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1 Introductory explanation (Divergent inte-

gral and twisted cycle )

The function xλ+ on R for Reλ > −1 is an ordinary function but for
λ ∈ C− Z, λ ≤ −1 is a generalized function defined as follows :

Suppose f(x) is an arbitrary holomorphic function near the origin. Fix a
point a > 0 near the origin. Consider the integral

⟨xλ+, f⟩ =
∫ a

0

xλf(x)dx

= lim
ε↓0

∫ a

ε

xλf(x)dx. (1)

Case (i) Suppose first −n − 1 < Reλ < −n (n = 1, 2, 3, . . .). Then (1)
is divergent. f(x) has a Taylor expansion at the origin

f(x) =
n−1∑
m=0

fm(0)

m!
xm + xng(x)
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where g(x) is holomorphic on [0, a]. The finite part of (1) in the sense of
J.Hadamard is given as follows :

J(λ) = f.p.

∫ a

0

xλf(x)dx

=
n−1∑
m=0

f (m)(0)

m!

aλ+m+1

λ+m+ 1
+

∫ a

0

xλ+ng(x)dx. (2)

This is the generalized function xλ+ which has been defined by I.M.Gelfand
and G.E.Shilov in the mid 20th century (see [5]), i.e.,

⟨xλ+, f⟩ = f.p.

∫ a

0

xλf(x)dx

In a neighborhood of the origin we take a path σ0 starting from and
ending in a going around the origin counter-clockwise (“loop based on the
point a going around the origin ” )

1

e2πiλ − 1
σ0 = [ε, a] +

1

e2πiλ − 1
δε (ε > 0)

where δε is a scalar multiple of a loop with base point ε in a neighborhood
of 0.

Then the integral

1

e2πiλ − 1

∫
σ0

xλf(x)dx

equals (2). This is called “detoured cycle at the origin” ). (This idea already
can be found in the work of J.Leray in the middle of 20th century).

Case (ii) When λ = −n (n = 1, 2, 3, . . .) the finite part is defined as

f.p.

∫ a

0

x−nf(x)dx =
n−2∑
m=0

f (m)(0)

m!

a−n+m+1

−n+m+ 1
+
f (n−1)(0)

n!
log a+

∫ a

0

g(x)dx. (3)
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The generalized function x−n+ is then defined by the finite part

⟨xλ+, f⟩ = f.p.

∫ a

0

x−nf(x)dx.

J(λ) has Laurent expansion at λ = −n

J(λ) =
c−1

λ+ n
+ c0 + c1(λ+ n) + · · ·

Then the finite part coincides with c0 , i.e.,

f.p.

∫ a

0

x−nf(x)dx = c0 = lim
λ→−n

d

dλ
(λ+ n)J(λ)

=
1

2πi

∫
σ0

x−n(log x− πi)f(x)dx.

Example 1

(i)f.p.

∫ ∞

a

(x− a)λdx = 0 (for allλ ∈ R).

(ii) f.p.

∫ b

a

f(x)

x
dx = p.v.

∫ b

a

f(x)

x
dx =

∫ b

a

f(x)− f(0)

x
dx+ f(0) log

b

−a
(a < 0 < b).

(p.v. denotes the principal value)

(iii) f.p.

∫ ∞

0

e−x

x
dx =

∫ ∞

0

(
e−x

x
− x

ex − 1
)dx = Γ′(1) = −C,

C denotes Euler Constant.

Example 2 Beta function
For α, β /∈ Z

J(α, β) = f.p.

∫ 1

0

xα(1− x)βdx (4)

which is equal to Beta function B(α, β). Take σ0, σ1 the loops with the base
point x = 1

2
going around 0, 1 in a positive direction respectively. Then

J(α, β) =
1

e2πiα − 1

∫
σ0

xα(1− x)βdx− 1

e2πiβ − 1

∫
σ1

xα(1− x)βdx.
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The monodromy M associated with the function Φ(x) = xα(1− x)β

σ0 −→M(σ0) = e2πiα ∈ C∗, σ1 −→M(σ1) = e2πiβ ∈ C∗

defines the local system L and its dual L∗ on the space X = C−{0, 1}. The
boundary operator ∂ acts on the linear space of chains c = c0σ0+c1σ1 (c0, c1 ∈
C) with values in L∗ as follows :

∂(c0σ0 + c1σ1) =
(
c0(e

2πiα − 1) + c1(e
2πiα − 1)

)
{1
2
}.

It is closed (twisted cycle) if and only if

c0(e
2πiα − 1) + c1(e

2πiα − 1) = 0

Hence the one dimensional homology H1(X,L∗) is just one dimenisional with
the basis c = 1

e2πiα−1
σ0 − 1

e2πiβ−1
σ1.

We have

J(α, β) = ⟨c, dx⟩. (5)

On the other hand if α = −n− 1 (n = 0, 1, 2, 3, . . .) then

J(−n− 1, β) = f.p.

∫ 1

0

x−n−1(1− x)βdx (β > −1)

=
1

2πi

∫
σ0

(1− x)−n−1(1− x)β(log x− πi)dx− 1

(e2πiβ − 1)

∫
σ1

x−n−1(1− x)βdx.

(6)

The vector function of two components T
(
(1 − x)β, (1 − x)β log x) (T

denotes the transposition) defines the monodromy and the associated local
system L of rank two and its dual L∗. The fundamental 2×2 matrix function
Φ is defined by the lower triangular matrix

Φ(x) =

(
(1− x)β

(1− x)β log x (1− x)β

)
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M −→M(σ0) =

(
1
2πi 1

)
, M(σ1) =

(
e2πiα

e2πiβ

)
The space of chains with coefficients in L∗ is the linear space consisting of
two components

c = (c11, c12)σ0 + (c21, c22)σ1 (cjk ∈ C).

The pairing of integral between the chain c and two component vector func-
tion T(φ1(x), φ2(x)) is given by

⟨c,T (φ1, φ2)⟩ =
∫
σ0

(c11, c12)Φ(x)
T(φ1, φ2) dx+

∫
σ1

(c21, c22)Φ(x)
T(φ1, φ2) dx.

The boundary operator is given by

∂(c) =
{
(c11, c12)(M(σ0)− I) + (c21, c22)(M(σ1)− I)

}{1
2

}
c is closed if and only if

2πic12 + (e2πiβ − 1)c21 = 0, (e2πiβ − 1)c22 = 0,

i.e.,

c22 = 0, c21 = − 2πi

e2πiβ − 1
c12.

