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analysis is not restricted to biomolecules, and can be applied to interactions within any polymer-like system of 
chains. Nonetheless, when discussing specific applications, we focus on biomolecules, which provide a huge set of 
examples and for which our methods can be particularly useful.

Genus and Biomolecules
Before introducing the genus trace, we recall what the genus is and how it can be used in the analysis of biopol-
ymers. Note that the genus of RNA structures was considered before, e.g. in1–8, or for proteins in9. However in 
those works the genus was computed only for the entire chain length, and taking into account only canonical 
Watson-Crick base pairs in the RNA case. Here we show that much more detailed information is revealed once 
genus is computed for various types of bonds in a given structure, e.g. also for non-canonical base pairs, including 
those involved in helix backbone packing interactions in RNA. Moreover, the genus trace that we introduce in 
what follows captures much more information than solely the genus of the whole chain.

What is genus and how to compute it? Consider a polymer-like chain consisting of a number of resi-
dues, with bonds connecting various pairs of these residues, as in the example in Fig. 1(a). The structure of such a 
chain can be presented in the form of a chord diagram. A chord diagram consists of b horizontal intervals (called 
backbones) that represent one or more polymer-like chains, and n arcs (chords) representing bonds, which con-
nect pairs of residues, and are drawn as half-circles in the upper-half plane. In this work we consider configura-
tions with only one backbone, =b 1. A chord diagram corresponding to the structure in Fig. 1(a) is shown in 
Fig. 1(b). Such diagrams are commonly used to present the structure of RNA chains3,4. A stack of parallel chords 
contributes in the same way as a single chord to the genus, so each set of parallel chords can be replaced by one 
chord, as in Fig. 1(c). Furthermore, to compute the genus it is of advantage to replace all backbones and chords by 
ribbons of finite width, also as in Fig. 1(c). In this way we obtain a two-dimensional surface with r boundaries, 
which – after shrinking a backbone to a small circle – can be drawn in a smooth way on an auxiliary surface of 
genus g (i.e. having g “holes”), as in Fig. 1(d). The genus of a chord diagram is defined as the genus of this auxiliary 
surface. This genus can be determined from the Euler formula

− = − − .b n g r2 2 (1)

For example, in Fig. 1(c) there is =b 1 backbone, =n 2 chords, and =r 1 boundary (drawn in red). Therefore 
it follows from the Euler formula that the genus =g 1, so that the auxiliary surface is a torus, see Fig. 1(d).

Note that if no chords intersect in a given chord diagram then =g 0; in this case the chord diagram is called 
planar. In particular, a large complicated RNA with a secondary structure having all nested basepairs has genus 

=g 0, so it is quite simple from the point of view of this paper. Furthermore, for a fixed number of chords and 
backbones the genus cannot exceed some maximal value. We also recall that chord diagrams are used by mathe-
maticians to characterize moduli spaces of Riemann surfaces, while physicists reinterpret them as a particular 
class of Feynman diagrams arising in certain quantum field theories or matrix models4,7. Certain properties of 
chord diagrams have been also discussed in10.

Types of bonds and bifurcations. To determine the genus, for example using the formula (1), one simply 
considers all bonds in a given chain. However in various contexts, in particular for biomolecules, one can distin-
guish between various types of bonds. In this work we propose to consider such a distinction; as we will see, this 
provides some new information about those different types of bonds. For RNA, an important classification of base 
pairs have been introduced by Leontis and Westhof11,12. They noticed that RNA bases can be regarded as triangles 
with three different edges, referred to as: Hoogsteen edge (denoted HG or H), Watson-Crick edge (denoted WC 
or W), and Sugar or Shallow Groove edge (denoted S or SG), see Fig. 2(a). Base pairs are formed by any of these 

Figure 1. How to compute the genus. (a) A chain with several bonds (in blue and orange) connecting various 
pairs of residues (black dots). (b) Chord diagram representing the same structure. (c) Parallel chords replaced 
by a single chord, and then – together with the backbone – replaced by ribbons, whose single boundary is 
shown in red. (d) After shrinking the backbone to a small circle, the ribbon diagram can be smoothly drawn on 
a surface of a torus, whose genus is g = 1.
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Integration-by-parts Identites

3 Feynman Integral Decomposition

Consider scalar Feynman integrals with L loops, E+1 external momenta, and N = LE +
1
2L(L+1) (generalised) denominators2 in a generic dimension d:

Ia1,a2,...,aN ⌘
Z LY
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d
d
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⇡d/2

NY
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D
aj

j

. (3.1)

where Dj stands for either a genuine denominator or an irreducible scalar product (ISP).
In Baikov representation, one changes the integration variables, from the loop momenta

ki to the denominators Dj , at the cost of introducing a Jacobian, see, e.g., [12, 83] or
Appendix A of [1]. Here we summarize the final forms of the standard and Loop-by-
Loop Baikov representations.

