Product of Hessians and Discriminant of Critical Points of Level Function for Hypergeometric Integrals

Kazuhiko Aomoto

2019, Dec 18-20 at Padova

1 Introductory explanation (Divergent integral and twisted cycle)

The function x_{+}^{λ} on \mathbf{R} for $\mathfrak{R e} \lambda>-1$ is an ordinary function but for $\lambda \in \mathbf{C}-\mathbf{Z}, \lambda \leq-1$ is a generalized function defined as follows :

Suppose $f(x)$ is an arbitrary holomorphic function near the origin. Fix a point $a>0$ near the origin. Consider the integral

$$
\begin{align*}
& \left\langle x_{+}^{\lambda}, f\right\rangle=\int_{0}^{a} x^{\lambda} f(x) d x \\
& =\lim _{\varepsilon \downarrow 0} \int_{\varepsilon}^{a} x^{\lambda} f(x) d x . \tag{1}
\end{align*}
$$

Case (i) Suppose first $-n-1<\mathfrak{R e} \lambda<-n(n=1,2,3, \ldots)$. Then (1) is divergent. $f(x)$ has a Taylor expansion at the origin

$$
f(x)=\sum_{m=0}^{n-1} \frac{f^{m}(0)}{m!} x^{m}+x^{n} g(x)
$$

where $g(x)$ is holomorphic on $[0, a]$. The finite part of (1) in the sense of J.Hadamard is given as follows :

$$
\begin{align*}
& J(\lambda)=\text { f.p. } \int_{0}^{a} x^{\lambda} f(x) d x \\
& =\sum_{m=0}^{n-1} \frac{f^{(m)}(0)}{m!} \frac{a^{\lambda+m+1}}{\lambda+m+1}+\int_{0}^{a} x^{\lambda+n} g(x) d x . \tag{2}
\end{align*}
$$

This is the generalized function x_{+}^{λ} which has been defined by I.M.Gelfand and G.E.Shilov in the mid 20th century (see [5]), i.e.,

$$
\left\langle x_{+}^{\lambda}, f\right\rangle=\text { f.p. } \int_{0}^{a} x^{\lambda} f(x) d x
$$

In a neighborhood of the origin we take a path σ_{0} starting from and ending in a going around the origin counter-clockwise ("loop based on the point a going around the origin ")

$$
\frac{1}{e^{2 \pi i \lambda}-1} \sigma_{0}=[\varepsilon, a]+\frac{1}{e^{2 \pi i \lambda}-1} \delta_{\varepsilon} \quad(\varepsilon>0)
$$

where δ_{ε} is a scalar multiple of a loop with base point ε in a neighborhood of 0 .

Then the integral

$$
\frac{1}{e^{2 \pi i \lambda}-1} \int_{\sigma_{0}} x^{\lambda} f(x) d x
$$

equals (2). This is called "detoured cycle at the origin"). (This idea already can be found in the work of J.Leray in the middle of 20th century).

Case (ii) When $\lambda=-n(n=1,2,3, \ldots)$ the finite part is defined as
f.p. $\int_{0}^{a} x^{-n} f(x) d x=\sum_{m=0}^{n-2} \frac{f^{(m)}(0)}{m!} \frac{a^{-n+m+1}}{-n+m+1}+\frac{f^{(n-1)}(0)}{n!} \log a+\int_{0}^{a} g(x) d x$.

The generalized function x_{+}^{-n} is then defined by the finite part

$$
\left\langle x_{+}^{\lambda}, f\right\rangle=\text { f.p. } \int_{0}^{a} x^{-n} f(x) d x .
$$

$J(\lambda)$ has Laurent expansion at $\lambda=-n$

$$
J(\lambda)=\frac{c_{-1}}{\lambda+n}+c_{0}+c_{1}(\lambda+n)+\cdots
$$

Then the finite part coincides with c_{0}, i.e.,

$$
\begin{aligned}
& \text { f.p. } \int_{0}^{a} x^{-n} f(x) d x=c_{0}=\lim _{\lambda \rightarrow-n} \frac{d}{d \lambda}(\lambda+n) J(\lambda) \\
& =\frac{1}{2 \pi i} \int_{\sigma_{0}} x^{-n}(\log x-\pi i) f(x) d x .
\end{aligned}
$$

Example 1

(i)f.p. $\int_{a}^{\infty}(x-a)^{\lambda} d x=0 \quad$ (for all $\left.\lambda \in \mathbf{R}\right)$.
(ii) f.p. $\int_{a}^{b} \frac{f(x)}{x} d x=$ p.v. $\int_{a}^{b} \frac{f(x)}{x} d x=\int_{a}^{b} \frac{f(x)-f(0)}{x} d x+f(0) \log \frac{b}{-a}(a<0<b)$.
(p.v. denotes the principal value)
(iii) f.p. $\int_{0}^{\infty} \frac{e^{-x}}{x} d x=\int_{0}^{\infty}\left(\frac{e^{-x}}{x}-\frac{x}{e^{x}-1}\right) d x=\Gamma^{\prime}(1)=-C$,
C denotes Euler Constant.
Example 2 Beta function
For $\alpha, \beta \notin \mathbf{Z}$

$$
\begin{equation*}
J(\alpha, \beta)=\text { f.p. } \int_{0}^{1} x^{\alpha}(1-x)^{\beta} d x \tag{4}
\end{equation*}
$$

which is equal to Beta function $B(\alpha, \beta)$. Take σ_{0}, σ_{1} the loops with the base point $x=\frac{1}{2}$ going around 0,1 in a positive direction respectively. Then

$$
J(\alpha, \beta)=\frac{1}{e^{2 \pi i \alpha}-1} \int_{\sigma_{0}} x^{\alpha}(1-x)^{\beta} d x-\frac{1}{e^{2 \pi i \beta}-1} \int_{\sigma_{1}} x^{\alpha}(1-x)^{\beta} d x .
$$

The monodromy \mathcal{M} associated with the function $\Phi(x)=x^{\alpha}(1-x)^{\beta}$

$$
\sigma_{0} \longrightarrow M\left(\sigma_{0}\right)=e^{2 \pi i \alpha} \in \mathbf{C}^{*}, \sigma_{1} \longrightarrow M\left(\sigma_{1}\right)=e^{2 \pi i \beta} \in \mathbf{C}^{*}
$$

defines the local system \mathcal{L} and its dual \mathcal{L}^{*} on the space $X=\mathbf{C}-\{0,1\}$. The boundary operator ∂ acts on the linear space of chains $\mathbf{c}=c_{0} \sigma_{0}+c_{1} \sigma_{1}\left(c_{0}, c_{1} \in\right.$ C) with values in \mathcal{L}^{*} as follows :

$$
\partial\left(c_{0} \sigma_{0}+c_{1} \sigma_{1}\right)=\left(c_{0}\left(e^{2 \pi i \alpha}-1\right)+c_{1}\left(e^{2 \pi i \alpha}-1\right)\right)\left\{\frac{1}{2}\right\} .
$$

It is closed (twisted cycle) if and only if

$$
c_{0}\left(e^{2 \pi i \alpha}-1\right)+c_{1}\left(e^{2 \pi i \alpha}-1\right)=0
$$

Hence the one dimensional homology $H_{1}\left(X, \mathcal{L}^{*}\right)$ is just one dimenisional with the basis $\mathbf{c}=\frac{1}{e^{2 \pi i \alpha}-1} \sigma_{0}-\frac{1}{e^{2 \pi i \beta}-1} \sigma_{1}$.

We have

$$
\begin{equation*}
J(\alpha, \beta)=\langle\mathbf{c}, d x\rangle \tag{5}
\end{equation*}
$$

On the other hand if $\alpha=-n-1(n=0,1,2,3, \ldots)$ then

$$
\begin{align*}
& J(-n-1, \beta)=\text { f.p. } \int_{0}^{1} x^{-n-1}(1-x)^{\beta} d x \quad(\beta>-1) \\
& =\frac{1}{2 \pi i} \int_{\sigma_{0}}(1-x)^{-n-1}(1-x)^{\beta}(\log x-\pi i) d x-\frac{1}{\left(e^{2 \pi i \beta}-1\right)} \int_{\sigma_{1}} x^{-n-1}(1-x)^{\beta} d x . \tag{6}
\end{align*}
$$

The vector function of two components ${ }^{T}\left((1-x)^{\beta},(1-x)^{\beta} \log x\right)(T$ denotes the transposition) defines the monodromy and the associated local system \mathcal{L} of rank two and its dual \mathcal{L}^{*}. The fundamental 2×2 matrix function Φ is defined by the lower triangular matrix

$$
\Phi(x)=\left(\begin{array}{cc}
(1-x)^{\beta} & \\
(1-x)^{\beta} \log x & (1-x)^{\beta}
\end{array}\right)
$$

$$
\mathcal{M} \longrightarrow M\left(\sigma_{0}\right)=\left(\begin{array}{cc}
1 & \\
2 \pi i & 1
\end{array}\right), M\left(\sigma_{1}\right)=\left(\begin{array}{ll}
e^{2 \pi i \alpha} & \\
& e^{2 \pi i \beta}
\end{array}\right)
$$

The space of chains with coefficients in \mathcal{L}^{*} is the linear space consisting of two components

$$
\mathfrak{c}=\left(c_{11}, c_{12}\right) \sigma_{0}+\left(c_{21}, c_{22}\right) \sigma_{1}\left(c_{j k} \in \mathbf{C}\right) .
$$

The pairing of integral between the chain \mathfrak{c} and two component vector function ${ }^{T}\left(\varphi_{1}(x), \varphi_{2}(x)\right)$ is given by
$\left\langle\mathfrak{c},{ }^{T}\left(\varphi_{1}, \varphi_{2}\right)\right\rangle=\int_{\sigma_{0}}\left(c_{11}, c_{12}\right) \Phi(x)^{T}\left(\varphi_{1}, \varphi_{2}\right) d x+\int_{\sigma_{1}}\left(c_{21}, c_{22}\right) \Phi(x)^{T}\left(\varphi_{1}, \varphi_{2}\right) d x$.
The boundary operator is given by

$$
\partial(\mathfrak{c})=\left\{\left(c_{11}, c_{12}\right)\left(M\left(\sigma_{0}\right)-I\right)+\left(c_{21}, c_{22}\right)\left(M\left(\sigma_{1}\right)-I\right)\right\}\left\{\frac{1}{2}\right\}
$$

\mathfrak{c} is closed if and only if

$$
2 \pi i c_{12}+\left(e^{2 \pi i \beta}-1\right) c_{21}=0,\left(e^{2 \pi i \beta}-1\right) c_{22}=0
$$

i.e.,

$$
c_{22}=0, c_{21}=-\frac{2 \pi i}{e^{2 \pi i \beta}-1} c_{12} .
$$

Hence we have two linearly independent twisted cycles

$$
\mathfrak{c}_{1}=(1,0) \sigma_{0}, \quad \mathfrak{c}_{2}=\left(0, \frac{1}{2 \pi i}\right) \sigma_{0}+\left(-\frac{1}{e^{2 \pi i \beta}-1}, 0\right) \sigma_{1} .
$$

The integral (5) is nothing else than the pairing $\left\langle\mathfrak{c}_{2},{ }^{T}\left(x^{-n-1} d x,-\pi i x^{-n-1} d x\right)\right\rangle$, namely

$$
\begin{equation*}
J(-n-1, \beta)=\left\langle\mathfrak{c}_{2},{ }^{T}\left(x^{-n-1} d x,-\pi i x^{-n-1} d x\right)\right\rangle . \tag{7}
\end{equation*}
$$

Let $\mathcal{L}_{l f}$ be the same local system on X which is locally finite at the singularity $0,1, \infty$ and $\mathcal{L}_{l f}^{*}$ be its dual. There is a canonical morphism "reg" often called "regularization" or "renormalization"

$$
\begin{aligned}
\mathrm{reg}: H_{1}\left(X, \mathcal{L}_{l f}^{*}\right) \rightarrow \quad & H_{1}\left(X, \mathcal{L}^{*}\right) \\
& \stackrel{\uparrow}{ } \\
& H_{1}\left(X, \mathcal{L}_{l f}\right)
\end{aligned}
$$

such that $\operatorname{reg}[0,1]=\mathfrak{c}$ in (5) and $\operatorname{reg}[0,1]=\mathfrak{c}_{2}$ in (6).
To evaluate this morphism in an explicitly way the intersection theory between twisted cycles play an important role (refer to [11] and also K.Mimachi's talk .)