Hence we have two linearly independent twisted cycles

c1 = (1, 0)σ0, c2 = (0,
1

2πi
)σ0 + (− 1

e2πiβ − 1
, 0)σ1.

The integral (5) is nothing else than the pairing ⟨c2,T (x−n−1dx,−πix−n−1dx)⟩
, namely

J(−n− 1, β) = ⟨c2,T (x−n−1dx,−πix−n−1dx)⟩. (7)
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Let Llf be the same local system on X which is locally finite at the
singularity 0, 1,∞ and L∗

lf be its dual. There is a canonical morphism “reg”
often called “regularization” or “renormalization”

reg : H1(X,L∗
lf ) → H1(X,L∗)

↕
H1(X,Llf )

such that reg[0, 1] = c in (5) and reg[0, 1] = c2 in (6).
To evaluate this morphism in an explicitly way the intersection the-

ory between twisted cycles play an important role (refer to [11] and also
K.Mimachi’s talk .)

2 asymptotics for large exponents

Let us begin from a simplest example.

Example 3 For different aj ∈ C (1 ≤ j ≤ m) and λ =
∑m

j=1 λjεj ∈ Rm

({εj}1≤j≤m means the standard basis of Rm) we take

Φ(w) =
m∏
j=1

(w − aj)
λj

and the integral over a twisted cycle z in the space X = C−
∪m
j=1{aj}

Jλ(φ) =

∫
z

Φ(w)φ(w)dw.

where φ(w)dw is a rational differential one-form which is holomorphic on
X. Denote by H1

∇(X,Ω
·) the one dimensional twisted de cohomology with

respect to the covariant derivation

∇ : ψ −→ ∇ψ = dψ +
m∑
j=1

λjd log(w − aj) ∧ ψ (8)

for ψ ∈ Ω0 (scalar valued)(see [1]).
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Denote the logarithmic one forms φj(w)dw = d log(w − aj) (1 ≤ j ≤ m).
One can take φj(w)dw (1 ≤ j ≤ m− 1) as the representative of the basis of
H1

∇(X,Ω
·) (Orlik-Solomon basis)[6].

The shift operator Tεj associated with the shift : λ → λ + εj acts on
H1

∇(X,Ω
·) :

Tεj(φk dw) ∼
m−1∑
l=1

φldwaj;lk(λ), (homologically).

The (m− 1)× (m− 1)matrices Aj(λ) = (aj;lk(λ)) are rational functions
of λ which have the asymptotic expansions

Aj(λ) = A0
j +O(

1

N
) (λ = Nν + λ′)

where A
(0)
j commute with each other under the genericity condition C :

(C) : aj ̸= ak (j ̸= k).

Put λ = Nν + λ′ with ν =
∑m

j=1 νjεj ∈ Zm − {0}, where λ′ =
∑m

j=1 λ
′
jεj

is fixed.
We are interested in the asymptotic behavior of Jλ(φ) when N ∈ Z>0

tends to the infinity in the direction ν.
Take

F =
m∑
j=1

νj log(w − aj)

For the real valued level function Re(F ) the associated critical points ζj ∈
C (1 ≤ j ≤ m− 1) satisfy the equality

dF

dw
=

m∑
j=1

νj
w − aj

= 0. (9)

Generally there are m− 1 different critical points ζj. To each point ζj there
exists the one dimensional stable cycle zj which is Lagrangian. This is locally
described at ζj by
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ImF (w) = Im(ζj).

There also exists the one dimensional unstable cycle z−j at ζj. Each of the
systems zj (1 ≤ j ≤ m − 1) and z−j (1 ≤ j ≤ m − 1) makes a basis of
H1(X,L∗). They give the asymtotics of integral in the direction ν and and
−ν respectively.

Now for simplicity we consider the case m = 3 where ν = ε1 + ε2 + ε3
i.e., ν1 = ν2 = ν3 = 1.

A1(λ) =

( λ1
1+λ∞

(a3 − a1)
λ1

1+λ∞
(a3 − a1)

λ2
1+λ∞

(a3 − a2)
λ2

1+λ∞
(a3 − a2) + (a2 − a1)

)

A
(0)
1 =

(
a3−a1

3
a3−a1

3
a3−a2

3
a3+2a2−3a1

3

)
where λ∞ = λ1 + λ2 + λ3.

The multiplication by the variable w : Tw = A1 + a1I corresponds to the
matrix

A(0)
w = A

(0)
1 + a1I

=

(
a3+2a1

3
a3−a1

3
a3−a2

3
a3+2a2

3

)
This has the eigenvalues ζ1, ζ2.

One can easily show that ζ1, ζ2 both lie in the inside of the triangle with
vertices a1, a2, a3.

The discriminant of (7) is given by the determinant of Hankel matrix H1

of A
(0)
w :

H1 =

(
Tr(I) Tr(A

(0)
w )

Tr(A
(0)
w ) Tr({A(0)

w }2)

)
and

detH1 = (ζ1 − ζ2)
2

= a21 + a22 + a23 − a1a2 − a1a3 − a2a3,
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Under the condition (C) one can obtain the product formula

[d2F
dw2

]
w=ζ1

·
[d2F
dw2

]
w=ζ2

=
1

3

(ζ1 − ζ2)
2

(a1 − a2)2(a1 − a3)2(a2 − a3)2
. (10)

The two critical points meet each other if and only if
∏2

j=1

[
d2F
dw2

]
w=ζj

vanishes. This occurs if and only if a1, a2, a3 are the vertices of a regular
triangle and ζ1 = ζ2 is the center of gravity.

3 Method and Main results

For large exponents the behavior of critical points of a level function
gives an influence for asymptotics of corresponding hypergeometric integral.
In this talk I want to show in an explicit way how the product of Hessians
of the level function at all critical points is involved in the behavior of its
critical points.

Let fj = fj(x) (1 ≤ j ≤ m) be real polynomials in x = (x1, . . . , xn) in
the affine space Cn. Let X be the affine manifold which is the complement
of the union of the hypersurfaces Sj : fj = 0

X = Cn −
m∪
j=1

Sj.

The hypergeometric integral with respect to the multiplicative function

Φ(x) =
m∏
j=1

f
λj
j

with exponents λ =
∑m

j=1 λjεj ∈ Rm(εj denotes the standard basis of Rm)
is defined by

J(φ) =

∫
Φ(x)φ(x)dx1 ∧ · · · ∧ dxn (φ ∈ Ω·).