1. Standard Baikov Representation. In this case, after the change of variables, the
Feynman integral may be written as,

Ia1,a2,...,aN ⌘ K

Z

C
u' (3.2)

where
u = B

�
, � ⌘ (d�E�L�1)/2 (3.3)

and

' ⌘ '̂ d
Nz , '̂ ⌘ 1

z
a1
1 z

a2
2 · · · zaN

N

, d
Nz ⌘ dz1 ^ dz2 ^ · · · ^ dzN , (3.4)

and where B is the Baikov polynomial computed as a determinant of the Gram matrix of
scalar products, depending on loop momenta, and K is a constant pre-factor (independent
of the integration variables), which may depend on the external kinematic invariants
and on the dimensional regulator d. The integration contour C is defined such that B

vanishes on its boundaries.

We can re-express it, in the language of intersection theory, as a bilinear pairing,

Ia1,a2,...,aN ⌘ K h'|C]! , (3.5)

with
! ⌘ d log(u) = �d log(B). (3.6)

2. Loop-by-Loop (LBL) Baikov Representation. In this case, after the change of
variables, the the number of integration variables M can be smaller than the N (because
M �N ISPs have been integrated out). For this case, the integral have the form

Ia1,a2,...,aM ,aM+1,...,aN ⌘ K

Z

C
u' = K h'|C]! (3.7)

2N amounts to the total number of scalar products which can be built with the loop momenta ki and
the independent external momenta pj , and corresponds to the sum of the so called reducible and irreducible
scalar products. The former can be expressed in terms of the denominators of graph propagators, while the
latter are independent of them. Nevertheless, they also can be interpreted as auxiliary denominators, not
related to any internal line of the graph.
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Momentum-space Representation

2.2 Baikov

Z LY

i=1

ddki
⇡d/2

@

@kµj

✓
vµ

NY

n=1

1

Dan
n

◆
= 0 (2.9)

vµ = vµ(pi, kj) (2.10)

{D1, . . . , DN} ! {z1, . . . , zN} ⌘ z (2.11)

Ia1,...,aN ⌘ K(d, sij)

Z

C
dz B(z)�

NY

i=1

1

zani
(2.12)

B(z) = det(qi · qj) (2.13)

� ⌘ (d� E � L� 1)/2 (2.14)

q = {pi, kj}, i = 1, . . . , E j = 1, . . . , L (2.15)

sij = pi · pj , i, j = 1, . . . , E (2.16)

B(@C = 0) (2.17)

Z

C
d

 
h(z) B(z)�

NY

i=1

1

zani

!
= 0 (2.18)

h(z) arbitrary rational function
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Integration-by-parts: two situations may occur
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Baikov representation



Vector Space Decomposition
2.7 Vector Space Decomposition

⌫ = dimension of the vector space of Feynman integrals

I =
⌫X

i=1

ci Ji (2.45)

Projection

if Ji · Jj = �ij ,

I·Ji = ci , (2.46)

if Ji · Jj = Cij 6= �ij (metric matrix)

X

i,j

I · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Jk · Jj(C
�1)ji =

⌫X

i,j,k=1

ck Ckj(C
�1)ji =

⌫X

i,k=1

ck �ki = ci

Completeness

Plugging back in

I =
X

i,j

I · Jj(C
�1)ji Ji ()

X

i,j

Jj (C
�1)ji Ji = I⌫⇥⌫ (2.47)

The two questions:

1) what is the vector space dimension ⌫ ?

2) what is the scalar product “·” between integrals ?
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Basics of Intersection Theory

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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manipulate the above integral so that it is of the form (2.1):

0 =

Z
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d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =
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C
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In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)
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There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,
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⇣
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Basics of Intersection Theory

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.

