cdot\left(\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right) \cdot\binom{F\left(\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right)}{F\left(-\frac{1}{2}-\lambda, \frac{1}{2}+\nu, 1+\mu+\nu ; 1-r\right)}$
$=\frac{\Gamma(\lambda+\mu+1) \Gamma(\mu+\nu+1)}{\Gamma\left(\lambda+\mu+\nu+\frac{3}{2}\right) \Gamma\left(\mu+\frac{1}{2}\right)}$

- Paradigmatic case for studying quadratic relations for Feynman Integrals

Completeness Relations: factoring "1"

- the richness of factorization

$$
\begin{gathered}
i(-i)=1 \\
\sum_{n}\left|\psi_{\mathrm{n}}\right\rangle\left\langle\psi_{\mathrm{n}}\right|=\mathbb{1} \\
\left(p^{2}-m^{2}\right)=(\not p-m)(p p+m) \\
\varepsilon^{\mu \nu}=\varepsilon^{\mu} \varepsilon^{\nu} \\
\sum_{i, j=1}^{\nu}\left|e_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{i j}\left\langle e_{i}\right|=\mathbb{I}_{c} \\
\left.\sum_{i, j=1}^{\nu} \mid \mathcal{C}_{j}\right]\left(\mathbf{H}^{-1}\right)_{i j}\left[\mathcal{C}_{i} \mid=\mathbb{I}_{h}\right.
\end{gathered}
$$

Summary

- Twisted De Rahm (co)-Homology Theory and Aomoto-Gel'fand Hypergeometric F's ©Proper mathematical framework for Feynman integrals

Summary

- Twisted De Rahm (co)-Homology Theory and Aomoto-Gel'fand Hypergeometric F's ©Proper mathematical framework for Feynman integrals
- A Fundamental Property Discovered

TThe algebra of Feynman Integrals is controlled by Intersection Numbers
EFeynman Integrals admit a scalar product

Summary

- Twisted De Rahm (co)-Homology Theory and Aomoto-Gel'fand Hypergeometric F's YProper mathematical framework for Feynman integrals
- A Fundamental Property Discovered

The algebra of Feynman Integrals is controlled by Intersection Numbers
Feynman Integrals admit a scalar product

- "The number of master integrals" from being the question to being the answer

$$
\begin{aligned}
\nu & =\text { number of independent master integrals } \quad \text { Chetyrkin, Tkachov (1981); Remiddi, Laporta (1996); Laporta (2000) } \\
& =\text { is finite Smirnov, Petuckhov (2010) } \\
& =\text { number of critical points of graph polynomials } \quad \text { Lee, Pomeranski (2013) } \\
& =\text { is related to Euler characteritics } \chi_{E} \quad \text { Aluffi, Marcolli (2008) Bitoun, Bogner, Klausen, Panzer (2018) } \\
& =\text { number of independent integration contours } \\
& \text { Bosma, Sogaard, Zhang (2017) Primo, Tancredi (2017) } \\
& =\text { number of independent forms }
\end{aligned}
$$

Mizera \& P.M. (2018)
$=\operatorname{dim} H_{ \pm \omega}^{m} \quad$ Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera \& P.M. (2019)
Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera \& P.M. (2019)

MatheAmplitudes 2019 :: the Roadmap

```
Mathematical Developments and Geometric Aspects of Intersection Theory
```

Aluffi, Aomoto, Brown, Matsubara-Heo, Mimachi, Yoshida

> | $\begin{array}{l}\text { Scattering Amplitudes, } \\ \text { Master Integrals, } \\ \text { Differential Equations } \\ \text { and Special Functions }\end{array}$ |
| :--- |
| Duhr, Henn, Herrmann, |
| Remiddi, Vanhove, Weinzierl |

Integral Relations,
Computational Algebraic Geometry and Computer Algebra

Intersection Theory and Feynman Calculus

References

Feynman Integrals and Intersection Theory
By Pierpaolo Mastrolia, Sebastian Mizera.
arXiv: 1810.03818 [hep-th].
10.1007/JHEP02(2019)139.

JHEP 1902 (2019) 139.

Decomposition of Feynman Integrals on the Maximal Cut by Intersection Numbers
By Hjalte Frellesvig, Federico Gasparotto, Stefano Laporta, Manoj K. Mandal,
Pierpaolo Mastrolia, Luca Mattiazzi, Sebastian Mizera.
arXiv:1901.11510 [hep-ph].
10.1007/JHEP05(2019)153.

JHEP 1905 (2019) 153.

Vector Space of Feynman Integrals and Multivariate Intersection Numbers
By Hjalte Frellesvig, Federico Gasparotto, Manoj K. Mandal,
Pierpaolo Mastrolia, Luca Mattiazzi, Sebastian Mizera.
arXiv: 1907.02000 [hep-th].
10.1103/PhysRevLett.123.201602.

Phys.Rev.Lett. 123 (2019) no.20, 201602.