Hn
∇(X,Ω

·) denotes the n dimensional twisted cohomology on X with respect
to the covariant differentiation :
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∇φ = dφ+
m∑
j=1

λjd log fj ∧ φ.

Its dual is isomorphic to the n dimensional twisted homology Hn(X,L∗)
where L∗ denotes the dual local system associated with the function Φ. The
perfect pairing between them can be described by the above integral.

Let λ′ ∈ Rm and ν =
∑m

j=1 νjej ∈ Zm − {0} be fixed. Put λ = Nν + λ′

for a positive integer N . Denote |ν| =
∑m

j=1 |νj|. We consider the asymptotic
behavior of the integral J(φ) for a large N . One can define the real valued
level function ReF from the logarithm

F (x) =
m∑
j=1

νj log fj.

The singularity of the gradient flow of v = gradReF in X coincides with its
critical points ck of F satisfying the equation :

0 = dF =
m∑
j=1

νjd log fj. (11)

A system of linearly independent representatives of Hn(X,L∗) is obtained
by stable cycles zk (1 ≤ k ≤ κ) which are Lagrangian.

Suppose the critical point ck is non-degenerate. Then there exists a sys-
tem of local coordinates ξ = (ξ1, . . . , ξn) such that the origin corresponds to
ck and ξ is real on the stable cycle zk (see [1] Theorem 4.6).

The Hessian of F at ck is defined by

[Hess(F )]ck =
[det( ∂2F

∂ξj∂ξk

)
1≤j,k≤n

det2(
∂xj
∂ξk

)1≤j,k≤n

]
ξ=0

. (12)

If φ does not depend on λ we have by saddle point method

∫
zk

Φφ ≈ Φ(ck)φ(ck)
(2π)

n
2√

Nn[(−1)nHess(F )]ck
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Under a suitable ”non-resonance ” condition, κ equals the dimension of
the twisted cohomology Hn

∇(X,Ω
·).

Denote by φjdx1 ∧ · · · ∧ dxn (1 ≤ j ≤ κ) the representative of a basis
of Hn

∇(X,Ω
·). The Wronskian W is defined by the determinant detY of the

fundamental κ× κ matrix Y = (⟨φj, zk⟩j,k).
We have the asymptotic expansion for large N

W ≈
κ∏
k=1

{exp[NF (ck)]
m∏
j=1

f
λ′j
j (ck)φj(ck)}

·N−nκ
2 (2π)

nκ
2 (w0 +

w1

N
+
w2

N2
+ · · · )

where

w0 =
κ∏
k=1

1√
((−1)nHessF )ck

.

We can now pose several questions as follows.

Quest 1 Evaluate
∏κ

k=1 fj(ck).

Quest 2 Evaluate
∏κ

k=1(Hess(F ))ck .

Quest 3 When
∏κ

k=1(Hess(F ))ck vanishes ?

Quest 4 Under which condition all the critical points are real ?

There is an interesting analogy between fj and the quantity (Hess(F ))ck
on the one hand and the notion of “norm”, “unit” and “differente” in alge-
braic number theory on the other. In the moduli space for the polynomials
{fk}1≤k≤m, f−1

j is also regular in X because fj(ck) never vanishes. In this
sense fj is regarded as “unit”. However Hess(F ) may vanish sometimes at
ck.

In the sequel for a rational function φ on X the product
∏

1≤j≤κ[φ]cj will
be called “norm” of φ and be denoted by N (φ). φ is called a unit if and
only if N (φ) never vanishes anywhere.

One may conjecture the following :

Ansatz :
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∏κ
k=1(Hess(F ))ck = N (HessF ) is expressed as

N (HessF ) = (unit) ·Discr.

It vanishes if and only if a pair of the critical points ck coincides with
each other.∏κ

k=1(Hess(F ))ck may play the similar role of “discriminants” as in alge-
braic number theory.

We shall give a few examples of hyperplane arrangement and circle ar-
rangement illustrating the above facts.

4 hyperplane arrangements

Let fj (1 ≤ j ≤ n+ 2) be the following linear functions with real coefficients
:

fj := xj (1 ≤ j ≤ n),

fn+1 := 1−
n∑
k=1

xk, fn+2 := 1−
n∑
k=1

ukxk

for the parameter u = (u1, . . . , un) ∈ Rn under the condition (C1) :

(C1) : uj ̸= uk {j ̸= k}, uj /∈ {0, 1}

This gives the moduli space of the arrangement of n+ 2 real hyperplanes in
general position.

Under (C1) it is known that for generic λ such that all λj > 0 one has κ =
n+1 , and that one can choose as the representative of a basis of Hn(X,L∗)
the regularization of the compact chambers of the associated real hyperplane
arrangements corresponding to the components of the complement of

∪m
j=1 Sj

(refer to [1],[9]) :

ReX = Rn ∩X.
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Suppose now that all νj (1 ≤ j ≤ n + 2) and ν∞ =
∑n+2

k=1 νk are different
from 0 :

ν∞

n+2∏
j=1

νj ̸= 0.

(11) is equivalent to the system of equations

0 = Gj :=
νj
xj

− νn+1

fn+1

− νn+2uj
fn+2

(1 ≤ j ≤ n). (13)

This system generally gives n + 1 solutions, namely n + 1 critical points
(real or complex) of ReF which we denote by cj (1 ≤ j ≤ n + 1). It follows
from (13)

xj = νj
fn+1fn+2

νn+1fn+2 + νn+2ujfn+1

− fjfn+1fn+2Gj, (1 ≤ j ≤ n) (14)

1− fn+1 =
n∑
k=1

νk
fn+1fn+2

νn+1fn+2 + νn+2ujfn+1

−
n∑
k=1

fn+1fn+2fjGk, (15)

1− fn+2 =
n∑
k=1

νkuk
fn+1fn+2

νn+1fn+2 + νn+2ukfn+1

−
n∑
k=1

fn+1fn+2ukfkGk

. (16)

For two rational functions φ1, φ2 on X we call “congruent” and denote
by φ1 ≡ φ2 if they have equal values at all cj.

Hence

xj ≡ νj
fn+1fn+2

νn+1fn+2 + νn+2ujfn+1

(1 ≤ j ≤ n), (17)

1− fn+1 ≡
n∑
k=1

νk
fn+1fn+2

νn+1fn+2 + νn+2ujfn+1

, (18)

1− fn+2 ≡
n∑
k=1

νkuk
fn+1fn+2

νn+1fn+2 + νn+2ukfn+1

. (19)

Introduce the new parameter t = fn+2

fn+1
as basic parameter and put
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ωj(t) :=
νjt

νn+1t+ νn+2uj
(1 ≤ j ≤ n).