2 asymptotics for large exponents

Let us begin from a simplest example.
Example 3 For different $a_{j} \in \mathbf{C}(1 \leq j \leq m)$ and $\lambda=\sum_{j=1}^{m} \lambda_{j} \varepsilon_{j} \in \mathbf{R}^{m}$ $\left(\left\{\varepsilon_{j}\right\}_{1 \leq j \leq m}\right.$ means the standard basis of \mathbf{R}^{m}) we take

$$
\Phi(w)=\prod_{j=1}^{m}\left(w-a_{j}\right)^{\lambda_{j}}
$$

and the integral over a twisted cycle \mathfrak{z} in the space $X=\mathbf{C}-\bigcup_{j=1}^{m}\left\{a_{j}\right\}$

$$
J_{\lambda}(\varphi)=\int_{\mathfrak{z}} \Phi(w) \varphi(w) d w
$$

where $\varphi(w) d w$ is a rational differential one-form which is holomorphic on X. Denote by $H_{\nabla}^{1}(X, \Omega)$ the one dimensional twisted de cohomology with respect to the covariant derivation

$$
\begin{equation*}
\nabla: \psi \longrightarrow \nabla \psi=d \psi+\sum_{j=1}^{m} \lambda_{j} d \log \left(w-a_{j}\right) \wedge \psi \tag{8}
\end{equation*}
$$

for $\psi \in \Omega^{0}$ (scalar valued)(see [1]).

Denote the logarithmic one forms $\varphi_{j}(w) d w=d \log \left(w-a_{j}\right)(1 \leq j \leq m)$. One can take $\varphi_{j}(w) d w(1 \leq j \leq m-1)$ as the representative of the basis of $H_{\nabla}^{1}\left(X, \Omega^{\cdot}\right)$ (Orlik-Solomon basis) [6].

The shift operator $T_{\varepsilon_{j}}$ associated with the shift : $\lambda \rightarrow \lambda+\varepsilon_{j}$ acts on $H_{\nabla}^{1}(X, \Omega)$:

$$
T_{\varepsilon_{j}}\left(\varphi_{k} d w\right) \sim \sum_{l=1}^{m-1} \varphi_{l} d w a_{j ; l k}(\lambda), \text { (homologically) }
$$

The $(m-1) \times(m-1)$ matrices $A_{j}(\lambda)=\left(a_{j ; l k}(\lambda)\right)$ are rational functions of λ which have the asymptotic expansions

$$
A_{j}(\lambda)=A_{j}^{0}+O\left(\frac{1}{N}\right) \quad\left(\lambda=N \boldsymbol{\nu}+\lambda^{\prime}\right)
$$

where $A_{j}^{(0)}$ commute with each other under the genericity condition \mathcal{C} :

$$
(\mathcal{C}): a_{j} \neq a_{k}(j \neq k) .
$$

Put $\lambda=N \boldsymbol{\nu}+\lambda^{\prime}$ with $\boldsymbol{\nu}=\sum_{j=1}^{m} \nu_{j} \varepsilon_{j} \in \mathbf{Z}^{m}-\{0\}$, where $\lambda^{\prime}=\sum_{j=1}^{m} \lambda_{j}^{\prime} \varepsilon_{j}$ is fixed.

We are interested in the asymptotic behavior of $J_{\lambda}(\varphi)$ when $N \in \mathbf{Z}_{>0}$ tends to the infinity in the direction $\boldsymbol{\nu}$.

Take

$$
F=\sum_{j=1}^{m} \nu_{j} \log \left(w-a_{j}\right)
$$

For the real valued level function $\mathfrak{R e}(F)$ the associated critical points $\zeta_{j} \in$ $\mathbf{C}(1 \leq j \leq m-1)$ satisfy the equality

$$
\begin{equation*}
\frac{d F}{d w}=\sum_{j=1}^{m} \frac{\nu_{j}}{w-a_{j}}=0 . \tag{9}
\end{equation*}
$$

Generally there are $m-1$ different critical points ζ_{j}. To each point ζ_{j} there exists the one dimensional stable cycle \mathfrak{z}_{j} which is Lagrangian. This is locally described at ζ_{j} by

$$
\mathfrak{I m} F(w)=\mathfrak{I m}\left(\zeta_{j}\right) .
$$

There also exists the one dimensional unstable cycle \mathfrak{z}_{j}^{-}at ζ_{j}. Each of the systems $\mathfrak{z}_{j}(1 \leq j \leq m-1)$ and $\mathfrak{z}_{j}^{-}(1 \leq j \leq m-1)$ makes a basis of $H_{1}\left(X, \mathcal{L}^{*}\right)$. They give the asymtotics of integral in the direction $\boldsymbol{\nu}$ and and $-\boldsymbol{\nu}$ respectively.

Now for simplicity we consider the case $m=3$ where $\boldsymbol{\nu}=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}$ i.e., $\nu_{1}=\nu_{2}=\nu_{3}=1$.

$$
\begin{gathered}
A_{1}(\lambda)=\left(\begin{array}{cc}
\frac{\lambda_{1}}{1+\lambda_{\infty}}\left(a_{3}-a_{1}\right) & \frac{\lambda_{1}}{1+\lambda_{\infty}}\left(a_{3}-a_{1}\right) \\
\frac{\lambda_{2}}{1+\lambda_{\infty}}\left(a_{3}-a_{2}\right) & \frac{\lambda_{2}}{1+\lambda_{\infty}}\left(a_{3}-a_{2}\right)+\left(a_{2}-a_{1}\right)
\end{array}\right) \\
A_{1}^{(0)}=\left(\begin{array}{cc}
\frac{a_{3}-a_{1}}{3} & \frac{a_{3}-a_{1}}{3} \\
\frac{a_{3}-a_{2}}{3} & \frac{a_{3}+2 a_{2}-3 a_{1}}{3}
\end{array}\right)
\end{gathered}
$$

where $\lambda_{\infty}=\lambda_{1}+\lambda_{2}+\lambda_{3}$.
The multiplication by the variable $w: T_{w}=A_{1}+a_{1} I$ corresponds to the matrix

$$
\begin{aligned}
& A_{w}^{(0)}=A_{1}^{(0)}+a_{1} I \\
& =\left(\begin{array}{ll}
\frac{a_{3}+2 a_{1}}{} & \frac{a_{3}-a_{1}}{3} \\
\frac{a_{3}-a_{2}}{3} & \frac{a_{3}+2 a_{2}}{3}
\end{array}\right)
\end{aligned}
$$

This has the eigenvalues ζ_{1}, ζ_{2}.
One can easily show that ζ_{1}, ζ_{2} both lie in the inside of the triangle with vertices a_{1}, a_{2}, a_{3}.

The discriminant of (7) is given by the determinant of Hankel matrix \mathcal{H}_{1} of $A_{w}^{(0)}$:

$$
\mathcal{H}_{1}=\left(\begin{array}{cc}
\operatorname{Tr}(I) & \operatorname{Tr}\left(A_{w}^{(0)}\right) \\
\operatorname{Tr}\left(A_{w}^{(0)}\right) & \operatorname{Tr}\left(\left\{A_{w}^{(0)}\right\}^{2}\right)
\end{array}\right)
$$

and

$$
\begin{aligned}
& \operatorname{det} \mathcal{H}_{1}=\left(\zeta_{1}-\zeta_{2}\right)^{2} \\
& =a_{1}^{2}+a_{2}^{2}+a_{3}^{2}-a_{1} a_{2}-a_{1} a_{3}-a_{2} a_{3}
\end{aligned}
$$

Under the condition (\mathcal{C}) one can obtain the product formula

$$
\begin{equation*}
\left[\frac{d^{2} F}{d w^{2}}\right]_{w=\zeta_{1}} \cdot\left[\frac{d^{2} F}{d w^{2}}\right]_{w=\zeta_{2}}=\frac{1}{3} \frac{\left(\zeta_{1}-\zeta_{2}\right)^{2}}{\left(a_{1}-a_{2}\right)^{2}\left(a_{1}-a_{3}\right)^{2}\left(a_{2}-a_{3}\right)^{2}} . \tag{10}
\end{equation*}
$$

The two critical points meet each other if and only if $\prod_{j=1}^{2}\left[\frac{d^{2} F}{d w^{2}}\right]_{w=\zeta_{j}}$ vanishes. This occurs if and only if a_{1}, a_{2}, a_{3} are the vertices of a regular triangle and $\zeta_{1}=\zeta_{2}$ is the center of gravity.

3 Method and Main results

For large exponents the behavior of critical points of a level function gives an influence for asymptotics of corresponding hypergeometric integral. In this talk I want to show in an explicit way how the product of Hessians of the level function at all critical points is involved in the behavior of its critical points.

Let $f_{j}=f_{j}(x)(1 \leq j \leq m)$ be real polynomials in $x=\left(x_{1}, \ldots, x_{n}\right)$ in the affine space \mathbf{C}^{n}. Let X be the affine manifold which is the complement of the union of the hypersurfaces $S_{j}: f_{j}=0$

$$
X=\mathbf{C}^{n}-\bigcup_{j=1}^{m} S_{j}
$$

The hypergeometric integral with respect to the multiplicative function

$$
\Phi(x)=\prod_{j=1}^{m} f_{j}^{\lambda_{j}}
$$

with exponents $\lambda=\sum_{j=1}^{m} \lambda_{j} \varepsilon_{j} \in \mathbf{R}^{m}\left(\varepsilon_{j}\right.$ denotes the standard basis of $\left.\mathbf{R}^{m}\right)$ is defined by

$$
J(\varphi)=\int \Phi(x) \varphi(x) d x_{1} \wedge \cdots \wedge d x_{n} \quad(\varphi \in \Omega)
$$

$H_{\nabla}^{n}\left(X, \Omega^{\prime}\right)$ denotes the n dimensional twisted cohomology on X with respect to the covariant differentiation :

$$
\nabla \varphi=d \varphi+\sum_{j=1}^{m} \lambda_{j} d \log f_{j} \wedge \varphi
$$

Its dual is isomorphic to the n dimensional twisted homology $H_{n}\left(X, \mathcal{L}^{*}\right)$ where \mathcal{L}^{*} denotes the dual local system associated with the function Φ. The perfect pairing between them can be described by the above integral.

Let $\lambda^{\prime} \in \mathbf{R}^{m}$ and $\boldsymbol{\nu}=\sum_{j=1}^{m} \nu_{j} e_{j} \in \mathbf{Z}^{m}-\{0\}$ be fixed. Put $\lambda=N \boldsymbol{\nu}+\lambda^{\prime}$ for a positive integer N. Denote $|\boldsymbol{\nu}|=\sum_{j=1}^{m}\left|\nu_{j}\right|$. We consider the asymptotic behavior of the integral $J(\varphi)$ for a large N. One can define the real valued level function $\mathfrak{R e} F$ from the logarithm

$$
F(x)=\sum_{j=1}^{m} \nu_{j} \log f_{j} .
$$

The singularity of the gradient flow of $\mathbf{v}=\operatorname{grad} \mathfrak{R e} F$ in X coincides with its critical points \mathbf{c}_{k} of F satisfying the equation :

$$
\begin{equation*}
0=d F=\sum_{j=1}^{m} \nu_{j} d \log f_{j} . \tag{11}
\end{equation*}
$$

A system of linearly independent representatives of $H_{n}\left(X, \mathcal{L}^{*}\right)$ is obtained by stable cycles $\mathfrak{z}_{k}(1 \leq k \leq \kappa)$ which are Lagrangian.