– 7 –

Consider an integral I over the variables z = (z1, z2, . . . , zm) of the general form:

I =

Z

C
u(z)'(z), (2.1)

where u(z) is a multi-valued function and '(z) = '̂(z)dmz is a differential m-form. We
assume that u(z) vanishes on the boundaries of C, u(@C) = 0, so that, upon integration no
surface-term is leftover. For example, choosing

u(z) = z
a(z � 1)b, '(z) =

dz

z(z � 1)
, C = [0, 1] (2.2)

gives the Euler beta function B(a, b) for Re(a),Re(b) > 0. More generally, integrals of
the type (2.1) are called Aomoto–Gel’fand hypergeometric functions [78, 79], or simply
hypergeometric functions.

As with any integral, there could exist many forms ' that integrate to give the same
result I. Let us consider the total derivative of u times any (m�1)-differential form ⇠:

Z

C
d (u ⇠) = 0. (2.3)

By Stokes’ theorem, the result is zero due to our choice of the integration domain C. Let us
manipulate the above integral so that it is of the form (2.1):

0 =

Z

C
d (u ⇠) =

Z

C
(du ^ ⇠ + u d⇠) =

Z

C
u

✓
du

u
^+ d

◆
⇠ ⌘

Z

C
ur!⇠. (2.4)

In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.

– 7 –

Aomoto, Cho, Goto, Kita, Matsubara-Heo,  
Mazumoto, Mimachi, Mizera, Yoshida,… 

2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.34)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.35)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =

Z

C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.36)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,

0 =

Z

C
d

⇣
u 'm�1

⌘
=

Z

C

⇣
u d'm�1 + du ^ 'm�1

⌘
=

Z

C
u

⇣
d+ ! ^

⌘
'm�1 =

Z

C
u r!'m�1

r! ⌘ d+ !^ , ! = dlogu (2.37)

I =

Z

C
u 'm =

Z

C
u

⇣
'm +r!'m�1

⌘
(2.38)

h'| ⌘ 'm ⇠ 'm +r!'m�1 2 H
m
! (2.39)

H
m
! ⌘ {m�forms 'm |r!'m = 0}/{r!'m�1}, (2.40)
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In the final equality we defined a connection r!, which differs from the usual derivative by
the one-form !:

r! ⌘ d+ !^, where ! ⌘ d log u. (2.5)

Since the above expression integrates to zero, we have
Z

C
u' =

Z

C
u ('+r!⇠) . (2.6)

Hence ' and ' + r!⇠ carry the same information and we can talk about equivalence
(cohomology) classes !h'| of forms that integrate to the same result:

!h'| : ' ⇠ '+r!⇠. (2.7)

In other words, whenever two forms are equal to each other up to integration-by-parts
identities, they belong to the same equivalence class. This class is called a twisted cocycle.
The word twisted refers to the fact that the usual derivative operator d is replaced by the
covariant derivative r! given in (2.5), as a consequence of the presence of the multi-valued
function u in the hypergeometric integral. We often refer to any representative of the class
(2.7) as twisted cocycle, as well as drop the subscript ! when it is clear from the context.1 A

1For completeness, let us mention that, similarly, there are equivalence (homology) classes of integration
domains C that give the same result for the integral (2.1), called twisted cycles |C]!, though we do not make
use of this fact in the current manuscript.
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2.6 Intersection Theory

I =

Z

C
u(z) 'm(z) (2.35)

'm(z) = '̂(z)dmz d
m
z = dz1 ^ . . . ^ dzm (2.36)

'm(z) is a di↵erential m-form

u(z) is a multivalued function (regulating all poles of 'm)

I =
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C
u(z)

| {z }
twisted
cycle

'm(z)| {z }
twisted
cocycle

(2.37)

There could exist many forms 'm that upon integration give the same result I

Consider the (m� 1)-di↵erential form 'm�1,
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d+ ! ^
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r! ⌘ d+ !^ , ! = dlogu (2.38)
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u(z)

| {z }
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'm(z)| {z }
twisted
cocycle
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There could exist many forms 'm that upon integration give the same result I
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r! ⌘ d+ !^ , ! = dlogu (2.37)
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⇣
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Pairings of Cycles and Co-cycles