Then

xj ≡ ωj(t),

i.e., ω(t) = (ω1(t), . . . , ωn(t)) represents a rational curve in X interpolating
the set of critical points {cj (1 ≤ j ≤ n+ 1)}.

Lemma 1 t satisfies the algebraic equation of (n+ 1)th degree :

ψ(t) := 1− 1

t
−

n∑
j=1

νj(1− uj)

νn+1t+ νn+2uj
= 0. (20)

In particular if
νj
νn+1

(1− uj) are all positive then all the roots are real and
different. Hence cj are all real and different.

Proof. In fact from (8), (9) we have

1

fn+1

≡ 1 +
n∑
j=1

νjt

νn+1t+ νn+2t
,

1

fn+2

≡ 1 +
n∑
j=1

νjuj
νn+1t+ νn+2t

.

These two equations imply Lemma 1.

Denote by ψ(t) the monic polynomial of (n+1)th degree which t has the
same roots as (20)

νnn+1 ψ(t) = t

n∏
j=1

(νn+1t+ νn+2uj)ψ(t) = νnn+1 (t− ζ1) · · · (t− ζn+1).

where ζj denote the zeros of ψ(t). ψ(t) is the characteristic polynomial
attached to t such that ζj = t(cj).
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One has the obvious identity

ψ
′
(ζj) = [t

n∏
j=1

(t+
νn+2

νn+1

uj)]ζj [ψ
′(t)]ζj

Definition 2 For a rational function φ on X we define the “norm” associ-
ated with the system of critical points cj (1 ≤ j ≤ n+ 1) as follows :

N (φ) :=
n+1∏
j=1

[φ]cj .

We say that φ is “unit” if N (φ) ̸= 0.

Theorem 3 The following formulae hold :

N (νn+1t+ νn+2uj) = −νnn+2ν juj(1− uj)
∏
k ̸=j

(uk − uj) (1 ≤ j ≤ n),

N (t) = (−1)n
νnn+2

∏n
k=1 uk

νnn+1

,

N (νn+1t+ νn+2) = ν∞ν
n
n+2

n∏
k=1

(1− uk),

N (fj) =
νnj
νn∞uj

∏
k ̸=j(1− uk)∏
k ̸=j(uj − uk)

(1 ≤ j ≤ n),

N (fn+1) = (−1)n
νnn+1

νn∞

n∏
k=1

1− uk
uk

,

N (fn+2) =
νnn+2

νn∞

n∏
k=1

(1− uk).

In particular fj(1 ≤ j ≤ n+ 2) are all unit in the above sense.

Put further
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G∗
1 := −fn+1 (

n∑
k=1

fkGk (1− uk)),

G∗
2 = fn+1fn+2

n∑
k=1

fkGk,

G∗
j := −fn+1fn+2 fjGj (3 ≤ j ≤ n)

which are all polynomials. Then under the condition (C1) the system of
equations (13) is equivalent to the following :

G∗
j = 0 (1 ≤ j ≤ n) (21)

Lemma 4 We have the Jacobian identities
(i)

∂(G∗
1, . . . , G

∗
n)

∂(x1, . . . , xn)
≡ (−1)n−1(u1 − u2)(

n∏
j=1

fj)(fn+1)
n(fn+2)

n−1∂(G1, . . . , Gn)

∂(x1, . . . , xn)
.

(ii)

∂(t, G∗
2, . . . , G

∗
n)

∂(x1, x2, . . . , xn)
≡ −u1 − u2

f 2
n+1

.

(iii)

ψ′(t)
∂(t, G∗

2, . . . , G
∗
n)

∂(x1, x2, . . . , xn)
≡ ∂(G∗

1, . . . , G
∗
n)

∂(x1, . . . , xn)

Definition 5 Define the discriminant associated with the system of critical
points cj by

Discr :=
∏
j<k

(ζj − ζk)
2 = (−1)

n(n+1)
2 N (ψ

′
(t)).

On the other hand the Hessian F is defined by the Jacobian

Hess(F ) :=
∂(G1, . . . , Gn)

∂(x1, . . . , xn)
.

We have the equality
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Theorem 6

Discr = {
n∏
j=1

N (fj)} {N (fn+1)}n+2 {N (fn+2)}n−1N (Hess(F )).

Hence a pair of critical points meet each other if and only if N (Hess(F ))
vanishes.

5 hypersphere arrangements

Let n + 1 quadratic polynomials of real coefficients in x = (x1, . . . , xn) be
given :

fj(x) := Q(x) + 2
n∑
j=1

αj,kxk + αj0 (1 ≤ j ≤ n+ 1),

where Q(x) denotes the quadratic form
∑n

j=1 x
2
j . They define the arrange-

ment of hyperspheres A consisting of the hyperspheres Sj : fj = 0. The
center Oj and the radius rj (rj > 0) of Sj are equal to

Oj : −(αj1, . . . , αjn)

r2j = −αj0 +
n∑
k=1

α2
jk.

We denote the distance between Oj, Ok (j ̸= k) by ρjk (ρjk > 0) such that
ρ2jk =

∑n
l=1(αjl − αkl)

2.
For the multiplicative function

Φ(x) =
n+1∏
j=1

f
λj
j (x)

consider the integral J(φ) in §3. For generic exponents λ one can prove that
the dimension of Hn

∇(X,Ω
·) is equal to 2n+1 − 1. As the representative of a

basis one can choose the following nth degree forms

17



φJdx1 ∧ · · · ∧ dxn, φJ :=
1∏
j∈J fj

where J ranges over the family of arbitrary (unordered) subsets of indices in
{1, 2, . . . , n+ 1}.

Cayley-Menger determinants are defined in the following way and play
an important role in the sequel. Denote by ρ∗ j = ρj ∗ the radius rj for
j ∈ {1, 2, . . . , n+ 1} or 0 for j = ∗.

Definition 7 The determinant

B

(
0 J
0 K

)
:=

∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 ρ2j1k1 . . . ρj1kp
...

...
. . .