Suppose the critical point \mathbf{c}_{k} is non-degenerate. Then there exists a system of local coordinates $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ such that the origin corresponds to \mathbf{c}_{k} and ξ is real on the stable cycle \mathfrak{z}_{k} (see [1] Theorem 4.6).

The Hessian of F at \mathbf{c}_{k} is defined by

$$
\begin{equation*}
[\operatorname{Hess}(F)]_{\mathbf{c}_{k}}=\left[\frac{\operatorname{det}\left(\frac{\partial^{2} F}{\partial \xi_{j} \partial \xi_{k}}\right)_{1 \leq j, k \leq n}}{\operatorname{det}^{2}\left(\frac{\partial x_{j}}{\partial \xi_{k}}\right)_{1 \leq j, k \leq n}}\right]_{\xi=0} . \tag{12}
\end{equation*}
$$

If φ does not depend on λ we have by saddle point method

$$
\int_{\mathfrak{z} k} \Phi \varphi \approx \Phi\left(\mathbf{c}_{k}\right) \varphi\left(\mathbf{c}_{k}\right) \frac{(2 \pi)^{\frac{n}{2}}}{\sqrt{N^{n}\left[(-1)^{n} \operatorname{Hess}(F)\right]_{\mathbf{c}_{k}}}}
$$

Under a suitable "non-resonance " condition, κ equals the dimension of the twisted cohomology $H_{\nabla}^{n}\left(X, \Omega^{*}\right)$.

Denote by $\varphi_{j} d x_{1} \wedge \cdots \wedge d x_{n}(1 \leq j \leq \kappa)$ the representative of a basis of $H_{\nabla}^{n}(X, \Omega)$. The Wronskian W is defined by the determinant $\operatorname{det} Y$ of the fundamental $\kappa \times \kappa$ matrix $Y=\left(\left\langle\varphi_{j}, \mathfrak{j}_{k}\right\rangle_{j, k}\right)$.

We have the asymptotic expansion for large N

$$
\begin{aligned}
& W \approx \prod_{k=1}^{\kappa}\left\{\exp \left[N F\left(\mathbf{c}_{k}\right)\right] \prod_{j=1}^{m} f_{j}^{\lambda_{j}^{\prime}}\left(\mathbf{c}_{k}\right) \varphi_{j}\left(\mathbf{c}_{k}\right)\right\} \\
& \cdot N^{-\frac{n \kappa}{2}}(2 \pi)^{\frac{n \kappa}{2}}\left(w_{0}+\frac{w_{1}}{N}+\frac{w_{2}}{N^{2}}+\cdots\right)
\end{aligned}
$$

where

$$
w_{0}=\prod_{k=1}^{\kappa} \frac{1}{\sqrt{\left((-1)^{n} H e s s F\right)_{\mathbf{c}_{k}}}}
$$

We can now pose several questions as follows.
Quest 1 Evaluate $\prod_{k=1}^{\kappa} f_{j}\left(\mathbf{c}_{k}\right)$.
Quest 2 Evaluate $\prod_{k=1}^{\kappa}(\operatorname{Hess}(F))_{\mathbf{c}_{k}}$.
Quest 3 When $\prod_{k=1}^{\kappa}(\operatorname{Hess}(F))_{\mathbf{c}_{k}}$ vanishes ?
Quest 4 Under which condition all the critical points are real ?
There is an interesting analogy between f_{j} and the quantity $(\operatorname{Hess}(F))_{\mathbf{c}_{k}}$ on the one hand and the notion of "norm", "unit" and "differente" in algebraic number theory on the other. In the moduli space for the polynomials $\left\{f_{k}\right\}_{1 \leq k \leq m}, f_{j}^{-1}$ is also regular in X because $f_{j}\left(\mathbf{c}_{k}\right)$ never vanishes. In this sense f_{j} is regarded as "unit". However $\operatorname{Hess}(F)$ may vanish sometimes at c_{k}.

In the sequel for a rational function φ on X the product $\prod_{1 \leq j \leq \kappa}[\varphi]_{\mathbf{c}_{j}}$ will be called "norm" of φ and be denoted by $\mathcal{N}(\varphi) . \varphi$ is called a unit if and only if $\mathcal{N}(\varphi)$ never vanishes anywhere.

One may conjecture the following :
Ansatz :
$\prod_{k=1}^{\kappa}(\operatorname{Hess}(F))_{\mathbf{c}_{k}}=\mathcal{N}(\operatorname{Hess} F)$ is expressed as

$$
\mathcal{N}(\operatorname{Hess} F)=(\text { unit }) \cdot \text { Discr } .
$$

It vanishes if and only if a pair of the critical points \mathbf{c}_{k} coincides with each other.
$\prod_{k=1}^{\kappa}(\operatorname{Hess}(F))_{\mathbf{c}_{k}}$ may play the similar role of "discriminants" as in algebraic number theory.

We shall give a few examples of hyperplane arrangement and circle arrangement illustrating the above facts.

4 hyperplane arrangements

Let $f_{j}(1 \leq j \leq n+2)$ be the following linear functions with real coefficients :

$$
\begin{aligned}
& f_{j}:=x_{j}(1 \leq j \leq n), \\
& f_{n+1}:=1-\sum_{k=1}^{n} x_{k}, f_{n+2}:=1-\sum_{k=1}^{n} u_{k} x_{k}
\end{aligned}
$$

for the parameter $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbf{R}^{n}$ under the condition $\left(\mathcal{C}_{1}\right)$:

$$
\left(\mathcal{C}_{1}\right): u_{j} \neq u_{k}\{j \neq k\}, u_{j} \notin\{0,1\}
$$

This gives the moduli space of the arrangement of $n+2$ real hyperplanes in general position.

Under $\left(\mathcal{C}_{1}\right)$ it is known that for generic λ such that all $\lambda_{j}>0$ one has $\kappa=$ $n+1$, and that one can choose as the representative of a basis of $H_{n}\left(X, \mathcal{L}^{*}\right)$ the regularization of the compact chambers of the associated real hyperplane arrangements corresponding to the components of the complement of $\bigcup_{j=1}^{m} S_{j}$ (refer to [1],[9]) :

$$
\mathfrak{R e} X=\mathbf{R}^{n} \cap X .
$$

Suppose now that all $\nu_{j}(1 \leq j \leq n+2)$ and $\nu_{\infty}=\sum_{k=1}^{n+2} \nu_{k}$ are different from 0 :

$$
\nu_{\infty} \prod_{j=1}^{n+2} \nu_{j} \neq 0
$$

(11) is equivalent to the system of equations

$$
\begin{equation*}
0=G_{j}:=\frac{\nu_{j}}{x_{j}}-\frac{\nu_{n+1}}{f_{n+1}}-\frac{\nu_{n+2} u_{j}}{f_{n+2}} \quad(1 \leq j \leq n) . \tag{13}
\end{equation*}
$$

This system generally gives $n+1$ solutions, namely $n+1$ critical points (real or complex) of $\mathfrak{R e} F$ which we denote by $\mathbf{c}_{j}(1 \leq j \leq n+1)$. It follows from (13)

$$
\begin{align*}
& x_{j}=\nu_{j} \frac{f_{n+1} f_{n+2}}{\nu_{n+1} f_{n+2}+\nu_{n+2} u_{j} f_{n+1}}-f_{j} f_{n+1} f_{n+2} G_{j},(1 \leq j \leq n) \tag{14}\\
& 1-f_{n+1}=\sum_{k=1}^{n} \nu_{k} \frac{f_{n+1} f_{n+2}}{\nu_{n+1} f_{n+2}+\nu_{n+2} u_{j} f_{n+1}}-\sum_{k=1}^{n} f_{n+1} f_{n+2} f_{j} G_{k} \tag{15}\\
& 1-f_{n+2}=\sum_{k=1}^{n} \nu_{k} u_{k} \frac{f_{n+1} f_{n+2}}{\nu_{n+1} f_{n+2}+\nu_{n+2} u_{k} f_{n+1}}-\sum_{k=1}^{n} f_{n+1} f_{n+2} u_{k} f_{k} G_{k} \tag{16}
\end{align*}
$$

For two rational functions φ_{1}, φ_{2} on X we call "congruent" and denote by $\varphi_{1} \equiv \varphi_{2}$ if they have equal values at all \mathbf{c}_{j}.

Hence

$$
\begin{align*}
& x_{j} \equiv \nu_{j} \frac{f_{n+1} f_{n+2}}{\nu_{n+1} f_{n+2}+\nu_{n+2} u_{j} f_{n+1}}(1 \leq j \leq n), \tag{17}\\
& 1-f_{n+1} \equiv \sum_{k=1}^{n} \nu_{k} \frac{f_{n+1} f_{n+2}}{\nu_{n+1} f_{n+2}+\nu_{n+2} u_{j} f_{n+1}}, \tag{18}\\
& 1-f_{n+2} \equiv \sum_{k=1}^{n} \nu_{k} u_{k} \frac{f_{n+1} f_{n+2}}{\nu_{n+1} f_{n+2}+\nu_{n+2} u_{k} f_{n+1}} . \tag{19}
\end{align*}
$$

Introduce the new parameter $t=\frac{f_{n+2}}{f_{n+1}}$ as basic parameter and put

$$
\omega_{j}(t):=\frac{\nu_{j} t}{\nu_{n+1} t+\nu_{n+2} u_{j}} \quad(1 \leq j \leq n) .
$$

Then

$$
x_{j} \equiv \omega_{j}(t),
$$

i.e., $\omega(t)=\left(\omega_{1}(t), \ldots, \omega_{n}(t)\right)$ represents a rational curve in X interpolating the set of critical points $\left\{\mathbf{c}_{j}(1 \leq j \leq n+1)\right\}$.

Lemma $1 t$ satisfies the algebraic equation of $(n+1)$ th degree :

$$
\begin{equation*}
\psi(t):=1-\frac{1}{t}-\sum_{j=1}^{n} \frac{\nu_{j}\left(1-u_{j}\right)}{\nu_{n+1} t+\nu_{n+2} u_{j}}=0 . \tag{20}
\end{equation*}
$$

In particular if $\frac{\nu_{j}}{\nu_{n+1}}\left(1-u_{j}\right)$ are all positive then all the roots are real and different. Hence \mathbf{c}_{j} are all real and different.

Proof. In fact from (8), (9) we have

$$
\begin{aligned}
& \frac{1}{f_{n+1}} \equiv 1+\sum_{j=1}^{n} \frac{\nu_{j} t}{\nu_{n+1} t+\nu_{n+2} t}, \\
& \frac{1}{f_{n+2}} \equiv 1+\sum_{j=1}^{n} \frac{\nu_{j} u_{j}}{\nu_{n+1} t+\nu_{n+2} t} .
\end{aligned}
$$

These two equations imply Lemma 1.
Denote by $\bar{\psi}(t)$ the monic polynomial of $(n+1)$ th degree which t has the same roots as (20)

$$
\nu_{n+1}^{n} \bar{\psi}(t)=t \prod_{j=1}^{n}\left(\nu_{n+1} t+\nu_{n+2} u_{j}\right) \psi(t)=\nu_{n+1}^{n}\left(t-\zeta_{1}\right) \cdots\left(t-\zeta_{n+1}\right) .
$$

where ζ_{j} denote the zeros of $\bar{\psi}(t)$. $\bar{\psi}(t)$ is the characteristic polynomial attached to t such that $\zeta_{j}=t\left(\mathbf{c}_{j}\right)$.

