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Scattering amplitudes are functions of kinematic variables, e.g., A(s, )
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We would like to understand analytic properties of such functions, in particular
branch cut structure of the kinematic space, discontinuities, etc.

We still don’t know a general answer to such questions



Some simplifications:

* Scattering amplitudes in perturbation theory (fixed number of loops L)

* Individual families of scalar Feynman integrals (common set of propagators)

* Dimensional regularization (space-time dimension D =4 — 2¢, e<1)
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Hence we should really think of Feynman integrals as sections of a flat vector
bundle over the kinematic space, locally (s,t) X V with] € V

matrix:
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Infinitesimally governed by differential equations
(D-Q)I =0

where Qisa (dim V') x(dim V') matrix-valued one-form subject to integrability
constraints:

DOA—-—QANQR=0

Typically a polynomial in £:
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[talks by Henn, Herrmann]



To understand this better we need to address the questions:

* What is the vector space /' ?
 What is the dual vector space V *?
* What is the scalar product V x V* — C?



Let us briefly review the definition of a single Feynman integral,

IiZ/esw%z
T

W is universal for a family of Feynman integrals and can have different meanings:

* Loop-momentum representation: W = log(momenta in the —2¢ dimensions)
* Baikov representation: W = log(Baikov polynomial)

* Feynman parametrization: W = log(F+U), o
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Symanzik polynomials
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The idea of Aomoto, Gelfand: treat such integrals as pairings between twisted
homology and cohomology classes

[talks by Aomoto, Mimachi,

Yoshida, Matsubara-Heo
<F ®68W|90> _ / 66W90 ]
I

Broadly speaking, twisted cohomology is the space of integrands ¢ up to
integration-by-parts:

/F eV = /F eV +d(eVE) = /F e (<,0-|— (d+dW/\)§)

Vaw

This is almost what we want, except for boundary terms at {z, = 0, 00}



Feynman integrals in dimensional regularization should be defined with a
cohomology twisted along {F+U = 0} and relative to {2, = 0, 00}

[talk by Caron-Huot]

However, we can simplify our life a bit by regulating the “relative” boundaries

Ng — Mg + E0g

sothat W = log(F+U) + 25:1 4, log z, and take 6, — 0 at the end



Hence we obtain our model for the vector space V:
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Feynman integrals are prescribed by twisted cohomology classes:

ol o ~ @+ Vawé € Hypy =H"((C)"—{F+U =0}, Vaw)

M

specific representative: “twisted form”

This motivates the identification V/ = HfW



Vanishing theorem: Hclch non-trivial only for £k = P

(assuming genericity conditions on the twisting)

In particular, the Euler characteristic equals

X(M) = Z(—l)kdimHchW = (—1)PdimeW
k

And therefore dim V' = |x(M)]

This result is significant because Euler characteristics can be computed in many
different ways



In particular, treating Re(W) as a Morse function we find

x(M) = Z(—l)k(# of critical points with index k)
k
= (—1)F(# of critical points)

Since all critical points are saddles (k=P) for holomorphic W

[talks by Mastrolia, Frellesvig, Mandal, Laporta]

Different ways: Triangulations, Newton polytopes, finite fields,
Chern-Schwartz-MacPherson classes, ...

[talk by Aluffi]

often in D=4 for “graph hypersurface” {{/ = 0}



What is dim V actually computing? By definition rank of the period matrix:
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Hence the number of linearly-independent Feynman integrals might in principle be
smaller than dim V (cf. sector symmetries)



Note for mathematicians: often term “master integrals” is used for basis of
Feynman integrals, though it has different meanings

* The basis of Feynman integrals in box topology is|[x(M)| = 3, e.g,,

Q)

* Requiring support on the maximal cut surface (top sector) gives 1 basis integral,
e.g.,

(obtained by counting critical points of W (d, = 0) )



