Status of Intersection Theory and Feynman Integrals

Sebastian Mizera

Scattering amplitudes are functions of kinematic variables, e.g., $A(s, t)$

We would like to understand analytic properties of such functions, in particular branch cut structure of the kinematic space, discontinuities, etc.
We still don't know a general answer to such questions

Some simplifications:

- Scattering amplitudes in perturbation theory (fixed number of loops L)
- Individual families of scalar Feynman integrals (common set of propagators)
- Dimensional regularization (space-time dimension $D=4-2 \varepsilon, \varepsilon \ll 1$)

Hence we should really think of Feynman integrals as sections of a flat vector bundle over the kinematic space, locally $(s, t) \times V$ with $\vec{I} \in V$

$$
\mathcal{D}=d s \frac{\partial}{\partial s}+d t \frac{\partial}{\partial t}
$$

If we knew V and its dual V^{*} then we can use linear algebra to find the rotation matrix:

Infinitesimally governed by differential equations

$$
(\mathcal{D}-\boldsymbol{\Omega}) \vec{I}=0
$$

where $\boldsymbol{\Omega}$ is a $(\operatorname{dim} V) \times(\operatorname{dim} V)$ matrix-valued one-form subject to integrability constraints:

$$
\mathcal{D} \boldsymbol{\Omega}-\boldsymbol{\Omega} \wedge \boldsymbol{\Omega}=0
$$

Typically a polynomial in ε :

$$
\boldsymbol{\Omega}=\sum_{k=0}^{k_{\max }} \varepsilon^{k} \boldsymbol{\Omega}_{(k)}
$$

To understand this better we need to address the questions:

- What is the vector space V ?
- What is the dual vector space V^{*} ?
- What is the scalar product $V \times V^{*} \rightarrow \mathbb{C}$?

Let us briefly review the definition of a single Feynman integral,

$$
I_{i}=\int_{\Gamma} e^{\varepsilon W} \varphi_{i}
$$

W is universal for a family of Feynman integrals and can have different meanings:

- Loop-momentum representation: $W=\log$ (momenta in the -2ε dimensions)
- Baikov representation: $W=\log$ (Baikov polynomial)
- Feynman parametrization: $W=\log (\mathcal{F}+\mathcal{U})$,

$$
\begin{array}{lr}
\varphi_{n_{1}, n_{2}, \ldots, n_{P}}=\frac{1}{(\mathcal{F}+\mathcal{U})^{2}} \bigwedge_{a=1}^{P} \frac{d z_{a}}{z_{a}^{1-n_{a}}} \\
\Gamma=\mathbb{R}_{+}^{P} & n_{a} \in \mathbb{Z} \\
\text { Symanzik polynomials } & P=\text { (\# of propagators) } \\
\text { [this version popularized by } \\
\text { Lee, Pomeransky '13] }
\end{array}
$$

Example:

$$
\bigcup \varphi_{1,1,1,1}=\frac{1}{(\mathcal{F}+\mathcal{U})^{2}} d^{4} z \quad \nprec \varphi_{1,0,1,0}=\frac{1}{(\mathcal{F}+\mathcal{U})^{2}} \frac{d^{4} z}{z_{2} z_{4}}
$$

Defined on the moduli space of Riemannian metrics on a graph:

The idea of Aomoto, Gelfand: treat such integrals as pairings between twisted homology and cohomology classes

$$
\left\langle\Gamma \otimes e^{\varepsilon W} \mid \varphi\right\rangle=\int_{\Gamma} e^{\varepsilon W} \varphi
$$

[Aomoto, Gelfand 70-80's] [talks by Aomoto, Mimachi, Yoshida, Matsubara-Heo]

Broadly speaking, twisted cohomology is the space of integrands φ up to integration-by-parts:

$$
\int_{\Gamma} e^{\varepsilon W} \varphi=\int_{\Gamma} e^{\varepsilon W} \varphi+d\left(e^{\varepsilon W} \xi\right)=\int_{\Gamma} e^{\varepsilon W}(\varphi+(\underbrace{d+d W \wedge}_{\nabla_{d W}}) \xi)
$$

This is almost what we want, except for boundary terms at $\left\{z_{a}=0, \infty\right\}$

Feynman integrals in dimensional regularization should be defined with a cohomology twisted along $\{\mathcal{F}+\mathcal{U}=0\}$ and relative to $\left\{z_{a}=0, \infty\right\}$
[Matsumoto '18] [talk by Caron-Huot]