One has the obvious identity

$$
\bar{\psi}^{\prime}\left(\zeta_{j}\right)=\left[t \prod_{j=1}^{n}\left(t+\frac{\nu_{n+2}}{\nu_{n+1}} u_{j}\right)\right]_{\zeta_{j}}\left[\psi^{\prime}(t)\right]_{\zeta_{j}}
$$

Definition 2 For a rational function φ on X we define the "norm" associated with the system of critical points $\mathbf{c}_{j}(1 \leq j \leq n+1)$ as follows :

$$
\mathcal{N}(\varphi):=\prod_{j=1}^{n+1}[\varphi]_{\mathbf{c}_{j}} .
$$

We say that φ is "unit" if $\mathcal{N}(\varphi) \neq 0$.
Theorem 3 The following formulae hold:

$$
\begin{aligned}
& \mathcal{N}\left(\nu_{n+1} t+\nu_{n+2} u_{j}\right)=-\nu_{n+2}^{n} \nu_{j} u_{j}\left(1-u_{j}\right) \prod_{k \neq j}\left(u_{k}-u_{j}\right) \quad(1 \leq j \leq n), \\
& \mathcal{N}(t)=(-1)^{n} \frac{\nu_{n+2}^{n} \prod_{k=1}^{n} u_{k}}{\nu_{n+1}^{n}}, \\
& \mathcal{N}\left(\nu_{n+1} t+\nu_{n+2}\right)=\nu_{\infty} \nu_{n+2}^{n} \prod_{k=1}^{n}\left(1-u_{k}\right), \\
& \mathcal{N}\left(f_{j}\right)=\frac{\nu_{j}^{n}}{\nu_{\infty}^{n} u_{j}} \frac{\prod_{k \neq j}\left(1-u_{k}\right)}{\prod_{k \neq j}\left(u_{j}-u_{k}\right)}(1 \leq j \leq n), \\
& \mathcal{N}\left(f_{n+1}\right)=(-1)^{n} \frac{\nu_{n+1}^{n}}{\nu_{\infty}^{n}} \prod_{k=1}^{n} \frac{1-u_{k}}{u_{k}}, \\
& \mathcal{N}\left(f_{n+2}\right)=\frac{\nu_{n+2}^{n}}{\nu_{\infty}^{n}} \prod_{k=1}^{n}\left(1-u_{k}\right) .
\end{aligned}
$$

In particular $f_{j}(1 \leq j \leq n+2)$ are all unit in the above sense.
Put further

$$
\begin{aligned}
& G_{1}^{*}:=-f_{n+1}\left(\sum_{k=1}^{n} f_{k} G_{k}\left(1-u_{k}\right)\right), \\
& G_{2}^{*}=f_{n+1} f_{n+2} \sum_{k=1}^{n} f_{k} G_{k} \\
& G_{j}^{*}:=-f_{n+1} f_{n+2} f_{j} G_{j} \quad(3 \leq j \leq n)
\end{aligned}
$$

which are all polynomials. Then under the condition $\left(\mathcal{C}_{1}\right)$ the system of equations (13) is equivalent to the following :

$$
\begin{equation*}
G_{j}^{*}=0 \quad(1 \leq j \leq n) \tag{21}
\end{equation*}
$$

Lemma 4 We have the Jacobian identities
(i)

$$
\frac{\partial\left(G_{1}^{*}, \ldots, G_{n}^{*}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)} \equiv(-1)^{n-1}\left(u_{1}-u_{2}\right)\left(\prod_{j=1}^{n} f_{j}\right)\left(f_{n+1}\right)^{n}\left(f_{n+2}\right)^{n-1} \frac{\partial\left(G_{1}, \ldots, G_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)} .
$$

(ii)

$$
\frac{\partial\left(t, G_{2}^{*}, \ldots, G_{n}^{*}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \equiv-\frac{u_{1}-u_{2}}{f_{n+1}^{2}}
$$

(iii)

$$
\psi^{\prime}(t) \frac{\partial\left(t, G_{2}^{*}, \ldots, G_{n}^{*}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \equiv \frac{\partial\left(G_{1}^{*}, \ldots, G_{n}^{*}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}
$$

Definition 5 Define the discriminant associated with the system of critical points \mathbf{c}_{j} by

$$
\text { Discr }:=\prod_{j<k}\left(\zeta_{j}-\zeta_{k}\right)^{2}=(-1)^{\frac{n(n+1)}{2}} \mathcal{N}\left(\bar{\psi}^{\prime}(t)\right)
$$

On the other hand the Hessian F is defined by the Jacobian

$$
\operatorname{Hess}(F):=\frac{\partial\left(G_{1}, \ldots, G_{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}
$$

We have the equality

Theorem 6

$$
\text { Discr }=\left\{\prod_{j=1}^{n} \mathcal{N}\left(f_{j}\right)\right\}\left\{\mathcal{N}\left(f_{n+1}\right)\right\}^{n+2}\left\{\mathcal{N}\left(f_{n+2}\right)\right\}^{n-1} \mathcal{N}(\operatorname{Hess}(F))
$$

Hence a pair of critical points meet each other if and only if $\mathcal{N}(\operatorname{Hess}(F))$ vanishes.

5 hypersphere arrangements

Let $n+1$ quadratic polynomials of real coefficients in $x=\left(x_{1}, \ldots, x_{n}\right)$ be given :

$$
f_{j}(x):=Q(x)+2 \sum_{j=1}^{n} \alpha_{j, k} x_{k}+\alpha_{j 0} \quad(1 \leq j \leq n+1)
$$

where $Q(x)$ denotes the quadratic form $\sum_{j=1}^{n} x_{j}^{2}$. They define the arrangement of hyperspheres \mathcal{A} consisting of the hyperspheres $S_{j}: f_{j}=0$. The center O_{j} and the radius $r_{j}\left(r_{j}>0\right)$ of S_{j} are equal to

$$
\begin{aligned}
& O_{j}:-\left(\alpha_{j 1}, \ldots, \alpha_{j n}\right) \\
& r_{j}^{2}=-\alpha_{j 0}+\sum_{k=1}^{n} \alpha_{j k}^{2} .
\end{aligned}
$$

We denote the distance between $O_{j}, O_{k}(j \neq k)$ by $\rho_{j k}\left(\rho_{j k}>0\right)$ such that $\rho_{j k}^{2}=\sum_{l=1}^{n}\left(\alpha_{j l}-\alpha_{k l}\right)^{2}$.

For the multiplicative function

$$
\Phi(x)=\prod_{j=1}^{n+1} f_{j}^{\lambda_{j}}(x)
$$

consider the integral $J(\varphi)$ in $\S 3$. For generic exponents λ one can prove that the dimension of $H_{\nabla}^{n}\left(X, \Omega^{*}\right)$ is equal to $2^{n+1}-1$. As the representative of a basis one can choose the following nth degree forms

$$
\varphi_{J} d x_{1} \wedge \cdots \wedge d x_{n}, \varphi_{J}:=\frac{1}{\prod_{j \in J} f_{j}}
$$

where J ranges over the family of arbitrary (unordered) subsets of indices in $\{1,2, \ldots, n+1\}$.

Cayley-Menger determinants are defined in the following way and play an important role in the sequel. Denote by $\rho_{* j}=\rho_{j *}$ the radius r_{j} for $j \in\{1,2, \ldots, n+1\}$ or 0 for $j=*$.

Definition 7 The determinant

$$
B\left(\begin{array}{cc}
0 & J \\
0 & K
\end{array}\right):=\left|\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & \rho_{j_{1} k_{1}}^{2} & \ldots & \rho_{j_{1} k_{p}} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \rho_{j_{p} k_{1}}^{2} & \ldots & \rho_{j_{p} k_{p}}^{2}
\end{array}\right|
$$

is called "Cayley-Menger determinant" associated with \mathcal{A}, where $J=\left\{j_{1}, \ldots, j_{p}\right\}, K=$ $\left\{k_{1}, \ldots, k_{p}\right\}$ denote two subsets of the indices in $\{*, 1, \ldots, n+1\}$. In case when $J=K$ we simply denote $B(0 J)$ instead of $B\left(\begin{array}{ll}0 & J \\ 0 & K\end{array}\right)$.
Notice that

$$
B(0 j k)=2 \rho_{j k}^{2}>0, B(0 \star j)=2 r_{j}^{2}>0 .
$$

For simplicity we restrict ourselves to the case $n=2$, so that \mathcal{A} is the arrangement of three circles S_{1}, S_{2}, S_{3} in \mathbf{R}^{2}. We further assume that r_{j} are the same simply denoted by r and that $\nu_{j}=1$ for all j. One sees that

$$
\begin{aligned}
& B(0 \star j k)=\rho_{j k}^{2}\left(\rho_{j k}^{2}-4 r^{2}\right), \\
& B(0123)=\rho_{12}^{4}+\rho_{13}^{4}+\rho_{23}^{4}-2 \rho_{12}^{2} \rho_{13}^{2}-2 \rho_{12}^{2} \rho_{23}^{2}-2 \rho_{13}^{2} \rho_{23}^{2}, \\
& B(0 \star 123)=-4 r^{2} B(0123)-2 \rho_{12}^{2} \rho_{13}^{2} \rho_{23}^{2} .
\end{aligned}
$$

We assume the following condition of non-degeneracy of \mathcal{A} :

$$
\left(\mathcal{C}_{2}\right) \quad B(0 \star 123) \neq 0, B(0 * j k) \neq 0
$$

i.e., the triangle $\Delta O_{1} O_{2} O_{3}$ is non-degenerate. Any two circles have no contact point and three circles S_{1}, S_{2}, S_{3} have no common point.

By taking a suitable choice of coordinates we may assume that

$$
\alpha_{31}=\alpha_{32}=\alpha_{22}=0, \alpha_{21}>0, \alpha_{12}>0
$$

so that we have

$$
\begin{aligned}
& r^{2}=-\alpha_{30}=-\alpha_{20}+\alpha_{21}^{2}=-\alpha_{10}+\alpha_{11}^{2}+\alpha_{12}^{2}, \\
& \alpha_{21}^{2}=\rho_{23}^{2}, \alpha_{11}^{2}+\alpha_{12}^{2}=\rho_{13}^{2},\left(\alpha_{11}-\alpha_{21}\right)^{2}+\alpha_{12}^{2}=\rho_{12}^{2} \\
& 4 \alpha_{21}^{2} \alpha_{12}^{2}=-B(0123) .
\end{aligned}
$$

Hence $\alpha_{j k}$ are completely determined by $\rho_{j k}^{2}, r^{2}$.
Under the condition $\left(\mathcal{C}_{2}\right)$ the system of equations (11) are equivalent to

$$
\begin{align*}
G_{1} & :=\frac{x_{1}+\alpha_{11}}{f_{1}}+\frac{x_{1}+\alpha_{21}}{f_{2}}+\frac{x_{1}}{f_{3}}=0, \\
G_{2} & :=\frac{x_{2}+\alpha_{12}}{f_{1}}+\frac{x_{2}}{f_{2}}+\frac{x_{2}}{f_{3}}=0 . \tag{22}
\end{align*}
$$

Generally there exist 7 (real or complex) points in X satisfying (22) denoted by $\left\{\mathbf{c}_{j}(1 \leq j \leq 7)\right\}$. Let $\left.D_{j}(1 \leq j \leq 3)\right)$ be the open disc surrounded by the circumference $\mathfrak{R e} S_{j}$.