...
1 ρ2jpk1 . . . ρ2jpkp

∣∣∣∣∣∣∣∣∣
is called “Cayley-Menger determinant” associated withA, where J = {j1, . . . , jp}, K =
{k1, . . . , kp} denote two subsets of the indices in {∗, 1, . . . , n + 1}. In case

when J = K we simply denote B(0 J) instead of B

(
0 J
0 K

)
.

Notice that

B(0j k) = 2ρ2jk > 0, B(0 ⋆ j) = 2r2j > 0.

For simplicity we restrict ourselves to the case n = 2, so that A is the
arrangement of three circles S1, S2, S3 in R2. We further assume that rj are
the same simply denoted by r and that νj = 1 for all j. One sees that

B(0 ⋆ jk) = ρ2jk(ρ
2
jk − 4r2),

B(0123) = ρ412 + ρ413 + ρ423 − 2ρ212ρ
2
13 − 2ρ212ρ

2
23 − 2ρ213ρ

2
23,

B(0 ⋆ 123) = −4r2B(0123)− 2ρ212ρ
2
13ρ

2
23.

We assume the following condition of non-degeneracy of A:

(C2) B(0 ⋆ 123) ̸= 0, B(0 ∗ jk) ̸= 0

18



i.e., the triangle ∆O1O2O3 is non-degenerate. Any two circles have no con-
tact point and three circles S1, S2, S3 have no common point.

By taking a suitable choice of coordinates we may assume that

α31 = α32 = α22 = 0, α21 > 0, α12 > 0.

so that we have

r2 = −α30 = −α20 + α2
21 = −α10 + α2

11 + α2
12,

α2
21 = ρ223, α

2
11 + α2

12 = ρ213, (α11 − α21)
2 + α2

12 = ρ212
4α2

21α
2
12 = −B(0123).

Hence αjk are completely determined by ρ2jk, r
2.

Under the condition (C2) the system of equations (11) are equivalent to

G1 :=
x1 + α11

f1
+
x1 + α21

f2
+
x1
f3

= 0,

G2 :=
x2 + α12

f1
+
x2
f2

+
x2
f3

= 0. (22)

Generally there exist 7 (real or complex) points in X satisfying (22) de-
noted by {cj (1 ≤ j ≤ 7)}. Let Dj (1 ≤ j ≤ 3)) be the open disc surrounded
by the circumference ReSj.

If

(C3) : B(0 ⋆ 123) > 0, B(0 ⋆ jk) < 0 (1 ≤ j < k ≤ 3)

then the intersection D1 ∩D2 ∩D3 is not empty. The critical points are all
real and contained one by one in each compact chamber i.e., D1 ∩D2 ∩D3,
D1∩D2−D3, D1∩D3−D2, D2∩D3−D1, D1−D2∩D3, D2∩−D1∩D3, D3−
D1 ∩D3.

We want to find a rational curve t2 = ω(t1) ∈ X containing all critical
points cjand a monic polynomial ψ(t1) of degree 7 such that (t1, ω(t1)) coin-
cides with all t-coordinates t(cj) for any root of ψ(t1) . In the sequel we shall
call t1 “basic parameter” and ψ(t1) “characteristic polynomial”.
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To find out the characteristic polynomials we use Sylvester’s elimination
method.

Introduce the new polynomials in x

g1 := f3(L12 − L23)− L23 (f1 − f3),

g2 := f3(L12 − L13)− L13 (f2 − f3),

g3 := −(L12 − L13)L23(f1 − f3) + (L12 − L23)L13(f2 − f3)

where Ljk denote linear functions of x

L12 : L12(x) = α12x1 + (−α11 + α21)x2 + α21α12,

L13 : L13(x) = −α12x1 + α11x2,

L23 : L23(x) = −α21x2.

Ljk(x) = 0 defines the straight line going through Oj, Ok and the triangle
∆[O1, O2, O3] is defined by Ljk ≥ 0.

Lemma 8 Under the condition (C2) the system of equations (22) are equiv-
alent to the system

g1 = g2 = g3 = 0. (23)

Suppose moreover that ρ12 ̸= ρ13 then (23) is equivalent to the following
system

g2 = g3 = 0. (24)

Introduce the new parameters t1 =
f3
f1
, t2 =

f3
f2

and denote t∞ = 1+t1+t2.
We call t1, t2 “admissible”.

(23) gives the following congruences

x1 ≡ −α11t1 + α21t2
t∞

, x2 ≡ −α12t1
t∞

. (25)

and conversely

t1 ≡
L23

L12

, t2 ≡
L13

L12

, t∞ =
α21α12

L12

. (26)
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Then (23) can be rewritten using the parameters t1, t2 as

g̃1 = g̃2 = g̃3 = 0 (27)

respectively where

g̃1 := g1
t3∞

α21α12

,

g̃2 := g2
t3∞

α21α12

,

g̃3 := g3
t3∞

α2
21α

2
12

.

g̃1, g̃2, g̃3 are polynimials of third degree in t1, t2 as follows

g̃1 := a0t
2
2 + a1t2 + a2,

g̃2 := b0t
3
2 + b1t

2
2 + b2t2 + b3,

g̃3 := c0t
2
2 + c1t2 + c2,

where aj, bk, cl are given by polynomials in t1 :

a0 = (r2 − ρ212)t1 + ρ223 − r2,

a1 = 2{r2t21 + (ρ223 − ρ212)t1 − r2},
a2 = (t1 − 1){r2t21 + (ρ213 + 2r2)t1 + r2},
b0 = r2, b1 = 2r2t1 + ρ223 + r2,

b2 = (r2 − ρ212)t
2
1 + 2(ρ213 − ρ212)t1 − (r2 + ρ223),

b3 = (ρ213 − r2)t21 − 2r2t1 − r2,

c0 = ρ212t1 − ρ223,

c1 = −ρ212t21 + ρ223,

c2 = ρ213t1(t1 − 1).

Notice that

g̃1(t1, 1) = a0 + a1 + a2

= r2t31 + (ρ212 + 3r2)t21 + 2(ρ223 − 2ρ212)t1 + ρ223 − 4r2, (28)

g̃2(t1, 1) = b0 + b1 + b2 + b3 = (ρ213 − ρ212)t1(t1 + 2), (29)

g̃3(t1, 1) = c0 + c1 + c2 = (ρ213 − ρ212)t1(t1 − 1). (30)
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so that

g̃2(0, 1) = g̃3(0, 1) = 0. (31)

Lemma 9 Put

U : U(t1) = b0(c
2
1 − c0c2)− b1c0c1 + b2c

2
0,

V : V (t1) = −b0c1c2 + b1c0c2 − b3c
2
0.