Dual Integrals :: pairings of cycles and co-cycles

Integrals :: pairings of cycles and co-cycles

Basic building blocks

Intersection numbers for co-cycles :: pairings of co-cycles

⌫ = number of independent forms (twisted cocycles)
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! ⌘ d log(u) (2.34)

h ' | C ] ⌘

Z

C
u(z) '(z) = I (2.35)
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⇤ ⇥
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CL | CR
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⇥
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Linear Relations



2

where: z = (z1, . . . , zn) are integration variables; C is the
integration domain; u is a multi-valued function of the
form u =

Q
i Bi(z)�i with �i /2 Z, such that

Q
i Bi vanishes

on the integration boundary @C; and ' is a single-valued
differential n-form,

'(z) = '̂(z) dnz , d
nz ⌘ dz1 ^ . . . ^ dzn , (2)

with '̂ being a rational function with all poles regulated by
u(z). Then employing Stokes’ theorem we find equivalence
classes of n-forms,

' ⇠ '+r!⇠, (3)

for any (n�1)-form ⇠ and where r! ⌘ d + !^ is a co-
variant derivative with a one-form ! ⌘ d log u. The space
of n-forms modulo the relation eq. (3) forms a vector
space called a twisted cohomology group1

H
n
! . We denote

its elements by h'| 2 H
n
! . Within this framework, the

integral I from eq. (1) can be interpreted as a pairing of
h'| with the integration contour |C],

I = h'|C] . (4)

Since in our applications |C] will always stay constant,
the vector space of such integrals is the same as that of
h'|.

Consider a set of ⌫ MIs, say Ji, defined as

Ji =

Z

C
u(z) ei(z) = hei|C] , i = 1, . . . , ⌫ , (5)

in terms of any independent set of differential forms hei|.
Then, the decomposition of a generic integral I in terms
of the MIs Ji,

I =
⌫X

i=1

ci Ji , (6)

can be interpreted as coming from the more fundamental
decomposition of the differential form h'| in terms of the
basis forms hei| , namely

h'| =
⌫X

i=1

ci hei| , (7)

with the coefficients determined by the master decompo-
sition formula [8, 10],

ci =
⌫X

j=1

h'|hji
�
C�1

�
ji

, Cij = hei|hji , (8)

1
We refer the interested reader to [20–22] for reviews of twisted

(co)homologies and their intersection theory, as well as [8, 10, 18,

20, 23–28] and [29–32] for some recent applications of these ideas

to physics.

where |hji (j = 1, . . . , ⌫)2, span a dual (and auxiliary)
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'R(z) = Ĩ (2.40)

h 'L | 'R i ⌘

Z

C
◆('L) ^ 'R (2.41)

⇥
CL | CR

⇤
⌘ intersection number (2.42)

h 'L | 'R i =
X

i,j

h 'L | CR,j
⇤ ⇥

CL,i | CR,j
⇤�1 ⇥

CL,i | 'R i (2.43)

⇥
CL | CR

⇤
=

X

i,j

⇥
CL,i | 'R,j i h 'L,i | 'R,j i

�1
h 'L | CR

⇤
(2.44)

– 7 –

Completeness for forms

Completeness for contours

⌫ = number of independent forms (twisted cocycles)

⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|�j ] (H
�1)ij [�i| = Ih (2.53)

Hij ⌘ [�i|�j ] (2.54)

– 10 –

⌫ = number of independent forms (twisted cocycles)

⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)

– 10 –

⌫ = number of independent forms (twisted cocycles)

⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)

– 10 –

⌫ = number of independent forms (twisted cocycles)

⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)

– 10 –

Cho, Matsumoto (1995)

Riemann Twisted Periods Relations (RTPR)



R. Balasubramanian et al. / J. Math. Anal. Appl. 271 (2002) 232–256 233

F(a, b; c; z) := 2F1(a, b; c; z)=
∞
∑

n=0

(a,n)(b,n)

(c, n)(1, n)
zn, (1.1)

where a, b, c ∈ C and c /∈ −N0 := {0,−1,−2, . . .}. In (1.1), (a,0) = 1 for a ̸= 0
and the rising factorial notation

(a,n) = a(a + 1) . . . (a + n −1) = Γ (a + n)