If

$$
\left(\mathcal{C}_{3}\right): B(0 \star 123)>0, B(0 \star j k)<0(1 \leq j<k \leq 3)
$$

then the intersection $D_{1} \cap D_{2} \cap D_{3}$ is not empty. The critical points are all real and contained one by one in each compact chamber i.e., $D_{1} \cap D_{2} \cap D_{3}$, $D_{1} \cap D_{2}-D_{3}, D_{1} \cap D_{3}-D_{2}, D_{2} \cap D_{3}-D_{1}, D_{1}-D_{2} \cap D_{3}, D_{2} \cap-D_{1} \cap D_{3}, D_{3}-$ $D_{1} \cap D_{3}$.

We want to find a rational curve $t_{2}=\omega\left(t_{1}\right) \in X$ containing all critical points \mathbf{c}_{j} and a monic polynomial $\bar{\psi}\left(t_{1}\right)$ of degree 7 such that $\left(t_{1}, \omega\left(t_{1}\right)\right)$ coincides with all t-coordinates $t\left(\mathbf{c}_{\underline{j}}\right)$ for any root of $\bar{\psi}\left(t_{1}\right)$. In the sequel we shall call t_{1} "basic parameter" and $\psi\left(t_{1}\right)$ "characteristic polynomial".

To find out the characteristic polynomials we use Sylvester's elimination method.

Introduce the new polynomials in x

$$
\begin{aligned}
& g_{1}:=f_{3}\left(L_{12}-L_{23}\right)-L_{23}\left(f_{1}-f_{3}\right), \\
& g_{2}:=f_{3}\left(L_{12}-L_{13}\right)-L_{13}\left(f_{2}-f_{3}\right), \\
& g_{3}:=-\left(L_{12}-L_{13}\right) L_{23}\left(f_{1}-f_{3}\right)+\left(L_{12}-L_{23}\right) L_{13}\left(f_{2}-f_{3}\right)
\end{aligned}
$$

where $L_{j k}$ denote linear functions of x

$$
\begin{aligned}
& L_{12}: L_{12}(x)=\alpha_{12} x_{1}+\left(-\alpha_{11}+\alpha_{21}\right) x_{2}+\alpha_{21} \alpha_{12}, \\
& L_{13}: L_{13}(x)=-\alpha_{12} x_{1}+\alpha_{11} x_{2}, \\
& L_{23}: L_{23}(x)=-\alpha_{21} x_{2} .
\end{aligned}
$$

$L_{j k}(x)=0$ defines the straight line going through O_{j}, O_{k} and the triangle $\Delta\left[O_{1}, O_{2}, O_{3}\right]$ is defined by $L_{j k} \geq 0$.

Lemma 8 Under the condition $\left(\mathcal{C}_{2}\right)$ the system of equations (22) are equivalent to the system

$$
\begin{equation*}
g_{1}=g_{2}=g_{3}=0 . \tag{23}
\end{equation*}
$$

Suppose moreover that $\rho_{12} \neq \rho_{13}$ then (23) is equivalent to the following system

$$
\begin{equation*}
g_{2}=g_{3}=0 . \tag{24}
\end{equation*}
$$

Introduce the new parameters $t_{1}=\frac{f_{3}}{f_{1}}, t_{2}=\frac{f_{3}}{f_{2}}$ and denote $t_{\infty}=1+t_{1}+t_{2}$. We call t_{1}, t_{2} "admissible".
(23) gives the following congruences

$$
\begin{equation*}
x_{1} \equiv-\frac{\alpha_{11} t_{1}+\alpha_{21} t_{2}}{t_{\infty}}, x_{2} \equiv-\frac{\alpha_{12} t_{1}}{t_{\infty}} . \tag{25}
\end{equation*}
$$

and conversely

$$
\begin{equation*}
t_{1} \equiv \frac{L_{23}}{L_{12}}, t_{2} \equiv \frac{L_{13}}{L_{12}}, t_{\infty}=\frac{\alpha_{21} \alpha_{12}}{L_{12}} . \tag{26}
\end{equation*}
$$

Then (23) can be rewritten using the parameters t_{1}, t_{2} as

$$
\begin{equation*}
\tilde{g}_{1}=\tilde{g}_{2}=\tilde{g}_{3}=0 \tag{27}
\end{equation*}
$$

respectively where

$$
\begin{aligned}
& \tilde{g}_{1}:=g_{1} \frac{t_{\infty}^{3}}{\alpha_{21} \alpha_{12}}, \\
& \tilde{g}_{2}:=g_{2} \frac{t_{\infty}^{3}}{\alpha_{21} \alpha_{12}}, \\
& \tilde{g}_{3}:=g_{3} \frac{t_{\infty}^{3}}{\alpha_{21}^{2} \alpha_{12}^{2}} .
\end{aligned}
$$

$\tilde{g}_{1}, \tilde{g}_{2}, \tilde{g}_{3}$ are polynimials of third degree in t_{1}, t_{2} as follows

$$
\begin{aligned}
& \tilde{g}_{1}:=a_{0} t_{2}^{2}+a_{1} t_{2}+a_{2}, \\
& \tilde{g}_{2}:=b_{0} t_{2}^{3}+b_{1} t_{2}^{2}+b_{2} t_{2}+b_{3}, \\
& \tilde{g}_{3}:=c_{0} t_{2}^{2}+c_{1} t_{2}+c_{2},
\end{aligned}
$$

where a_{j}, b_{k}, c_{l} are given by polynomials in t_{1} :

$$
\begin{aligned}
a_{0} & =\left(r^{2}-\rho_{12}^{2}\right) t_{1}+\rho_{23}^{2}-r^{2}, \\
a_{1} & =2\left\{r^{2} t_{1}^{2}+\left(\rho_{23}^{2}-\rho_{12}^{2}\right) t_{1}-r^{2}\right\}, \\
a_{2} & =\left(t_{1}-1\right)\left\{r^{2} t_{1}^{2}+\left(\rho_{13}^{2}+2 r^{2}\right) t_{1}+r^{2}\right\}, \\
b_{0} & =r^{2}, b_{1}=2 r^{2} t_{1}+\rho_{23}^{2}+r^{2}, \\
b_{2} & =\left(r^{2}-\rho_{12}^{2}\right) t_{1}^{2}+2\left(\rho_{13}^{2}-\rho_{12}^{2}\right) t_{1}-\left(r^{2}+\rho_{23}^{2}\right), \\
b_{3} & =\left(\rho_{13}^{2}-r^{2}\right) t_{1}^{2}-2 r^{2} t_{1}-r^{2}, \\
c_{0} & =\rho_{12}^{2} t_{1}-\rho_{23}^{2}, \\
c_{1} & =-\rho_{12}^{2} t_{1}^{2}+\rho_{23}^{2}, \\
c_{2} & =\rho_{13}^{2} t_{1}\left(t_{1}-1\right) .
\end{aligned}
$$

Notice that

$$
\begin{align*}
& \tilde{g}_{1}\left(t_{1}, 1\right)=a_{0}+a_{1}+a_{2} \\
& =r^{2} t_{1}^{3}+\left(\rho_{12}^{2}+3 r^{2}\right) t_{1}^{2}+2\left(\rho_{23}^{2}-2 \rho_{12}^{2}\right) t_{1}+\rho_{23}^{2}-4 r^{2}, \tag{28}\\
& \tilde{g}_{2}\left(t_{1}, 1\right)=b_{0}+b_{1}+b_{2}+b_{3}=\left(\rho_{13}^{2}-\rho_{12}^{2}\right) t_{1}\left(t_{1}+2\right), \tag{29}\\
& \tilde{g}_{3}\left(t_{1}, 1\right)=c_{0}+c_{1}+c_{2}=\left(\rho_{13}^{2}-\rho_{12}^{2}\right) t_{1}\left(t_{1}-1\right) . \tag{30}
\end{align*}
$$

so that

$$
\begin{equation*}
\tilde{g}_{2}(0,1)=\tilde{g}_{3}(0,1)=0 . \tag{31}
\end{equation*}
$$

Lemma 9 Put

$$
\begin{aligned}
& U: U\left(t_{1}\right)=b_{0}\left(c_{1}^{2}-c_{0} c_{2}\right)-b_{1} c_{0} c_{1}+b_{2} c_{0}^{2} \\
& V: V\left(t_{1}\right)=-b_{0} c_{1} c_{2}+b_{1} c_{0} c_{2}-b_{3} c_{0}^{2}
\end{aligned}
$$

Then the following identity holds :

$$
\begin{equation*}
\tilde{g}_{23}:=c_{0}^{2} \tilde{g}_{2}-\left(b_{0} c_{0} t_{2}+b_{1} c_{0}-b_{0} c_{1}\right) \tilde{g}_{3}=U t_{2}-V \quad \text { for arbitrary } t_{1}, t_{2} \tag{32}
\end{equation*}
$$

where

$$
U=\frac{\partial \tilde{g}_{23}}{\partial t_{2}}
$$

If $\tilde{g}_{2}=\tilde{g}_{3}=0$ then $\tilde{g}_{23}=0$ which implies

$$
t_{2} \equiv \omega\left(t_{1}\right) \quad \omega\left(t_{1}\right):=\frac{V}{U}
$$

The resultant R of $\tilde{g}_{2}\left(t_{1}, t_{2}\right)$ and $\tilde{g}_{3}\left(t_{1}, t_{2}\right)$ relative to t_{2} is a polynomial in t_{1} of degree 8 written by Sylvester determinant

$$
R: R\left(t_{1}\right)=\left|\begin{array}{lllll}
b_{0} & b_{1} & b_{2} & b_{3} & \\
& b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & & \\
& c_{0} & c_{1} & c_{2} & \\
& & c_{0} & c_{1} & c_{2}
\end{array}\right|
$$

It is related to U, V and can be described as follows :

$$
\begin{aligned}
& c_{0}^{2} R=U^{2} \tilde{g}_{12}\left(t_{1}, \frac{V}{U}\right) \\
& =c_{0} V^{2}+c_{1} V U+c_{2} U^{2}
\end{aligned}
$$

where U, V are polynomials of degree 4 which can be written as

$$
\begin{gathered}
U=\sum_{j=0}^{4} u_{j} t_{1}^{4-j}, V=\sum_{j=0}^{4} v_{j} t_{1}^{4-j} . \\
u_{0}=-\left(\rho_{12}^{2}-4 r^{2}\right) \rho_{12}^{4}, u_{4}=r^{2} \rho_{23}^{4} \\
v_{0}=\rho_{12}^{4}\left\{r^{2}\left(\rho_{12}^{2}+3 \rho_{13}^{2}\right)-\rho_{2}^{2} \rho_{13}^{2}\right\}, v_{4}=r^{2} \rho_{23}^{4} .
\end{gathered}
$$

Moreover $U-V$ can be evaluated explicitly

$$
\begin{aligned}
& U-V=\left(\rho_{13}^{2}-\rho_{12}^{2}\right) W^{*} \\
& W^{*}=t_{1}\left(w_{0} t_{1}^{3}+w_{1} t_{1}^{2}+w_{2} t_{1}+w_{3}\right)
\end{aligned}
$$

such that

$$
\begin{aligned}
& w_{0}=\rho_{12}^{2}\left(\rho_{12}^{2}-3 r^{2}\right), \\
& \left.w_{1}=-\rho_{12}^{2}\left(3 \rho_{23}^{2}-2 \rho_{12}^{2}\right)\right)+\left(2 \rho_{23}^{2}+\rho_{12}^{2}\right) r^{2}, \\
& w_{2}=\rho_{23}^{2}\left(2 \rho_{23}^{2}-3 \rho_{12}^{2}\right)+\left(2 \rho_{12}^{2}+\rho_{23}^{2}\right) r^{2}, \\
& w_{3}=\rho_{23}^{2}\left(\rho_{23}^{2}-3 r^{2}\right) .
\end{aligned}
$$

R is a polynomial in t_{1} of degree 8 and in $\rho_{j k}^{2}, r^{2}$.
Lemma 10 (i) If $\rho_{12}^{2}=\rho_{13}^{2}$ then R vanishes.
(ii) $R(0)$ vanishes.