However, we can simplify our life a bit by regulating the "relative" boundaries

$$
n_{a} \rightarrow n_{a}+\varepsilon \delta_{a}
$$

so that $W=\log (\mathcal{F}+\mathcal{U})+\sum_{a=1}^{P} \delta_{a} \log z_{a}$ and take $\delta_{a} \rightarrow 0$ at the end

Hence we obtain our model for the vector space V:

$$
\langle\underbrace{\left\langle\mathbb{R}_{+}^{P} \otimes e^{\varepsilon W}\right.}_{\text {fixed }} \mid \varphi_{n_{1}, n_{2}, \ldots, n_{P}}\rangle=\int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W} \varphi_{n_{1}, n_{2}, \ldots, n_{P}}
$$

Feynman integrals are prescribed by twisted cohomology classes:

$$
[\varphi]: \varphi \sim \varphi+\nabla_{d W} \xi \quad \in H_{d W}^{P}:=H^{P}(\underbrace{\left(\mathbb{C}^{*}\right)^{P}-\{\mathcal{F}+\mathcal{U}=0\}}_{M}, \nabla_{d W})
$$

specific representative: "twisted form"

This motivates the identification $V \cong H_{d W}^{P}$

Vanishing theorem: $H_{d W}^{k}$ non-trivial only for $k=P$
(assuming genericity conditions on the twisting)

In particular, the Euler characteristic equals

$$
\chi(M)=\sum_{k}(-1)^{k} \operatorname{dim} H_{d W}^{k}=(-1)^{P} \operatorname{dim} H_{d W}^{P}
$$

And therefore $\operatorname{dim} V=|\chi(M)|$

This result is significant because Euler characteristics can be computed in many different ways

In particular, treating $\operatorname{Re}(W)$ as a Morse function we find

$$
\begin{aligned}
\chi(M) & =\sum_{k}(-1)^{k}(\# \text { of critical points with index } k) \\
& =(-1)^{P}(\# \text { of critical points })
\end{aligned}
$$

Since all critical points are saddles $(k=P)$ for holomorphic W
[talks by Mastrolia, Frellesvig, Mandal, Laporta]

Different ways: Triangulations, Newton polytopes, finite fields, Chern-Schwartz-MacPherson classes, ...

$$
\text { often in } D=4 \text { for "graph hypersurface" }\{\mathcal{U}=0\}
$$

What is $\operatorname{dim} V$ actually computing? By definition rank of the period matrix:

Hence the number of linearly-independent Feynman integrals might in principle be smaller than $\operatorname{dim} V$ (cf. sector symmetries)

Note for mathematicians: often term "master integrals" is used for basis of Feynman integrals, though it has different meanings

- The basis of Feynman integrals in box topology is $|\chi(M)|=3$, e.g.,

- Requiring support on the maximal cut surface (top sector) gives 1 basis integral, e.g.,

(obtained by counting critical points of $W\left(\delta_{a}=0\right)$ [Lee, Pomeransky '13])

To summarize, our model for V is given by the cohomology group $H_{d W}^{P} \ni \varphi_{+}$

We will take the dual vector space V^{*} to be $H_{-d W}^{P} \ni \varphi_{-}$

Scalar product $H_{-d W}^{P} \times H_{d W}^{P} \rightarrow \mathbb{C}$ is given by intersection numbers:

$$
\left\langle\varphi_{-} \mid \varphi_{+}\right\rangle_{d W}=\int_{M} \varphi_{-} \wedge \varphi_{+}^{c}
$$

[Cho, Matsumoto '95]
[Matsumoto ‘98]
[Deligne, Mostow '86] [Saito '83]
differential form with compact support
Before spending some time understanding what this formula means, let us recall why we need it

Differential equations for Feynman integrals:

$$
\mathcal{D} \int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W} \varphi_{i}=\int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W}(\mathcal{D}+\varepsilon \mathcal{D} W) \varphi_{i}=\sum_{j=1}^{|\chi(M)|}\left\langle\varphi_{j}^{\vee} \mid(\mathcal{D}+\varepsilon \mathcal{D} W) \varphi_{i}\right\rangle_{d W} \int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W} \varphi_{j}
$$