Γ (a)
, n ! 1,

is used. It is important to note the symmetry propertyF(a, b; c; z) = F(b, a; c; z).
Moreover, F(a, b; c; z) is analytic in the cut plane C\{[1,∞)}, and, in particular,
it is analytic in the unit disc ∆ = {z ∈ C: |z| < 1}. By classical theory [5,17],
the behavior of the function at z = 1 depends on the parameters: if a + b < c
the function is bounded in the closed disk |z| < 1, whereas for a + b ! c the
function is unbounded. In the unbounded case, refined estimates for the behavior
of the function were recently given in [3]. Many classes of special functions are
particular or limiting cases of the hypergeometric function [1,5].
The motivation for this paper comes from the fact that elliptic integrals are

special cases of the hypergeometric function, a topic studied recently in [2,7,12].
The complete elliptic integrals K and E of the first and second kind, respectively,
are defined for r ∈ (0,1) by
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We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:
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are defined for r ∈ (0,1) by

K(r) = π

2
F

(

1
2
,
1
2
;1; r2

)

=
π/2
∫

0

dφ
√

1−r2 sin2 φ

and

E(r) = π

2
F

(

−1
2
,
1
2
;1; r2

)

=
π/2
∫

0

√

1−r2 sin2 φ dφ.

We also use the notation K′ and E ′, for their complements defined by K′(r) =
K(r ′) and E ′(r) = E(r ′), r2 + r ′2 = 1. One of the main properties of these in-
tegrals is the important identity due to Legendre to the effect that

EK′ + E ′K −KK′ = π

2
,

and generalizations of this identity were explored in [2,7,12].
Elliott [11] (see also [5, Theorem 3.2.8]) proved the following identity:

F

(

1
2

+ λ,−1
2

−ν;1+ λ + µ; r

)

F

(

1
2

−λ,
1
2

+ ν;1+ ν + µ;1−r

)

+ F

(

1
2

+ λ,
1
2

−ν;1+ λ + µ; r

)

× F

(

−1
2

−λ,
1
2

+ ν;1+ ν + µ;1−r

)
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1. Integral representations

Elliott’s identity is given in [BNPV] as

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r)F (

1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

+F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)F (−1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

−F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)F (

1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (1 + λ+ µ)Γ (1 + µ+ ν)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
. (1)

Note that

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r)

=
Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

tλ−1/2(1− t)µ−1/2(1− rt)ν+1/2dt,

F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

=
Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

tλ−1/2(1− t)µ−1/2(1− rt)ν−1/2dt,

1
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− F

(

1
2

+ λ,
1
2

− ν;1+ λ + µ; r

)

F

(

1
2

− λ,
1
2

+ ν;1+ ν + µ;1− r

)

= Γ (1+ λ + µ)Γ (1+ ν + µ)

Γ
(

λ + µ + ν + 3
2
)

Γ
( 1
2 + µ

) , r ∈ (0,1).

Clearly, the choice λ = µ = ν = 0 gives the Legendre relation. In [2, Corol-
lary 3.13 (5)], a new generalization of the Legendre relation was obtained in the
form

L(a,1− a, c, r) = Γ 2(c)

Γ (c + a − 1)Γ (c − a + 1) , r ∈ (0,1), (1.2)

which was shown to be valid for a ∈ (0,1) and c > 0. Here

L(a, b, c, r) = u(r)v(1− r) + u(1− r)v(r) − v(r)v(1− r),

r ∈ (0,1), (1.3)
with a, b, c > 0, u(r) = F(a − 1, b; c; r) and v(r) = F(a, b; c; r). Unfortunately,
the generalization (1.2) does not include Elliott’s identity as a special case.
However, it should be mentioned that the relation (1.2) agrees with Elliott’s
identity at least for the case λ = ν = 1/2 − a and µ = c + a − 3/2. The aim
of this paper is to fill this gap by proving a general result which includes the result
(1.2) as well as the result of Elliott. Our main results are partly motivated by the
following conjecture from [2, Conjecture 3.16]:

Conjecture 1.1. For a, b ∈ (0,1), a + b ! 1 (" 1), L(a, b, c, r) is concave
(convex) as a function of r on (0,1).

Several properties of L(a, b, c, r) are discussed in [7,12]. Very recently, the
Elliott identity and some related results were discussed in [4]. Conjecture 1.1 does
not cover the Elliott relation in full form, and hence, it will be also of interest to
study the analog of this conjecture through a more general function that includes
the above mentioned result of Elliott. Because of this reason we introduce the
following function.

