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Feynman integrals are crucial in
perturbative quantum field theory (QFT)

® Required to compute observables/predictions beyond
the leading order in perturbation theory

- Collider physics experiments: underlying scattering
processes computed from integrals in momentum space

- Position-space correlation functions (e.g. in
conformal field theory), scaling dimensions of fields,
renormalisation group coefficients

® |nteresting connections to mathematics: periods,
special functions, differential equations; algebraic
geometry

Innovative field: many new methods valid in any QFT



Example: one-loop star/triangle integral
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f(21a, 233, T13) = TR (Bloch-Wigner dilogarithm)

Dual representation: b1 . P2
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Questions about Feynman integrals

We are interested in multi-loop integrals defined
from Feynman sraph
€ynman grapns f(pq;-pj):/d4k1d4k2...d4kLI(pi;kj)

Either Euclidean or Minkowski space

Sometimes necessary (and interesting!) to consider
generalisation to non-integer dimensions d*k — d* %k

Typical questions:

® VWhat special functions do Feynman integrals evaluate to!?

® What singularities do they have!

® How can we determine the functions efficiently?



Special functions appearing in Feynman integrals

One loop: logarithms and dilogarithm sufficient

g “ dt
log z = ot Lis(2) = —/ — log(1 — t)
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Natural generalization: ‘Hyperlogarithms’ cover large

classes of multi-loop Feynman integrals
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Weight: number of indices = integrations
Starting from two loops, also new functions related

to elliptic integrals K(2) = /1 dt
o V1= )(1 —20)

Multiple elliptic polylogarithms
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Canonical differential equation method

Feynman integrals satisfy n-th order partial
differential equations (DE) Typically

. complicated
Equivalently, system of |st order DE

|dea: (rational) loop integrand contains key information
on special functions appearing after integration

Special functions defined

Very simple
from ‘canonical’ DE /SR



Canonical differential equations (for Feynman
integrals evaluating to multiple polylogarithms)
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Basis of uniform weight
Feynman integrals
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Constant
matrices
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f(z,e€)

Singular points

Iterative solution in terms of multiple polylogarithms

Uniform transcendental weight (UT)
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We use dlog forms and leading singularities
to choose the uniform weight basis

Exam P I e d- I Qg integran d: [Arkani-Hamed, Bourjaily, Cachzo,

Goncharov, Postnikoy, Trnka, 2012]
d* (p1 + p2)*(p1 + p3)? [Caron-Huot, talk at Trento, 2012] [Lipstein, Mason, 2013]

C2(0 + p1)%(0 + p1 + p2)% (£ — pa)?
o (2

Closely related to constant leading singularities

* Conjecturally, integrate to uniform weight functions
M Explored and checked in many cases

4 Guides basis choice for differential equations [MH,2013]

M Direct link to differential equations: [Herrmann, Parra-Martinez, 2019]

* Other method based on Moser algorithm and
imPrOVGmentS: [JMH,’ 14; Lee '14; Prausa ’| 7; Meyer ’| 7; Gituliar, Magerya ’ | 7]



Our research question:

Some integral (family) is given. The differential
equations in a random basis are complicated.

We have some idea about the canonical
form of the differential equations

The leading singularity and Moser methods
help find UT functions, but are not always

easily applicable. Can we find the canonical
DE with less information?
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One integral to rule them all...

From the Picard-Fuchs equation of a
uniform weight (UT) integral to a canonical
system of differential equations (DE)



We develop further an idea by Hoschele et al.

[Hoschele, Hoff, Ueda ’14]
® |dea:first-order DE are only canonical if all integrals are UT,

but Picard-Fuchs eq. single integral is unique, and contains
valuable information.

® They applied this knowledge to find the remaining UT
integrals, for cases with 2 or 3 master integrals, and
outlined a general procedure.

Here:

M We formulate the method in matrix form, and show how
to solve the equations systematically

[ We use 'dlog’ integrands to find first UT integral

[ We apply the method to cutting edge examples (eg.
sectors with |7 master integrals), and full systems of
differential equations



From the Picard-Fuchs equation of a UT
integral to a canonical system of DE

Assumption: know one UT integral Ji

Automated steps (computer algebra):

e Complete (in any way) to basis J1
e Computer differential equations: —f = A(z,¢)f .

® |ndependent derivatives of f;

—

(fiaf{/f fl ) ('CC E)f

¥ ! determines the Picard-Fuchs equation of fi

—

Goal: Switch to new basis ¢ with ¢1 = f1 ,

with all integrals UT.



From the Picard-Fuchs equation of a UT
integral to a canonical system of DE

Assumption: know one UT integral Ji

Automated steps (computer algebra):

e Complete (in any way) to basis J1
e Compute differential equations: d%f: Az, e)f.

e Independent derivatives of f1 : (f}, f1, - f")T = U(z,e) f

® [/ given by derivatives: Al = A, Al = 4 Agln=1] 4 Al g

U = (A[”,A[Q],...,A[”])T

¥~ determines the Picard-Fuchs equation of fi

ldea: use the infinite amount of information provided by f1 being UT.