Proof. About (i). When $\rho_{12}^{2}=\rho_{13}^{2} U$ coincides with V so that

$$
c_{0}^{2} R=\left(c_{0}+c_{1}+c_{2}\right) U^{2}=0
$$

This implies $R=0$.
About (ii). The identity $U(0)=V(0)$ holds true. Hence

$$
-\rho_{23}^{2} R(0)=\left(c_{0}(0)+c_{1}(0)+c_{2}(0)\right) U(0)=0
$$

because of (31).

Because of Lemma $10 R$ has the factor $\left(\rho_{12}^{2}-\rho_{13}^{2}\right) t_{1}$.
As a result
Lemma $11 R$ is a polynomial in t_{1} of degree 8 and in $\rho_{j k}^{2}, r^{2}$ with the factor $\left(\rho_{12}^{2}-\rho_{13}^{2}\right) t_{1}$ such that

$$
\begin{aligned}
& R=\rho_{12}^{4} r^{2}\left(\rho_{12}^{2}-4 r^{2}\right)\left(\rho_{12}^{2}-\rho_{13}^{2}\right) t_{1} \bar{\psi}\left(t_{1}\right), \\
& R \approx-\rho_{23}^{4} r^{2}\left(\rho_{12}^{2}-\rho_{13}^{2}\right)\left(\rho_{23}^{2}-4 r^{2}\right) t_{1} \quad\left(t_{1} \downarrow 0\right),
\end{aligned}
$$

where $\bar{\psi}\left(t_{1}\right)=\prod_{j=1}^{7}\left(t_{1}-\zeta_{j}\right)$ is a monic polynomial with with 7 roots $\zeta_{j}(1 \leq$ $j \leq 7)$ such that

$$
-\bar{\psi}(0)=\prod_{j=1}^{7} \zeta_{j}=\frac{\rho_{23}^{4}\left(\rho_{23}^{2}-4 r^{2}\right)}{\rho_{12}^{4}\left(\rho_{12}^{2}-4 r^{2}\right)}=\frac{\rho_{23}^{2} B(0 \star 23)}{\rho_{12}^{2} B(0 \star 12)}
$$

$\bar{\psi}\left(t_{1}\right)$ is the characteristic polynomial relative to the basic parameter t_{1} of the critical points \mathbf{c}_{j} such that $t_{1}\left(\mathbf{c}_{j}\right)=\zeta_{j}$.

Furthermore since

$$
U(1)=\left(\rho_{23}^{2}-\rho_{12}^{2}\right)^{2}\left(\rho_{13}^{2}-4 r^{2}\right), V(1)=\left(\rho_{23}^{2}-\rho_{13}^{2}\right)^{2}\left(4 r^{2}+2 \rho_{13}^{2}-3 \rho_{12}^{2}\right)
$$

we have the formula

$$
R(1)=3\left(\rho_{12}^{2}-\rho_{23}^{2}\right)^{3}\left(\rho_{13}^{2}-\rho_{12}^{2}\right)\left(\rho_{13}^{2}-4 r^{2}\right)
$$

hence

$$
\bar{\psi}(1)=\prod_{j=1}^{7}\left(1-\zeta_{j}\right)=-3 \frac{\left(\rho_{12}^{2}-\rho_{23}^{2}\right)^{3}\left(\rho_{13}^{2}-4 r^{2}\right)}{\rho_{12}^{4} r^{2}\left(\rho_{12}^{2}-4 r^{2}\right)}
$$

Seeing that $\frac{f_{1}-f_{3}}{f_{1}}=1-t_{1}, \frac{f_{2}-f_{3}}{f_{2}}=1-t_{2}$ we can conclude
Proposition 12 (i)

$$
\begin{aligned}
& \mathcal{N}\left(t_{1}\right)=\mathcal{N}\left(\frac{f_{3}}{f_{1}}\right)=\frac{\rho_{23}^{2} B(0 \star 23)}{\rho_{12}^{2} B(0 \star 12)} \\
& \mathcal{N}\left(t_{2}\right)=\mathcal{N}\left(\frac{f_{3}}{f_{2}}\right)=\frac{\rho_{13}^{2} B(0 \star 13)}{\rho_{12}^{2} B(0 \star 12)}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \mathcal{N}\left(1-t_{1}\right)=\mathcal{N}\left(\frac{f_{1}-f_{3}}{f_{1}}\right)=-3 \frac{\left(\rho_{12}^{2}-\rho_{23}^{2}\right)^{3} B(0 \star 13)}{\rho_{12}^{2} \rho_{13}^{2} r^{2} B(0 \star 12)}, \\
& \mathcal{N}\left(1-t_{2}\right)=\mathcal{N}\left(\frac{f_{2}-f_{3}}{f_{2}}\right)=-3 \frac{\left(\rho_{12}^{2}-\rho_{13}^{2}\right)^{3} B(0 \star 23)}{\rho_{12}^{2} \rho_{23}^{2} r^{2} B(0 \star 12)} .
\end{aligned}
$$

Instead of $\left(t_{1}, t_{2}\right)$ we now take the new coordinates $\left(t_{\infty}, t_{1}\right), t_{\infty}$ being the basic parameter. By the substitution $t_{2}=t_{\infty}-t_{1}-1, \tilde{g}_{2}, 2 \tilde{g}_{3}-\tilde{g}_{2}$ can be rewritten as

$$
\begin{aligned}
& \tilde{g}_{2}^{\sharp}\left(t_{\infty}, t_{1}\right):=\tilde{g}_{2}\left(t_{1}, t_{\infty}-t_{1}-1\right)=b_{0}^{\prime} t_{1}^{3}+b_{1}^{\prime} t_{1}^{2}+b_{2}^{\prime} t_{1}+b_{3}^{\prime}, \\
& \tilde{g}_{3}^{\sharp}\left(t_{\infty} \cdot t_{1}\right):=2 \tilde{g}_{3}\left(t_{1}, t_{\infty}-t_{1}-1\right)-\tilde{g}_{2}\left(t_{1}, t_{\infty}-t_{1}-1\right)=c_{0}^{\prime} t_{1}^{2}+c_{1}^{\prime} t_{1}+c_{2}^{\prime},
\end{aligned}
$$

$b_{0}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, b_{3}^{\prime} ; c_{0}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime}$, denote polynomials in t_{∞} as follows :

$$
\begin{aligned}
& b_{0}^{\prime}=\rho_{12}^{2}, \\
& b_{1}^{\prime}=-\rho_{12}^{2} t_{\infty}+\rho_{23}^{2}-\rho_{13}^{2}+3 \rho_{12}^{2}, \\
& b_{2}^{\prime}=-r^{2} t_{\infty}^{2}+2\left(-\rho_{12}^{2}+\rho_{13}^{2}-\rho_{23}^{2}\right) t_{\infty}+\left(2 \rho_{12}^{2}-\rho_{13}^{2}+3 \rho_{23}^{2}\right), \\
& b_{3}^{\prime}=\left(t_{\infty}-2\right)\left\{r^{2} t_{\infty}^{2}+\rho_{23}^{2}\left(t_{\infty}-1\right)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& c_{0}^{\prime}=c_{00}^{\prime} t_{\infty}+c_{01}^{\prime}, \\
& c_{1}^{\prime}=c_{10}^{\prime} t_{\infty}^{2}+c_{11}^{\prime} t_{\infty}+c_{12}^{\prime}, \\
& c_{2}^{\prime}=c_{20}^{\prime} t_{\infty}^{3}+c_{21}^{\prime} t_{\infty}^{2}+c_{22}^{\prime} t_{\infty}+c_{23}^{\prime}
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{00}^{\prime}=\rho_{12}^{2}, c_{01}^{\prime}=3\left(\rho_{23}^{2}-\rho_{13}^{2}+\rho_{12}^{2}\right), \\
& c_{10}^{\prime}=-\left(2 r^{2}+\rho_{12}^{2}\right), c_{11}^{\prime}=4 \rho_{13}^{2}-2 \rho_{12}^{2}-6 \rho_{23}^{2}, c_{12}^{\prime}=3\left(\rho_{12}^{2}-\rho_{13}^{2}+3 \rho_{23}^{2}\right), \\
& c_{20}^{\prime}=2 r^{2}, c_{21}^{\prime}=3 \rho_{23}^{2}-4 r^{2}, c_{22}^{\prime}=-9 \rho_{23}^{2}, c_{23}^{\prime}=6 \rho_{23}^{2} .
\end{aligned}
$$

Then like Lemma 9 the following Lemma holds.

Lemma 13 Put

$$
\begin{aligned}
U^{\sharp}: U^{\sharp}\left(t_{\infty}\right) & =b_{0}^{\prime}\left(c_{1}^{\prime 2}-c_{0}^{\prime} c_{1}^{\prime}\right) c_{0}^{\prime} c_{1}^{\prime}+b_{2}^{\prime} c_{0}^{\prime} \\
V^{\sharp}: V^{\sharp}\left(t_{\infty}\right) & =-b_{0}^{\prime} c_{1}^{\prime} c_{2}^{\prime}+b_{1}^{\prime} c_{0}^{\prime} c_{2}-b_{3}^{\prime} c_{0}^{\prime 2} .
\end{aligned}
$$

Then

$$
0 \equiv U^{\sharp} t_{1}-V^{\sharp} .
$$

i.e., the rational curve $t_{1}=\frac{V^{\sharp}\left(t_{\infty}\right)}{U^{\sharp}\left(t_{\infty}\right)}$ gives the interpolating curve. We have

$$
\begin{aligned}
U^{\sharp} & =\sum_{j=0}^{4} u_{j}^{\prime} t_{\infty}^{4-j}, \\
V^{\sharp} & =\sum_{j=0}^{5} v_{j}^{\prime} f_{\infty}^{5-j}
\end{aligned}
$$

with

$$
\begin{gathered}
u_{0}^{\prime}=v_{0}^{\prime}=r^{2} \rho_{12}^{2}\left(4 r^{2}-\rho_{12}^{2}\right), \\
u_{1}^{\prime}-v_{1}^{\prime}=2 r^{2} \rho_{12}^{2}\left(4 r^{2}-\rho_{13}^{2}\right),
\end{gathered}
$$

so that

$$
\frac{V^{\sharp}}{U^{\sharp}} \approx t_{\infty}+\frac{v_{1}^{\prime}-u_{1}^{\prime}}{u_{0}^{\prime}}+O\left(\frac{1}{t_{\infty}}\right) \quad\left(t_{\infty} \uparrow \infty\right)
$$

t_{∞} being fixed, the resultant $R^{\sharp}=R^{\sharp}\left(t_{\infty}\right)$ of $\tilde{g}_{1}^{\sharp}, \tilde{g}_{3}^{\sharp}$ relative to t_{1} is given by

$$
c_{0}^{\prime 2} R^{\sharp}=c_{0}^{\prime} V^{\sharp 2}+c_{1}^{\prime} U^{\sharp} V^{\sharp}+c_{2}^{\prime} U^{\sharp} U^{2} .
$$