Definition 1.2. For a, b, c, d ∈ C, with c, d /∈ −N0, let u(z) = F(d − a − 1, d −
b;d; z), v1(z) = F(c − a, c − b; c; z), u1(z) = F(c − a − 1, c − b; c; z), v(z) =
F(d − a, d − b;d; z), and

S(a, b, c, d, z) = u1(z)v(1− z) + u(1− z)v1(z) − v1(z)v(1− z),

z ∈ ∆\{0}. (1.4)

Unless otherwise stated, throughout this paper S(z) denotes the function S(a,
b, c, d, z) defined by (1.4). Further, we call S the Elliott function (see Corol-
lary 1.8). Clearly,

S(a, b, c, c, z) = L(c − a, c − b, c, z)
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F (
1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 1

0

s−λ−1/2(1−s)λ+µ+ν−1/2(1−(1−r)s)−ν−1/2ds,

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 0

−∞
(−t)−λ−1/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

F (−1

2
− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (µ+ν+1)

Γ (−λ− 1
2)Γ (λ+µ+ν+ 3

2)

∫ 1

0

s−λ−3/2(1−s)λ+µ+ν+1/2(1−(1−r)s)−ν−1/2ds,

=
Γ (µ+ ν + 1)

Γ (−λ− 1
2)Γ (λ+µ+ν+ 3

2)

∫ 0

−∞
(−t)−λ−3/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

where a variable change s = t/(t− 1) is used.

2. Setting of a local system

We set

u(t) = t1/2+λ(1− t)−1/2+µ(1− rt)1/2+ν ,

ϕ1 =
dt

t
, ϕ2 =

dt

t(1− rt)
=
(1
t
− 1

t− 1/r

)
dt,

ψ1 =
dt

1− t
=

−dt

t− 1
, ψ2 =

dt

t(1− t)
=
(1
t
− 1

t− 1

)
dt.

Then we have

1/u(t) = t−1/2−λ(1− t)1/2−µ(1− rt)−1/2−ν ,

and

F (
1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r) =

Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

u(t)ϕ1,

F (
1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r) =

Γ (λ+ µ+ 1)

Γ (λ+ 1
2)Γ (µ+ 1

2)

∫ 1

0

u(t)ϕ2;
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F (
1

2
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1
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and we have

tH−1
c =

1

2π
√
−1

(
1
2 + λ+ µ+ ν 0

−(12 + λ+ µ+ ν) 1
2 + λ

)
.

We take a basis of twisted homology group for u(t) and that for
1/u(t) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-

tively. The intersection number of these twisted cycle is
1

−e2π
√
−1λ − 1

by [M, Theorem 3]. We use
tΠ−ωH

−1
c Πω = tHh.

in [M, Corollary 1]. Consider the (1, 1)-entry of the transpose of this
identity:

tΠω
tH−1

c Π−ω = Hh.

Then it yields

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c

⎛

⎜⎝

∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2

⎞

⎟⎠ =
−1

e2π
√
−1λ + 1

. (4)

3. Transformation of a twisted period relation into
Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.
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·
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2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π
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·
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the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
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(
1 0
−1 1

)
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Hence the equality (4) is transformed into
(
F (

1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r), F (

1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

)

·
(

1 0
−1 1

)
·
(

F (12 − λ, 12 + ν, 1 + µ+ ν; 1− r)
F (−1

2 − λ, 12 + ν, 1 + µ+ ν; 1− r)

)

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

which is equivalent to Elliott’s identity (1).
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c and the 2× 2-matrix in (3) reduces to

1

2π
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2+λ+µ+ν 0
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Hypothesys: too close to RTPR to be accidental  P.M. 
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F (
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− λ,

1

2
+ ν, 1 + µ+ ν; 1− r)

=
Γ (µ+ν+1)

Γ (−λ+ 1
2)Γ (λ+µ+ν+ 1

2)

∫ 1

0
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F (−1

2
− λ,
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2
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=
Γ (µ+ν+1)
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2)

∫ 1

0
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Γ (µ+ ν + 1)

Γ (−λ− 1
2)Γ (λ+µ+ν+ 3

2)

∫ 0

−∞
(−t)−λ−3/2(1−t)−µ−1/2(1−rt)−ν−1/2dt,

where a variable change s = t/(t− 1) is used.