From the Picard-Fuchs equation of a UT
integral to a canonical system of DE

Goal: Switch to new basis g with g1 = f1, with all integrals UT.

—

dz | F=TgG. where T=0"1d,

Deduce from assumption first lineto T is @ = (1,0,---,0)

oW ® = ¢ yields system of equations at each order in ¢

Constraint on ¢ from
expected canonical form:

Az = Z dlna;(x)

m .
: dx ‘
7} \
/ constant

matrices: to
Follow from be found

singularities of A(x)




Systematic solution of the equations

— —1 —
gV~ "D = ¢
0 0 *—— Unit vector

|

Known matrix Parametrized by set of unknown constant matrices m;
X, € Known polynomial ¢ dependence

Equations valid for any x : can use finite field methods.

Solve at each order in € .

Eg., at first step, linear equations for @y ; := tom;,
at next step, linear equations for vz, :=v1,m; and so on.

(Freedom corresponds to similarity transformations. Fix such that T invertible.)

Higher orders in € provide consistency check.



Corollary of our method: test of UT
property of a given integral

® | eading singularities / dog integrands provide a useful
tool to find uniform weight integrals a priori (before
calculation).

® However, there are some limitations to this:

- Sometimes, a more careful D-dimensional |cyicherin, Genrmann, MH,
anal)’SiS ma)l be needed. Wasser Zhang, Zoia’ | 8]

- Practical issues in residue calculations

- the UT conjecture is not (yet) proven

[ Our method provides a test for the UT property, and can
suggest modifications if an integral is ‘almost’ UT



State-of-the art applications



Application |: Planar three-loop on-shell integrals

Four-particle scattering [Henn, SmirnovA2, 4]
P2 p3
P1 P4
(a) (b)

4
Kinematics: >_Pi=0, p;i=0. s=(pi+p2)°, t=(pa+tps), z=t/s.
1 =1

® UT integral in top sector easily found using d-log
integrand analysis [Arkani-Hamed et al ’I |, JMH ’13,Wasser,’ | 6]

® Obtained full system of differential equations

Matrix size 26x26 for case (a),41x4| for case (b)
. d d

Alz) = mo—— Inx +m1@ In(1+ x)

Matrix block structure: at most 3 master integrals per sector.



Application 2: Four-loop integrals for four-particle
scattering

P2 p3

pl p4

® Solved the system on the cut (8 MI)

® Found further UT integrals (off the
cut) by testing a large list of candidates

® Full canonical system (19 MI) of DE obtained



Application 3: many coupled master integrals

® Four-loop non-planar heavy quark effective theory
(HQET) integrals

: 1
Kinematics cos ¢ = Br o, + —

V/pip3 z

Correspond to Wilson line
integrals in position space.
& P P D1 / \ Do

® State of the art: 3 |oops [JMH, Korchemsky Marquard ’| 5]

® |7 coupled master integrals

® Form of singularities:
~ d

d d
Alx) = mo—— Inx —I—mlﬁ In(1+x) + m_1—— In(1 — x)

Solved easily (~10 min) using our algorithm.



Discussion

M We developed further a method of Hoschele et al. &

to find a system of canonical differential equations, &Ow\e
given just one uniform weight integral. | @g’b\
Yo)
M Being in matrix form, our equations are solved easily.

M As a byproduct, one obtains a test of the UT property
of a given integral.

[ Our method is efficient.VWe presented state-of-the art
applications where other methods fail or require more
assumptions.

Our work provides an automated tool for the calculation
of canonical differential equations. It removes an important
bottleneck in the calculation of Feynman integrals.



Outlook: more complicated integrals

® Unlike other methods, the inclusion of multiple scales
does not pose a significant problem. Hence we expect
applications to a wide class of Feynman integrals

df(x,6) =¢€ ka dlog(ak(x))| f(x,¢€)

® The idea of canonical form of differential
equations has also been explicitly applied for
elliptic polylogarithms.VVe find it conceivable that
our new ideas can be applied here as well.
dg(x,€) = |[dAg(x) + edA1(X)] g(x,€)
[Henn ’14; Mizera, Pokraka ’19]

Integrating out Ay introduces elliptic functions:

/\ Beyond logarithmic kernels;[Duhr et al,;

df(X, 6) _ GdA(X)f(X, 6) Adams and Weinzier| | 8]



Outlook: finite integrals (e.g. D=4)

® |n the case of finite integrals, the matrices become
nilpotent. This leads to further simplifications, as
shown in [Caron-Huot, JMH 14]. It would be interesting
to apply our ideas to this case.

Transcen:enta| Arrows represent non-
weight : :
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Outlook: recurrence relations

e Differential equations are closely related to
recurrence relations, for example in the dimension.
We find it likely that the UT information provides
important input for that method

[Tarasov et al; Lee et al;
Schneider et al.]



Thank you for your attention!