This is $(\mathcal{D}-\boldsymbol{\Omega}) \vec{I}=0$ with the connection matrix $\boldsymbol{\Omega}_{i j}=\left\langle\varphi_{j}^{\vee} \mid(\mathcal{D}+\varepsilon \mathcal{D} W) \varphi_{i}\right\rangle_{d W}$ [number-theoretic version: talks by Britto, Brown]
Similarly, any integration-by-parts identity becomes:

$$
\int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W} \varphi_{i}=\sum_{j=1}^{|\chi(M)|}\left\langle\varphi_{j}^{\vee} \mid \varphi_{i}\right\rangle_{d W} \int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W} \varphi_{j}
$$

(If we didn't know dual forms φ_{j}^{\vee}, use $\varphi_{j}^{\vee}=\sum_{k=1}^{|\chi(M)|} \mathbf{C}_{j k}^{-1} \vartheta_{k}$ with $\mathbf{C}_{k j}=\left\langle\vartheta_{k} \mid \varphi_{j}\right\rangle_{d W}$)

Since $\varphi_{-} \wedge \varphi_{+}=\varphi_{-} \wedge \varphi_{+}^{c}=0$ in the bulk of M, the integral has to localize on the boundaries $\{\mathcal{F}+\mathcal{U}=0\}$ and $\left\{z_{a}=0, \infty\right\}$

That's what we wanted because intersection number should be easier to compute than the full integral

Explicit formulae for intersection numbers:

- $\operatorname{dim}_{\mathbb{C}} M=1: \quad\left\langle\varphi_{-} \mid \varphi_{+}\right\rangle_{d W}=\sum_{p \in \partial M} \operatorname{Res}_{z_{1}=p}\left(\varphi_{-} \nabla_{d W}^{-1} \varphi_{+}\right) \quad$ [Cho, Matsumoto '95]

- $\operatorname{dim}_{\mathbb{C}} M>1$: Fiber M into many one-dimensional spaces and apply the above formula recursively

Has some limitations, but currently the most efficient technique

Aside: Intersection numbers computed on the moduli space of genus-g Riemann surfaces with n punctures, $\mathcal{M}_{g=0, n}$, give a new definition of tree-level scattering amplitudes (loop-level integrands) of quantum field theories after summing over all Feynman diagrams

Seems to unify many aspects of scattering amplitudes, such as KLT and BCJ relations, scattering equations, color-kinematics duality, ...

In this talk we'll pursue an alternative approach by expanding intersection numbers in ε, which localize on two distinct sets of points:

工 poles of $d W$

zeros of $d W$
maximal-codimension
components of the
boundary divisor
(assume non-exceptional)
critical points of $e^{\varepsilon W}$
(assume isolated and
non-degenerate)

Localization in the two limits (recall $\operatorname{Res}_{p}=\oint_{\left|z_{1}-p_{1}\right|=\epsilon} \oint_{\left|z_{2}-p_{2}\right|=\epsilon} \cdots \oint_{\left|z_{P}-p_{P}\right|=\epsilon}$)

$$
\begin{aligned}
& \sum_{\substack{\text { boundary } \\
\text { points } p \\
=\cap_{i=1}^{P} H_{i}}} \frac{\operatorname{Res}_{p}\left(\varphi_{-}\right) \operatorname{Res}_{p}\left(\varphi_{+}\right)}{\prod_{i=1}^{P} \operatorname{Res}_{H_{i}}(d W)}+\mathcal{O}(\varepsilon) \\
\left\langle\varphi_{-} \mid \varphi_{+}\right\rangle_{d W} & \geqslant \sum_{\substack{\text { critical } \\
\text { points } p \\
\text { independent of } \varepsilon \text {, e.g., } \\
\text { for logarithmic forms } \\
\text { [Matsumoto ' } 98 \text {] } \\
\cap_{i=1}^{P}\left\{\partial_{i} W=0\right\}}} \operatorname{Res}_{p}\left(\frac{\varphi_{-} \varphi_{+}}{d^{P} z \prod_{i=1}^{P} \partial_{i} W}\right)+\mathcal{O}\left(\varepsilon^{-1}\right)
\end{aligned}
$$

[Saito 80's]
Physically the second formula seems completely crazy!
It computes scalar products between Feynman integrals in $D=4-2 \varepsilon \rightarrow-\infty$

However, we can apply it to computing the connection matrix:

$$
\boldsymbol{\Omega}=\underset{\text { expansion in } \varepsilon}{\boldsymbol{\Omega}_{(0)}+\varepsilon \boldsymbol{\Omega}_{(1)}+\ldots+\varepsilon^{k_{\max }} \boldsymbol{\Omega}_{\left(k_{\max }\right)}} \underset{\text { expansion in } \varepsilon^{-1}}{\longleftrightarrow}
$$

Both expansions truncate and give exact answers if the matrix is a polynomial. Demonstrated on simple examples as proof-of-principle:

Therefore regions of the loop-momentum space that were previously thought to dominate the $D \rightarrow \pm \infty$ asymptotics turns out to know everything about $D \rightarrow 4$!