2. Setting of a local system

We set

u(t) = t1/2+λ(1− t)−1/2+µ(1− rt)1/2+ν ,

ϕ1 =
dt

t
, ϕ2 =

dt

t(1− rt)
=
(1
t
− 1

t− 1/r

)
dt,

ψ1 =
dt

1− t
=

−dt

t− 1
, ψ2 =

dt

t(1− t)
=
(1
t
− 1

t− 1

)
dt.

Then we have
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2
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2
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2)Γ (µ+ 1

2)

∫ 1

0

u(t)ϕ1,
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2
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2
− ν, 1 + λ+ µ; r) =
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Γ (λ+ 1
2)Γ (µ+ 1
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0
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and we have

tH−1
c =

1

2π
√
−1

(
1
2 + λ+ µ+ ν 0

−(12 + λ+ µ+ ν) 1
2 + λ

)
.

We take a basis of twisted homology group for u(t) and that for
1/u(t) by extending γ = (0, 1)⊗u(t) and δ = (−∞, 0)⊗1/u(t), respec-

tively. The intersection number of these twisted cycle is
1

−e2π
√
−1λ − 1

by [M, Theorem 3]. We use
tΠ−ωH

−1
c Πω = tHh.

in [M, Corollary 1]. Consider the (1, 1)-entry of the transpose of this
identity:

tΠω
tH−1

c Π−ω = Hh.

Then it yields

(∫ 1

0

u(t)ϕ1,

∫ 1

0

u(t)ϕ2

)
tH−1

c

⎛

⎜⎝

∫ 0

−∞
1

u(t)
ψ1

∫ 0

−∞
1

u(t)
ψ2

⎞

⎟⎠ =
−1

e2π
√
−1λ + 1

. (4)

3. Transformation of a twisted period relation into
Elliott’s identity

Rewrite the integrals in the equality (4) in terms of hypergeometric
series by (2) and (3). Then its exp and Gamma factors reduce to

Γ (λ+ 1
2)Γ (µ+ 1

2)

Γ (λ+ µ+ 1)
·
Γ (−λ+ 1

2)Γ (λ+ µ+ ν + 3
2)√

−1eπ
√
−1λΓ (µ+ ν + 1)

=
Γ (λ+ 1

2)Γ (1− (λ+ 1
2))√

−1eπ
√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
π

sin(π(λ+ 1
2))

· 1√
−1eπ

√
−1λ

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

=
−2π

√
−1

e2π
√
−1λ + 1

·
Γ (λ+ µ+ ν + 3

2)Γ (µ+ 1
2)

Γ (λ+ µ+ 1)Γ (µ+ ν + 1)
,

the product of tH−1
c and the 2× 2-matrix in (3) reduces to

1

2π
√
−1

(
1
2+λ+µ+ν 0

−(12+λ+µ+ν) 1
2+λ

)( 1
1/2+λ+µ+ν 0

0 1
1/2+λ

)

=
1

2π
√
−1

(
1 0
−1 1

)
.
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Hence the equality (4) is transformed into
(
F (

1

2
+ λ,−1

2
− ν, 1 + λ+ µ; r), F (

1

2
+ λ,

1

2
− ν, 1 + λ+ µ; r)

)

·
(

1 0
−1 1

)
·
(

F (12 − λ, 12 + ν, 1 + µ+ ν; 1− r)
F (−1

2 − λ, 12 + ν, 1 + µ+ ν; 1− r)

)

=
Γ (λ+ µ+ 1)Γ (µ+ ν + 1)

Γ (λ+ µ+ ν + 3
2)Γ (µ+ 1

2)
,

which is equivalent to Elliott’s identity (1).
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Hypothesys: too close to RTPR to be accidental  P.M. 

Paradigmatic case for studying quadratic relations for Feynman Integrals Broadhurst, Roberts (2018)
Lee, Pomeranski (2019)
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i.e. the transition amplitudes of state |ψ ⟩ to states |ψn ⟩. If we now insert Eq. (3.23) into
Eq. (3.21)

|ψ ⟩ =
∑

n

|ψn ⟩ ⟨ψn|
︸ ︷︷ ︸

Pn

ψ ⟩ , (3.24)

we see that for a complete set of orthonormal basis vectors the orthogonal projectors
satisfy the following completeness relation

∑

n

Pn =
∑

n

|ψn ⟩ ⟨ψn| = 1 . (3.25)

A projection operator Pn acting on an arbitrary state |ψ ⟩ will thus project the state
to the state |ψn ⟩ with a probability of | ⟨ψn |ψ ⟩ |2. Summarizing, the Pn satisfy

PnPm = δnm and P 2
n = Pn . (3.26)

Physically, this represents the class of projective measurements such as the measure-
ment of the polarization of light.