As a result

$$
c_{0}^{\prime 2} R^{\sharp} \approx u_{0}^{\prime}\left\{u_{0}^{\prime}\left(c_{01}^{\prime}+c_{11}^{\prime}+c_{21}^{\prime}\right)+\left(v_{1}^{\prime}-u_{1}^{\prime}\right)\left(2 c_{00}^{\prime}+c_{10}^{\prime}\right)\right\} t_{\infty}^{8}\left(1+O\left(\frac{1}{t_{\infty}}\right)\right)
$$

$$
\left(t_{\infty} \uparrow \infty\right)
$$

Seeing that

$$
\begin{aligned}
& c_{01}^{\prime}+c_{11}^{\prime}+c_{21}^{\prime}=-4 r^{2}+\rho_{12}^{2}+\rho_{13}^{2}, \\
& 2 c_{00}^{\prime}+c_{10}^{\prime}=\rho_{12}^{2}-2 r^{2}
\end{aligned}
$$

we have from Lemma 13

$$
R^{\sharp}=\rho_{12}^{4} r^{4}\left(\rho_{12}^{2}-4 r^{2}\right)\left(\rho_{12}^{2}-\rho_{13}^{2}\right) t_{\infty}^{8}\left(1+O\left(\frac{1}{t_{\infty}}\right)\right) .
$$

On the other hand (31) shows the equality

$$
\tilde{g}_{2}^{\sharp}(2,1)=\tilde{g}_{3}^{\sharp}(2,1)=0
$$

i.e., the two polynomials $\tilde{g}_{2}^{\sharp}\left(2, t_{1}\right), \tilde{g}_{3}^{\sharp}\left(2, t_{1}\right)$ have a common zero which means $R^{\sharp}(2)=0$. Hence R^{\sharp} can be described as

$$
R^{\sharp}\left(t_{\infty}\right)=\rho_{12}^{2} r^{4}\left(\rho_{12}^{2}-4 r^{2}\right)\left(\rho_{12}^{2}-\rho_{13}\right)^{2}\left(t_{\infty}-2\right) \prod_{j=1}^{7}\left(t_{\infty}-\zeta_{j}^{\prime}\right) .
$$

where ζ_{j}^{\prime} denotes the value $t_{\infty}\left(\mathbf{c}_{j}\right)$.
Lemma 14 The following identity holds:

$$
R^{\sharp}(0)=54 \rho_{13}^{2} \rho_{23}^{2}\left(\rho_{13}^{2}-\rho_{12}^{2}\right) B(0123) .
$$

We can evaluate the norm of t_{∞} as follows :

Proposition 15

$$
\mathcal{N}\left(t_{\infty}\right)=\prod_{j=1}^{7} \zeta_{j}^{\prime}=-27 \frac{\rho_{13}^{2} \rho_{23}^{2} B(0123)}{r^{4} B(0 \star 12)}
$$

$\bar{\psi}\left(t_{\infty}\right)=\prod_{j=1}^{7}\left(t_{\infty}-\zeta_{j}^{\prime}\right)$ is the characteristic polynomial in t_{∞}.
The identity (26) derives the formula for $\mathcal{N}\left(L_{12}\right)$. In the same way by symmetry of isometry the followings hold :

Corollary 16

$$
\begin{aligned}
& \mathcal{N}\left(L_{12}\right)=\frac{1}{2^{7} 3^{3}} \frac{r^{4} B(0 \star 12)}{\rho_{13}^{2} \rho_{23}^{2}}\{-B(0123)\}^{\frac{5}{2}} . \\
& \mathcal{N}\left(L_{13}\right)=\frac{1}{2^{7} 3^{3}} \frac{r^{4} B(0 \star 13)}{\rho_{12}^{2} \rho_{23}^{2}}\{-B(0123)\}^{\frac{5}{2}}, \\
& \mathcal{N}\left(L_{23}\right)=\frac{1}{2^{7} 3^{3}} \frac{r^{4} B(0 \star 23)}{\rho_{12}^{2} \rho_{13}^{2}}\{-B(0123)\}^{\frac{5}{2}} .
\end{aligned}
$$

Put $\psi\left(t_{1}\right)=\tilde{g}_{3}\left(t_{1}, \omega\left(t_{1}\right)\right)$ such that $R=\frac{U^{2} \psi\left(t_{1}\right)}{c_{0}^{2}}$.
Finally we want to discuss a formula related to the norm of "Hessian" of the level function $\mathfrak{R e} F$.

Concerning the derivatives relative to t_{1} of $\bar{\psi}\left(t_{1}\right), R\left(t_{1}\right)$ we have

$$
\begin{equation*}
\psi^{\prime}\left(t_{1}\right) \equiv \frac{c_{0}^{2}}{U^{2}} R^{\prime}\left(t_{1}\right) \tag{33}
\end{equation*}
$$

A direct computation gives the following

Lemma 17

$$
\frac{\partial\left(\tilde{g}_{2}, \tilde{g}_{3}\right)}{\partial\left(t_{1}, t_{2}\right)} \equiv-r^{2} \frac{B(0 \star 12) \rho_{12}^{2}\left(\rho_{12}^{2}-\rho_{13}^{2}\right)}{U} t_{1} \bar{\psi}^{\prime}\left(t_{1}\right) .
$$

Proof. By partial derivation of (32) with respect to t_{2}

$$
U=\frac{\partial \tilde{g}_{23}}{\partial t_{2}}
$$

On the other hand

$$
\tilde{g}_{23}\left(t_{1}, \omega\left(t_{1}\right)\right)=0
$$

By derivation relative to t_{1}

$$
\frac{\partial \tilde{g}_{23}\left(t_{1}, \omega\left(t_{1}\right)\right)}{\partial t_{1}}+\frac{\partial \tilde{g}_{23}\left(t_{1}, \omega\left(t_{1}\right)\right)}{\partial t_{1}} \omega^{\prime}\left(t_{1}\right)=0 .
$$

In the same way by derivation of $\psi\left(t_{1}\right)$ relative to t_{1}

$$
\psi^{\prime}\left(t_{1}\right)=\frac{\partial \tilde{g}_{3}\left(t_{1}, \omega\left(t_{1}\right)\right)}{\partial t_{1}}+\frac{\partial \tilde{g}_{3}\left(t_{1}, \omega\left(t_{1}\right)\right)}{\partial t_{2}} \omega^{\prime}\left(t_{1}\right) .
$$

Hence

$$
\begin{equation*}
\psi^{\prime}\left(t_{1}\right)=\frac{\partial\left(\tilde{g}_{3}, \tilde{g}_{23}\right)}{\partial\left(t_{1}, t_{2}\right)} / \frac{\partial \tilde{g}_{23}}{\partial t_{2}}=-\frac{c_{0}^{2}}{U} \frac{\partial\left(\tilde{g}_{2}, \tilde{g}_{3}\right)}{\partial\left(t_{1}, t_{2}\right)} . \tag{34}
\end{equation*}
$$

In view of Lemma 11 this implies

$$
R^{\prime}\left(t_{1}\right) \equiv-U\left(t_{1}\right) \frac{\partial\left(\tilde{g}_{2}, \tilde{g}_{3}\right)}{\partial\left(t_{1}, t_{2}\right)}
$$

which completes Lemma 17 in view of (33).
Lemma 18 The identity holds

$$
\begin{equation*}
d G_{1} \wedge d G_{2} \equiv-\frac{t_{1} t_{2}}{1-t_{2}} \frac{L_{12}^{4}}{f_{3}^{4}\left(\alpha_{21} \alpha_{12}\right)^{3}} d \tilde{g}_{2} \wedge d \tilde{g}_{3} . \tag{35}
\end{equation*}
$$

Proof. Put

$$
\begin{aligned}
& G_{13}=x_{2} G_{1}-\left(x_{1}+\alpha_{21}\right) G_{2}, \\
& G_{23}=\left(x_{2}+\alpha_{12}\right) G_{1}-\left(x_{1}+\alpha_{11}\right) G_{2},
\end{aligned}
$$

then

$$
d G_{13} \wedge d G_{23} \equiv L_{12} d G_{1} \wedge d G_{2}
$$

Further it holds

$$
\begin{aligned}
& g_{2}=-f_{2} f_{3} G_{23}, \\
& g_{3}=L_{12} f_{3}^{2}\left\{-\frac{1-t_{2}}{t_{1}} G_{13}+\frac{1-t_{1}}{t_{2}} G_{23}\right\} .
\end{aligned}
$$

so that

$$
d g_{2} \wedge d g_{3} \equiv-\frac{1-t_{2}}{t_{1} t_{2}} f_{3}^{4} L_{12} d G_{13} \wedge d G_{23}
$$

From (26)

$$
d g_{2} \wedge d g_{3} \equiv \frac{\left(\alpha_{21} \alpha_{12}\right)^{3}}{t_{\infty}^{6}} d \tilde{g}_{2} \wedge d \tilde{g}_{3}
$$

where $4 \alpha_{21}^{2} \alpha_{12}^{2}=-B(0123)$. Summing up these equalities of Jacobian implies Lemma 18.

By definition

$$
\operatorname{Hess}(F)=\frac{\partial\left(G_{1}, G_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}, \frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(t_{1}, t_{2}\right)}=\frac{\sqrt{-B(0123)}}{2 t_{\infty}^{3}}
$$

By using these equalities one can prove the following :
Proposition 19 At each critical point \mathbf{c}_{j}

$$
[\operatorname{Hess} F]_{\mathbf{c}_{j}}=-\left[\frac{t_{1} t_{2}}{\left(1-t_{2}\right) t_{\infty} U} \frac{R^{\prime}\left(t_{1}\right)}{f_{3}}\right]_{\mathbf{c}_{j}},
$$

such that $\zeta_{j}=\left[t_{1}\right]_{\mathbf{c}_{j}}$ and $t_{2}=\frac{V}{U}$.
As an immediate consequence of Proposition 18, Lemma 11 and Lemma 19 we have

Theorem 20 Suppose that

$$
\mathcal{N}(U-V) \neq 0,
$$

then the following equality holds.

$$
\mathcal{N}(\operatorname{Hess} F)=(-1)^{7} C^{7} \frac{\mathcal{N}\left(t_{1}^{2} t_{2}\right)}{\mathcal{N}\left((U-V) t_{\infty}\right)} \frac{\text { Discr }}{\mathcal{N}\left(f_{3}\right)}
$$

where Discr, C denote the discriminant of $\bar{\psi}\left(t_{1}\right)$ relative to the basic parameter t_{1} :

$$
\text { Discr }:=\prod_{1 \leq j<k \leq 7}\left(\zeta_{j}-\zeta_{k}\right)^{2}=-\prod_{j=1}^{7}\left[\bar{\psi}^{\prime}\left(t_{1}\right)\right]_{\zeta_{j}}
$$

and the constant

$$
C=\rho_{12}^{2} r^{2} B(0 \star 12)\left(\rho_{12}^{2}-\rho_{13}^{2}\right) .
$$

Remark $\mathcal{N}\left(f_{3}\right)$ seems to be equal to

$$
\frac{1}{2 \cdot 3^{4}} \frac{B(0 \star 13) B(0 \star 23) B(0 \star 123)}{\rho_{12}^{2}} .
$$

The similar formula seems true for $\mathcal{N}\left(f_{1}\right), \mathcal{N}\left(f_{2}\right)$.

6 case of isosceles triangle

The case when $\Delta\left[O_{1} O_{2} O_{3}\right]$ is an isosceles triangle is an exceptional one. It is explained in more detail.