To summarize, our model for V is given by the cohomology group HfW S P4

We will take the dual vector space V* to be Hde =

Scalar product H% ;;, x H.,, — C is given by intersection numbers:

(o—|o4)aw =/ N
M

differential form with compact support

Before spending some time understanding what this formula means, let us recall
why we need it



Differential equations for Feynman integrals:
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Thisis (D — Q)I = 0 with the connection matrix §;; = ()| (D +eDW) i) aw
[number-theoretic version: talks by Britto, Brown]

Similarly, any integration-by-parts identity becomes:

[x(M)]
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any auxiliary basis



Since p— Aoy = @_ Al =0 inthe bulk of M, the integral has to localize on the
boundaries {F4+U = 0} and {2z, = 0, 00}
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0 00

That’s what we wanted because intersection number should be easier to compute
than the full integral



Explicit formulae for intersection numbers:

o« dime M =1: (p_|ps)aw = > Res;—p (0- Vo)
pEOM
Im(zl)

=) Re(zl)
0 00
e dimc M > 1: Fiber M into many one-dimensional spaces and apply the above

formula recursively

24 25 Zn
W on each fiber
is promoted to a T
matrix

Has some limitations, but currently the most efficient technique
[talks by Mastrolia, Frellesvig, Mandal]



Aside: Intersection numbers computed on the moduli space of genus-g Riemann

surfaces with n punctures, M ,—¢ n,, give a new definition of tree-level scattering

amplitudes (loop-level integrands) of quantum field theories after summing over all
Feynman diagrams

1
(P3+p4)?+ZA2

(p1+p2)?+7ZA2

(p5 +p6)2+ZA2

Seems to unify many aspects of scattering amplitudes, such as KLT and BCJ
relations, scattering equations, color-kinematics duality, ...

[talk by Weinzierl]



In this talk we’ll pursue an alternative approach by expanding intersection numbers
in £, which localize on two distinct sets of points:
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Localization in the two limits
(recall Res, = 3E|z1—p1|=e §|z2_p2|:€ . §|Zp_pP|:€ )
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Physically the second formula seems completely crazy!
It computes scalar products between Feynman integralsin D = 4—2¢ — —o0



However, we can apply it to computing the connection matrix:

() = Q(O) + 59(1) + ...+ €kmaxﬂ(k

max)

<

1

expansion in & T
expansion in £

Both expansions truncate and give exact answers if the matrix is a polynomial.
Demonstrated on simple examples as proof-of-principle:
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Therefore regions of the loop-momentum space that were previously thought to
dominate the D — 400 asymptotics turns out to know everything about D — 4!



Summary

Hence we should really think of Feynman integrals as sections of a flat vector
bundle over the kinematic space, locally (s,t) x V with I € V

To understand this better we need to address the questions:

* What is the vector space V' ?
* What is the dual vector space V' *?
» What is the scalar product V x V* — C?
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Explicit formulae for intersection numbers:

However, we can apply it to computing the connection matrix: [SM, Pokraka ’19]
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« dim¢ M > 1: Fiber M into many one-dimensional spaces and apply the above
formula recursively
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[talks by Mastrolia, Frellesvig, Mandal]
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Hence we obtain our model for the vector space V:
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This motivates the identification V' = wa

Since ¢ Aoy = p_ A @S =0 inthe bulk of M, the integral has to localize on the
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That’s what we wanted because intersection number should be easier to compute
than the full integral



What next?

* Practical computations: efficient implementations of algorithms computing
intersection numbers (recursion relations, e*!-expansion). Should exploit the

combinatorics of Feynman integrals, as opposed to treating them like generic
hypergeometric integrals

* More conceptual: relative twisted cohomologies, their intersection pairings,
relations to complex Morse theory

* Construction of Poincaré-dual bases of Feynman integrals. Geometric criterion for
a “good” basis giving differential equations in a canonical form?

 Combining individual graph topologies to full scattering amplitudes, perhaps
using moduli spaces of curves



Grazie!