Example: Polarization Filter
Consider a photon, linearly polarized along the 45◦-plane (with respect to the horizontal
plane). We can then describe its polarization by a state vector

|ψ ⟩ =
1√
2

( |H ⟩ + |V ⟩ ) , (3.27)

where |H ⟩ and |V ⟩ are the basis vectors of a 2–dimensional Hilbert space corresponding
to horizontal and vertical polarization respectively. If we perform a measurement of
the polarization by sending the photon through a polarization filter, e.g. in horizontal
orientation, we get the measurement outcome by calculating the expectation value of the
horizontal projector |H ⟩ ⟨H |. Lets first calculate the projection onto |H ⟩

|H ⟩ ⟨H |ψ ⟩ =
1√
2

⎛

⎝ |H ⟩ ⟨H |H ⟩
︸ ︷︷ ︸

1

+ |H ⟩ ⟨H |V ⟩
︸ ︷︷ ︸

0

⎞

⎠ =
1√
2
|H ⟩ , (3.28)

then we apply ⟨ψ | onto the left side to obtain the expectation value

⟨ψ |H ⟩ ⟨H |ψ ⟩ =
1

2

⎛

⎝ ⟨H | H ⟩
︸ ︷︷ ︸

1

+ ⟨V | H ⟩
︸ ︷︷ ︸

0

⎞

⎠ =
1

2
. (3.29)

It’s interesting to note that the expectation value of the projector is exactly the squared
transition amplitude ⟨H |ψ ⟩ – the transition probability. We conclude that the proba-
bility for the photon to pass the polarization filter is 1

2
.
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⌫ = number of independent integration contours (twisted cycles)

(coming from the zeroes of B)

⌫ = number of independent master integrals

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)
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Twisted De Rahm (co)-Homology Theory and Aomoto-Gel’fand Hypergeometric F’s 

Proper mathematical framework for Feynman integrals

Summary

Feynman Integrals admit a scalar product

"The number of master integrals” from being the question to being the answer 

Chetyrkin, Tkachov (1981); Remiddi, Laporta (1996); Laporta (2000)

Smirnov, Petuckhov (2010)

Lee, Pomeranski (2013)

Bitoun, Bogner, Klausen, Panzer (2018)

Bosma, Sogaard, Zhang (2017)

⌫ = number of independent master integrals

= is finite

= number of critical points of graph polynomials

= is related to Euler characteritics �E

= number of independent integration contours

= number of independent forms

= dimH
m
±!

h'| =
⌫X

i,j=1

h'|eji (C
�1)ij hei| (2.50)

⌫X

i,j=1

|eji (C
�1)ij hei| = Ic (2.51)

Cij ⌘ hei|eji (2.52)

⌫X

i,j=1

|Cj ] (H
�1)ij [Ci| = Ih (2.53)

Hij ⌘ [Ci|Cj ] (2.54)
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Primo, Tancredi (2017)

Aluffi, Marcolli (2008)

Mizera & P.M. (2018)

  Frellesvig, Gasparotto, Laporta, Mandal, Mattiazzi, Mizera & P.M. (2019)

  Frellesvig, Gasparotto, Mandal, Mattiazzi, Mizera & P.M. (2019)



Mathematical Developments  
and Geometric Aspects  
of Intersection Theory

Aluffi, Aomoto, Brown,  
Matsubara-Heo, Mimachi, Yoshida

Integral Relations,  
Computational Algebraic Geometry 
and Computer Algebra 

Bohem, Zhang

Scattering Amplitudes,  
Master Integrals,  
Differential Equations  
and Special Functions

Duhr, Henn, Herrmann, 
Remiddi, Vanhove, Weinzierl 

Intersection Theory  
and Feynman Calculus 

Britto, Frellesvig  Laporta,  
Mandal, Mizera, P.M.  

MatheAmplitudes 2019 :: the Roadmap
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