Then the following identity holds :

g̃23 := c20 g̃2 − (b0c0t2 + b1c0 − b0c1) g̃3 = Ut2 − V for arbitrary t1, t2, (32)

where

U =
∂g̃23
∂t2

.

If g̃2 = g̃3 = 0 then g̃23 = 0 which implies

t2 ≡ ω(t1) ω(t1) :=
V

U
.

The resultant R of g̃2(t1, t2) and g̃3(t1, t2) relative to t2 is a polynomial in
t1 of degree 8 written by Sylvester determinant

R : R(t1) =

∣∣∣∣∣∣∣∣∣∣
b0 b1 b2 b3

b0 b1 b2 b3
c0 c1 c2

c0 c1 c2
c0 c1 c2

∣∣∣∣∣∣∣∣∣∣
It is related to U, V and can be described as follows :

c20R = U2 g̃12(t1,
V

U
)

= c0V
2 + c1V U + c2U

2,
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where U, V are polynomials of degree 4 which can be written as

U =
4∑
j=0

ujt
4−j
1 , V =

4∑
j=0

vjt
4−j
1 .

u0 = −(ρ212 − 4r2)ρ412, u4 = r2ρ423
v0 = ρ412{r2(ρ212 + 3ρ213)− ρ22ρ

2
13}, v4 = r2ρ423.

Moreover U − V can be evaluated explicitly

U − V = (ρ213 − ρ212)W
∗,

W ∗ = t1(w0t
3
1 + w1t

2
1 + w2t1 + w3)

such that

w0 = ρ212(ρ
2
12 − 3r2),

w1 = −ρ212(3ρ223 − 2ρ212)) + (2ρ223 + ρ212)r
2,

w2 = ρ223(2ρ
2
23 − 3ρ212) + (2ρ212 + ρ223)r

2,

w3 = ρ223(ρ
2
23 − 3r2).

R is a polynomial in t1 of degree 8 and in ρ2jk, r
2.

Lemma 10 (i) If ρ212 = ρ213 then R vanishes.
(ii) R(0) vanishes.

Proof. About (i). When ρ212 = ρ213 U coincides with V so that

c20R = (c0 + c1 + c2)U
2 = 0

This implies R = 0.
About (ii). The identity U(0) = V (0) holds true. Hence

−ρ223R(0) = (c0(0) + c1(0) + c2(0))U(0) = 0

because of (31).
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Because of Lemma 10 R has the factor (ρ212 − ρ213)t1.
As a result

Lemma 11 R is a polynomial in t1 of degree 8 and in ρ2jk, r
2 with the factor

(ρ212 − ρ213)t1 such that

R = ρ412r
2(ρ212 − 4r2)(ρ212 − ρ213)t1ψ(t1),

R ≈ −ρ423r2(ρ212 − ρ213)(ρ
2
23 − 4r2)t1 (t1 ↓ 0),

where ψ(t1) =
∏7

j=1(t1 − ζj) is a monic polynomial with with 7 roots ζj (1 ≤
j ≤ 7) such that

−ψ(0) =
7∏
j=1

ζj =
ρ423(ρ

2
23 − 4r2)

ρ412(ρ
2
12 − 4r2)

=
ρ223B(0 ⋆ 23)

ρ212B(0 ⋆ 12)
.

ψ(t1) is the characteristic polynomial relative to the basic parameter t1 of
the critical points cj such that t1(cj) = ζj.

Furthermore since

U(1) = (ρ223 − ρ212)
2(ρ213 − 4r2), V (1) = (ρ223 − ρ213)

2(4r2 + 2ρ213 − 3ρ212)

we have the formula

R(1) = 3(ρ212 − ρ223)
3(ρ213 − ρ212)(ρ

2
13 − 4r2)

hence

ψ(1) =
7∏
j=1

(1− ζj) = −3
(ρ212 − ρ223)

3(ρ213 − 4r2)

ρ412r
2(ρ212 − 4r2)

.

Seeing that f1−f3
f1

= 1− t1,
f2−f3
f2

= 1− t2 we can conclude

Proposition 12 (i)

N (t1) = N (
f3
f1
) =

ρ223B(0 ⋆ 23)

ρ212B(0 ⋆ 12)
.

N (t2) = N (
f3
f2
) =

ρ213B(0 ⋆ 13)

ρ212B(0 ⋆ 12)
.
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(ii)

N (1− t1) = N (
f1 − f3
f1

) = −3
(ρ212 − ρ223)

3B(0 ⋆ 13)

ρ212ρ
2
13r

2B(0 ⋆ 12)
,

N (1− t2) = N (
f2 − f3
f2

) = −3
(ρ212 − ρ213)

3B(0 ⋆ 23)

ρ212ρ
2
23r

2B(0 ⋆ 12)
.

Instead of (t1, t2) we now take the new coordinates (t∞, t1), t∞ being the
basic parameter. By the substitution t2 = t∞ − t1 − 1, g̃2, 2g̃3 − g̃2 can be
rewritten as

g̃♯2(t∞, t1) := g̃2(t1, t∞ − t1 − 1) = b′0t
3
1 + b′1t

2
1 + b′2t1 + b′3,

g̃♯3(t∞.t1) := 2g̃3(t1, t∞ − t1 − 1)− g̃2(t1, t∞ − t1 − 1) = c′0t
2
1 + c′1t1 + c′2,

b′0, b
′
1, b

′
2, b

′
3; c

′
0, c

′
1, c

′
2, denote polynomials in t∞ as follows :

b′0 = ρ212,

b′1 = −ρ212t∞ + ρ223 − ρ213 + 3ρ212,

b′2 = −r2t2∞ + 2(−ρ212 + ρ213 − ρ223)t∞ + (2ρ212 − ρ213 + 3ρ223),

b′3 = (t∞ − 2){r2t2∞ + ρ223(t∞ − 1)},

and

c′0 = c′00t∞ + c′01,

c′1 = c′10t
2
∞ + c′11t∞ + c′12,

c′2 = c′20t
3
∞ + c′21t

2
∞ + c′22t∞ + c′23

where

c′00 = ρ212, c
′
01 = 3(ρ223 − ρ213 + ρ212),

c′10 = −(2r2 + ρ212), c
′
11 = 4ρ213 − 2ρ212 − 6ρ223, c

′
12 = 3(ρ212 − ρ213 + 3ρ223),

c′20 = 2r2, c′21 = 3ρ223 − 4r2, c′22 = −9ρ223, c
′
23 = 6ρ223.