Generally we may put

$$
\begin{aligned}
& R=\left(\rho_{12}^{2}-\rho_{13}^{2}\right) R^{*} \\
& U-V=\left(\rho_{13}^{2}-\rho_{12}^{2}\right) W^{*}
\end{aligned}
$$

where R^{*}, W^{*} denote polynomials such that

$$
b_{0}^{2} R^{*}=\left(b_{0}+b_{1}+b_{2}\right) V^{2}+V\left\{\left(t_{1}^{2}-t_{1}\right) V+\left(b_{1}+2 b_{2}\right) W^{*}\right\}
$$

Suppose now that the equality $\rho_{12}^{2}=\rho_{13}^{2}$ holds.
Then $b_{0}+b_{1}+b_{2}=0$ and $R, U-V$ both vanish identically because they are divisible by $\rho_{12}^{2}-\rho_{13}^{2}$:

$$
\begin{aligned}
& \tilde{g}_{2}=\left(t_{2}-1\right) \tilde{g}_{2}^{*}, \tilde{g}_{3}=\left(t_{2}-1\right) \tilde{g}_{3}^{*} \\
& c_{0}^{2} \tilde{g}_{2}^{*}-\left(b_{0} c_{0} t_{2}+b_{1} c_{0}-b_{0} c_{1}\right) \tilde{g}_{3}^{*}=U .
\end{aligned}
$$

where

$$
\tilde{g}_{2}^{*}=b_{0}^{*} t_{2}^{2}+b_{1}^{*} t_{2}+b_{2}^{*},
$$

with $b_{0}^{*}=r^{2}, b_{1}^{*}=2 r^{2} t_{1}+\rho_{23}^{2}+2 r^{2}, b_{2}^{*}=-\left(\rho_{12}^{2}-r^{2}\right) t_{1}^{2}+2 r^{2} t_{1}+r^{2}$,

$$
\tilde{g}_{3}^{*}=c_{0}^{*} t_{2}+c_{1} *,
$$

with $c_{0}^{*}=\rho_{12}^{2} t_{1}-\rho_{23}^{2}, c_{1}^{*}=-\rho_{12}^{2} t_{1}\left(t_{1}-1\right)$.
The polynomial $U\left(t_{1}\right)=V\left(t_{1}\right)$ of degree 4 can be written with a monic polynomial $\bar{\psi}_{2}$

$$
\begin{aligned}
& U\left(t_{1}\right)=u_{0} t_{1}^{4}+u_{2} t_{1}^{3}+u_{3} t_{1}^{2}+u_{2} t_{1}+u_{4} \\
& =-\rho_{12}^{4}\left(\rho_{12}^{2}-4 r^{2}\right) \bar{\psi}_{2}\left(t_{1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{0}=-\rho_{12}^{4}\left(\rho_{12}^{2}-4 r^{2}\right), \\
& u_{1}=\rho_{12}^{2} \rho_{23}^{2}\left(3 \rho_{12}^{2}-4 r^{2}\right), \\
& u_{2}=\rho_{23}^{2}\left\{-\rho_{12}^{2}\left(2 \rho_{23}^{2}+\rho_{12}^{2}\right)+\left(-4 \rho_{12}^{2}+\rho_{23}^{2}\right) r^{2}\right\}, \\
& u_{3}=\rho_{23}^{4}\left(\rho_{12}^{2}+2 r^{2}\right), \\
& u_{4}=\rho_{23}^{4} r^{2} .
\end{aligned}
$$

$\bar{\psi}_{2}\left(t_{1}\right)$ has 4 roots denoted by $\zeta_{4}, \zeta_{5}, \zeta_{6}, \zeta_{7}: \bar{\psi}_{1}\left(t_{1}\right)=\prod_{j=4}^{7}\left(t_{1}-\zeta_{j}\right)$.
On the other hand $W^{*}\left(t_{1}\right)$ has the expression

$$
W^{*}=t_{1}\left(w_{0} t_{1}^{3}+w_{1} t_{1}^{2}+w_{2} t_{1}+w_{3}\right)
$$

where

$$
\begin{aligned}
& w_{0}=\rho_{12}^{2}\left(\rho_{12}^{2}-3 r^{2}\right) \\
& w_{1}=-\rho_{12}^{2}\left(3 \rho_{23}^{2}-2 \rho_{12}^{2}\right)+\left(2 \rho_{23}^{2}+\rho_{12}^{2}\right) r^{2} \\
& w_{2}=\rho_{23}^{2}\left(2 \rho_{23}^{2}-3 \rho_{12}^{2}\right)+\left(2 \rho_{12}^{2}+\rho_{23}^{2}\right) r^{2} \\
& \left.w_{3}=\rho_{23}^{2}\left(\rho_{23}^{2}-3 r^{2}\right)\right)
\end{aligned}
$$

Suppose first that $t_{2} \neq 1$.
The equation $\tilde{g}_{3}^{*}\left(t_{1}, t_{2}\right)=0$ can be uniquely solved :

$$
t_{2} \equiv \frac{V^{*}}{U^{*}}
$$

where

$$
U^{*}=c_{0}^{*}=c_{0}=\rho_{12}^{2} t_{1}-\rho_{23}^{2}, V^{*}=-c_{1}^{*}=\rho_{12}^{2} t_{1}\left(t_{1}-1\right) .
$$

Then the equation $\tilde{g}_{2}^{*}\left(t_{1}, \frac{V^{*}}{U^{*}}\right)=0$ relative to t_{1} is equivalent to

$$
U=V=b_{0}^{*}\left(V^{*}\right)^{2}+b_{1}^{*} V^{*} U^{*}+b_{2}^{*}\left(U^{*}\right)^{2}=0
$$

which have the roots $\zeta_{4}, \zeta_{5}, \zeta_{6}, \zeta_{7}$. The critical points $\mathbf{c}_{j}(4 \leq j \leq 7)$ correspond to the t-coordinates $\left(\zeta_{j}, \frac{V^{*}\left(\zeta_{j}\right)}{U^{*}\left(\zeta_{j}\right)}\right)$.

Suppose next $t_{2}=1$.
Then $\tilde{g}_{2}=\tilde{g}_{3}=0$ automatically. According to (28) we may put the polynomial $\bar{\psi}_{1}\left(t_{1}\right)$ as

$$
\begin{aligned}
& r^{2} \bar{\psi}_{1}\left(t_{1}\right):=\tilde{g}_{1}\left(t_{1}, 1\right) \\
& =r^{2} t_{1}^{3}+\left(\rho_{12}^{2}+3 r^{2}\right) t_{1}^{2}+2\left(\rho_{23}^{2}-2 \rho_{12}^{2}\right) t_{1}+\rho_{23}^{2}-4 r^{2}
\end{aligned}
$$

and denote the roots of the equation

$$
\bar{\psi}_{1}\left(t_{1}\right)=0
$$

by $\zeta_{1}, \zeta_{2}, \zeta_{3}$. The points \mathbf{c}_{j} corresponds to the t-coordinates $\left(\zeta_{j}, 1\right)$.
The critical points are divided into two parts. Three of them corresponding to $t_{1}=\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}\right\}$, is contained in the mid-line of the triangle $\Delta\left[O_{1}, O_{2}, O_{3}\right]$ defined by : $t_{2}=1$, while the remaining ones corresponds to $t_{1}=\zeta_{4}, \zeta_{5}, \zeta_{6}, \zeta_{7}$ lie outside the mid-line.

Lemma 21 We have the identification

$$
\left(t_{1}^{2}-t_{1}\right) V+\left(b_{1}+2 b_{2}\right) W^{*}=b_{0}^{2} t_{1} \bar{\psi}_{1}\left(t_{1}\right)
$$

such that

$$
R^{*}=t_{1} \bar{\psi}_{1}\left(t_{1}\right) \bar{\psi}_{2}\left(t_{1}\right)
$$

$\bar{\psi}_{1}\left(t_{1}\right)$ has three roots denoted by $\zeta_{1}, \zeta_{2}, \zeta_{3}$.

The characteristic polynomial $\bar{\psi}\left(t_{1}\right)$ is equal to the product of two factors of $\bar{\psi}_{1}, \bar{\psi}_{2}$:

$$
\bar{\psi}\left(t_{1}\right)=\bar{\psi}_{1}\left(t_{1}\right) \bar{\psi}_{2}\left(t_{1}\right)=\prod_{j-1}^{7}\left(t_{1}-\zeta_{j}\right)
$$

We can show that

Theorem 22

$$
\begin{aligned}
& \mathcal{N}\left(f_{1}\right)=\prod_{j=1}^{7}\left[f_{1}\right]_{\mathbf{c}_{j}} \\
& =\frac{r^{2}}{2 \cdot 3^{4}} \frac{B(0 \star 12) B(0 \star 13) B(0 \star 123)}{\rho_{23}^{2}} \\
& \mathcal{N}\left(f_{2}\right)=\prod_{j=1}^{7}\left[f_{2}\right]_{\mathbf{c}_{j}} \\
& =\frac{r^{2}}{2 \cdot 3^{4}} \frac{B(0 \star 23) B(0 \star 12) B(0 \star 123)}{\rho_{13}^{2}} \\
& \mathcal{N}\left(f_{3}\right)=\prod_{j=1}^{7}\left[f_{3}\right]_{\mathbf{c}_{j}} \\
& =\frac{r^{2}}{2 \cdot 3^{4}} \frac{B(0 \star 23) B(0 \star 13) B(0 \star 123)}{\rho_{12}^{2}}
\end{aligned}
$$

Theorem 23

$$
\mathcal{N}(\text { Hess } F)=(-1)^{7} C^{* 7} \frac{\mathcal{N}\left(t_{1}^{2} t_{2}\right)}{\mathcal{N}\left(W^{*} t_{\infty}\right)} \frac{\text { Discr }^{*}}{\mathcal{N}\left(f_{3}\right)}
$$

where W^{*} is related with the equality

$$
\left(b_{1}+2 b_{2}\right) W^{*}=t_{1}\left\{b_{0}^{2} \bar{\psi}_{1}\left(t_{1}\right)+\rho_{12}^{4}\left(\rho_{12}^{2}-4 r^{2}\right)\left(t_{1}-1\right) \bar{\psi}_{2}\left(t_{1}\right)\right\} .
$$

and with the constant

$$
C^{*}=\rho_{12}^{2} r^{2} B(0 \star 12)
$$

Discr* means the discriminant of the polynomial $\bar{\psi}\left(t_{1}\right)=\bar{\psi}_{1}\left(t_{1}\right) \bar{\psi}_{2}\left(t_{1}\right)$.

References

[1] K.Aomoto and M.Kita Theory of Hypergeometric Functions, Springer 2011.
[2] K.Aomoto and Y.Machida Double filtration of twisted logarithmic complex and Gauss-Manin connection, J.Math. Soc. Japan, 67(2015), 609636.
[3] K.Aomoto and Y.Machida Some problems of hypergeometric integrals associated with hypersphere arrangement, Proc. Japan Acad., Vol. 91, Ser.A, No.6(2015), 77-81.
[4] K.Aomoto and Y.Machida Hypergeometric integrals associated with hypersphere arrangements and Cayley-Menger determinants, to appear in Hokkaido Math.J; arXiv :1709.09329[math. DG].
[5] K.Aomoto and Y.Machida Generalization of Schläfli formula to the volume of a spherically faced simplex, to appear in J.Math. Soc. Japan.
[6] F.R.Gantmacher Matrix Theory, II, Chelsea, 1959.
[7] I.M. Gelfand and G.E.Shilov Generalized Functions I,
[8] W.Gröbner Moderne Algebraische Geometrie, Springer Verlag, 1949.
[9] P.Orlik and H.Terao Arrangements and Hypergeometric Integrals, MSJ Memoirs, 9(2001).
[10] T.Takagi, Lecture on Algebra (in Japanese), Kyouritu, 1948.
[11] M.Yoshida Hypergeometric Functions, My Love. Modular Representations of Configuration Spaces, Vieweg, 1997.