Summary

Hence we should really think of Feynman integrals as sections of a flat vector bundle over the kinematic space, locally $(s, t) \times V$ with $\vec{I} \in V$

If we knew V and its dual V^{*} then we can use linear algebra to find the rotatio matrix:

However, we can apply it to computing the connection matrix:

$$
\boldsymbol{\Omega}=\underset{\text { expansion in } \varepsilon}{\boldsymbol{\Omega}_{(0)}+\varepsilon \boldsymbol{\Omega}_{(1)}+\ldots+\varepsilon^{k_{\max }} \boldsymbol{\Omega}_{\left(k_{\max }\right)}^{\longleftrightarrow}}{\operatorname{expansion~in~} \varepsilon^{-1}}_{\longleftrightarrow}
$$

Both expansions truncate and give exact answers if the matrix is a polynomial. Demonstrated on simple examples as proof-of-principle:

俍 dominate the $D \rightarrow \pm \infty$ asymptotics turns out to know everything about $D \rightarrow 4$!

To understand this better we need to address the questions:

What is the vector space V ?

What is the dual vector space V^{*} ?

- What is the scalar product $V \times V^{*} \rightarrow \mathbb{C}$?
[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, SM '19] ${ }^{[\text {Mastrolia }}$
This motivates the identification $V \cong H_{d W}^{P}$
$\cdot \operatorname{dim}_{\mathbb{C}} M=1: \quad\left\langle\varphi_{-} \mid \varphi_{+}\right\rangle_{d W}=\sum_{p \in \partial M} \operatorname{Res}_{z_{1}=p}\left(\varphi_{-} \nabla_{d W}^{-1} \varphi_{+}\right) \quad$ [Cho, Matsumoto '95]

- $\operatorname{dim}_{\mathbb{C}} M>1$: Fiber M into many one-dimensional spaces and apply the abov formula recursively [SM 19]

Has some limitations, but currently the most efficient technique

Hence we obtain our model for the vector space V

$$
\langle\underbrace{\left\langle\mathbb{R}_{+}^{P} \otimes e^{\varepsilon W}\right.}_{\text {fixed }} \mid \varphi_{n_{1}, n_{2}, \ldots, n_{P}}\rangle=\int_{\mathbb{R}_{+}^{P}} e^{\varepsilon W} \varphi_{n_{1}, n_{2}, \ldots, n_{P}}
$$

Feynman integrals are prescribed by twisted cohomology classes:

$[\varphi]: \varphi \sim \varphi+\nabla_{d W} \xi$ $/$
$\in H_{d W}^{P}:=H^{P}\left(\left(\mathbb{C}^{*}\right)^{P}-\{\mathcal{F}+\mathcal{U}=0\}, \nabla_{d W}\right)$ M

Since $\varphi_{-} \wedge \varphi_{+}=\varphi_{-} \wedge \varphi_{+}^{c}=0$ in the bulk of M , the integral has to localize on the boundaries $\{\mathcal{F}+\mathcal{U}=0\}$ and $\left\{z_{a}=0, \infty\right\}$
$\stackrel{\downarrow}{\downarrow}$
$\left\langle\varphi_{-} \mid \varphi_{+}\right\rangle_{d W}=\int_{\partial M} \varphi_{-} \wedge \varphi_{+}^{c}$

That's what we wanted because intersection number should be easier to compute than the full integral

What next?

- Practical computations: efficient implementations of algorithms computing intersection numbers (recursion relations, $\varepsilon^{ \pm 1}$-expansion). Should exploit the combinatorics of Feynman integrals, as opposed to treating them like generic hypergeometric integrals
- More conceptual: relative twisted cohomologies, their intersection pairings, relations to complex Morse theory
- Construction of Poincaré-dual bases of Feynman integrals. Geometric criterion for a "good" basis giving differential equations in a canonical form?
- Combining individual graph topologies to full scattering amplitudes, perhaps using moduli spaces of curves

Grazie!