Then like Lemma 9 the following Lemma holds.
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Lemma 13 Put

U ♯ : U ♯(t∞) = b′0(c
′
1
2 − c′0c

′
1)c

′
0c

′
1 + b′2c

′
0,

V ♯ : V ♯(t∞) = −b′0c′1c′2 + b′1c
′
0c2 − b′3c

′
0
2
.

Then

0 ≡ U ♯t1 − V ♯.

i.e., the rational curve t1 =
V ♯(t∞)
U♯(t∞)

gives the interpolating curve. We have

U ♯ =
4∑
j=0

u′jt
4−j
∞ ,

V ♯ =
5∑
j=0

v′jt
5−j
∞

with

u′0 = v′0 = r2ρ212(4r
2 − ρ212),

u′1 − v′1 = 2r2ρ212(4r
2 − ρ213),

so that

V ♯

U ♯
≈ t∞ +

v′1 − u′1
u′0

+O(
1

t∞
) (t∞ ↑ ∞)

t∞ being fixed, the resultant R♯ = R♯(t∞) of g̃♯1, g̃
♯
3 relative to t1 is given

by

c′0
2
R♯ = c′0V

♯2 + c′1U
♯V ♯ + c′2U

♯2.

As a result

c′0
2
R♯ ≈ u′0{u′0(c′01 + c′11 + c′21) + (v′1 − u′1)(2c

′
00 + c′10)}t8∞(1 +O(

1

t∞
))

(t∞ ↑ ∞)
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Seeing that

c′01 + c′11 + c′21 = −4r2 + ρ212 + ρ213,

2c′00 + c′10 = ρ212 − 2r2

we have from Lemma 13

R♯ = ρ412r
4(ρ212 − 4r2)(ρ212 − ρ213)t

8
∞(1 +O(

1

t∞
)).

On the other hand (31) shows the equality

g̃♯2(2, 1) = g̃♯3(2, 1) = 0

i.e., the two polynomials g̃♯2(2, t1), g̃
♯
3(2, t1) have a common zero which means

R♯(2) = 0. Hence R♯ can be described as

R♯(t∞) = ρ212r
4(ρ212 − 4r2)(ρ212 − ρ13)

2(t∞ − 2)
7∏
j=1

(t∞ − ζ ′j).

where ζ ′j denotes the value t∞(cj).

Lemma 14 The following identity holds :

R♯(0) = 54ρ213ρ
2
23(ρ

2
13 − ρ212)B(0123).

We can evaluate the norm of t∞ as follows :

Proposition 15

N (t∞) =
7∏
j=1

ζ ′j = −27
ρ213ρ

2
23B(0123)

r4B(0 ⋆ 12)
.

ψ(t∞) =
∏7

j=1(t∞ − ζ ′j) is the characteristic polynomial in t∞.
The identity (26) derives the formula for N (L12). In the same way by

symmetry of isometry the followings hold :
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Corollary 16

N (L12) =
1

2733
r4B(0 ⋆ 12)

ρ213ρ
2
23

{−B(0123)}
5
2 .

N (L13) =
1

2733
r4B(0 ⋆ 13)

ρ212ρ
2
23

{−B(0123)}
5
2 ,

N (L23) =
1

2733
r4B(0 ⋆ 23)

ρ212ρ
2
13

{−B(0123)}
5
2 .

Put ψ(t1) = g̃3(t1, ω(t1)) such that R = U2ψ(t1)

c20
.

Finally we want to discuss a formula related to the norm of “Hessian” of
the level function ReF .

Concerning the derivatives relative to t1 of ψ(t1), R(t1) we have

ψ′(t1) ≡
c20
U2
R′(t1). (33)

A direct computation gives the following

Lemma 17

∂(g̃2, g̃3)

∂(t1, t2)
≡ −r2B(0 ⋆ 12)ρ212(ρ

2
12 − ρ213)

U
t1ψ

′
(t1).

Proof. By partial derivation of (32) with respect to t2

U =
∂g̃23
∂t2

.

On the other hand

g̃23(t1, ω(t1)) = 0

By derivation relative to t1

∂g̃23(t1, ω(t1))

∂t1
+
∂g̃23(t1, ω(t1))

∂t1
ω′(t1) = 0.
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In the same way by derivation of ψ(t1) relative to t1

ψ′(t1) =
∂g̃3(t1, ω(t1))

∂t1
+
∂g̃3(t1, ω(t1))

∂t2
ω′(t1).

Hence

ψ′(t1) =
∂(g̃3, g̃23)

∂(t1, t2)

/∂g̃23
∂t2

= −c
2
0

U

∂(g̃2, g̃3)

∂(t1, t2)
. (34)

In view of Lemma 11 this implies

R′(t1) ≡ −U(t1)
∂(g̃2, g̃3)

∂(t1, t2)

which completes Lemma 17 in view of (33).

Lemma 18 The identity holds

dG1 ∧ dG2 ≡ − t1t2
1− t2

L4
12

f 4
3 (α21α12)3

dg̃2 ∧ dg̃3. (35)

Proof. Put

G13 = x2G1 − (x1 + α21)G2,

G23 = (x2 + α12)G1 − (x1 + α11)G2,

then

dG13 ∧ dG23 ≡ L12dG1 ∧ dG2.

Further it holds

g2 = −f2f3G23,

g3 = L12 f
2
3{−

1− t2
t1

G13 +
1− t1
t2

G23}.

so that

dg2 ∧ dg3 ≡ −1− t2
t1t2

f 4
3L12dG13 ∧ dG23.
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From (26)

dg2 ∧ dg3 ≡
(α21α12)

3

t6∞
dg̃2 ∧ dg̃3

where 4α2
21α

2
12 = −B(0123). Summing up these equalities of Jacobian implies

Lemma 18.

By definition

Hess(F ) =
∂(G1, G2)

∂(x1, x2)
,
∂(x1, x2)

∂(t1, t2)
=

√
−B(0123)

2t3∞
.

By using these equalities one can prove the following :

Proposition 19 At each critical point cj

[
HessF

]
cj

= −
[ t1t2
(1− t2)t∞ U

R′(t1)

f3

]
cj
,

such that ζj =
[
t1]cj and t2 =

V
U
.

As an immediate consequence of Proposition 18 , Lemma 11 and Lemma
19 we have

Theorem 20 Suppose that

N (U − V ) ̸= 0,

then the following equality holds.

N (HessF ) = (−1)7C7 N (t21t2)

N ((U − V )t∞)

Discr

N (f3)

where Discr, C denote the discriminant of ψ(t1) relative to the basic param-
eter t1 :
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Discr :=
∏

1≤j<k≤7

(ζj − ζk)
2 = −

7∏
j=1

[
ψ

′
(t1)
]
ζj
.

and the constant

C = ρ212r
2B(0 ⋆ 12)(ρ212 − ρ213).

Remark N (f3) seems to be equal to

1

2 · 34
B(0 ⋆ 13)B(0 ⋆ 23)B(0 ⋆ 123)

ρ212
.

The similar formula seems true for N (f1),N (f2).

6 case of isosceles triangle

The case when ∆[O1O2O3] is an isosceles triangle is an exceptional one. It
is explained in more detail.

Generally we may put

R = (ρ212 − ρ213)R
∗,

U − V = (ρ213 − ρ212)W
∗,

where R∗,W ∗ denote polynomials such that

b20R
∗ = (b0 + b1 + b2)V

2 + V {(t21 − t1)V + (b1 + 2b2)W
∗}.

.
Suppose now that the equality ρ212 = ρ213 holds.
Then b0 + b1 + b2 = 0 and R,U − V both vanish identically because they

are divisible by ρ212 − ρ213 :

g̃2 = (t2 − 1)g̃∗2, g̃3 = (t2 − 1)g̃∗3
c20g̃

∗
2 − (b0c0t2 + b1c0 − b0c1)g̃

∗
3 = U.

where
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g̃∗2 = b∗0t
2
2 + b∗1t2 + b∗2,

with b∗0 = r2, b∗1 = 2r2t1 + ρ223 + 2r2, b∗2 = −(ρ212 − r2)t21 + 2r2t1 + r2,

g̃∗3 = c∗0t2 + c1∗,

with c∗0 = ρ212t1 − ρ223, c
∗
1 = −ρ212t1(t1 − 1).

The polynomial U(t1) = V (t1) of degree 4 can be written with a monic
polynomial ψ2

U(t1) = u0t
4
1 + u2t

3
1 + u3t

2
1 + u2t1 + u4

= −ρ412(ρ212 − 4r2)ψ2(t1)

where

u0 = −ρ412(ρ212 − 4r2),

u1 = ρ212ρ
2
23(3ρ

2
12 − 4r2),

u2 = ρ223{−ρ212(2ρ223 + ρ212) + (−4ρ212 + ρ223)r
2},

u3 = ρ423(ρ
2
12 + 2r2),

u4 = ρ423r
2.

ψ2(t1) has 4 roots denoted by ζ4, ζ5, ζ6, ζ7 : ψ1(t1) =
∏7

j=4(t1 − ζj).

On the other hand W
∗
(t1) has the expression

W ∗ = t1(w0t
3
1 + w1t

2
1 + w2t1 + w3),

where

w0 = ρ212(ρ
2
12 − 3r2),

w1 = −ρ212(3ρ223 − 2ρ212) + (2ρ223 + ρ212)r
2,

w2 = ρ223(2ρ
2
23 − 3ρ212) + (2ρ212 + ρ223)r

2,

w3 = ρ223(ρ
2
23 − 3r2)).
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Suppose first that t2 ̸= 1.
The equation g̃∗3(t1, t2) = 0 can be uniquely solved :

t2 ≡
V ∗

U∗

where

U∗ = c∗0 = c0 = ρ212t1 − ρ223, V
∗ = −c∗1 = ρ212t1(t1 − 1).

Then the equation g̃∗2(t1,
V ∗

U∗ ) = 0 relative to t1 is equivalent to

U = V = b∗0(V
∗)2 + b∗1V

∗U∗ + b∗2(U
∗)2 = 0

which have the roots ζ4, ζ5, ζ6, ζ7. The critical points cj (4 ≤ j ≤ 7) corre-

spond to the t-coordinates (ζj,
V ∗(ζj)
U∗(ζj)

).

Suppose next t2 = 1.
Then g̃2 = g̃3 = 0 automatically. According to (28) we may put the

polynomial ψ1(t1) as

r2ψ1(t1) := g̃1(t1, 1)

= r2t31 + (ρ212 + 3r2)t21 + 2(ρ223 − 2ρ212)t1 + ρ223 − 4r2

and denote the roots of the equation

ψ1(t1) = 0

by ζ1, ζ2, ζ3. The points cj corresponds to the t-coordinates (ζj, 1).
The critical points are divided into two parts. Three of them corre-

sponding to t1 = {ζ1, ζ2, ζ3}, is contained in the mid-line of the triangle
∆[O1, O2, O3] defined by : t2 = 1, while the remaining ones corresponds to
t1 = ζ4, ζ5, ζ6, ζ7 lie outside the mid-line.

Lemma 21 We have the identification

(t21 − t1)V + (b1 + 2b2)W
∗ = b20t1ψ1(t1)

such that

R∗ = t1ψ1(t1)ψ2(t1).

ψ1(t1) has three roots denoted by ζ1, ζ2, ζ3 .
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The characteristic polynomial ψ(t1) is equal to the product of two factors of
ψ1, ψ2:

ψ(t1) = ψ1(t1)ψ2(t1) =
7∏
j−1

(t1 − ζj).

We can show that

Theorem 22

N (f1) =
7∏
j=1

[f1]cj

=
r2

2 · 34
B(0 ⋆ 12)B(0 ⋆ 13)B(0 ⋆ 123)

ρ223
,

N (f2) =
7∏
j=1

[f2]cj

=
r2

2 · 34
B(0 ⋆ 23)B(0 ⋆ 12)B(0 ⋆ 123)

ρ213
,

N (f3) =
7∏
j=1

[f3]cj

=
r2

2 · 34
B(0 ⋆ 23)B(0 ⋆ 13)B(0 ⋆ 123)

ρ212
.

Theorem 23

N (HessF ) = (−1)7C∗7 N (t21t2)

N (W ∗ t∞)

Discr∗

N (f3)

where W ∗ is related with the equality

(b1 + 2b2)W
∗ = t1{b20ψ1(t1) + ρ412(ρ

2
12 − 4r2)(t1 − 1)ψ2(t1)}.

and with the constant

C∗ = ρ212r
2B(0 ⋆ 12).

Discr∗ means the discriminant of the polynomial ψ(t1) = ψ1(t1)ψ2(t1).
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