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Scattering amplitudes are functions of kinematic variables, e.g.,

We would like to understand analytic properties of such functions, in particular 
branch cut structure of the kinematic space, discontinuities, etc.
We still don’t know a general answer to such questions                         [Eden et al. ‘60s]



Some simplifications:
• Scattering amplitudes in perturbation theory (fixed number of loops    )
• Individual families of scalar Feynman integrals (common set of propagators)
• Dimensional regularization (space-time dimension                                     )



Hence we should really think of Feynman integrals as sections of a flat vector 
bundle over the kinematic space, locally                      with 

If we knew      and its dual         then we can use linear algebra to find the rotation 
matrix:



Infinitesimally governed by differential equations

where       is a                                    matrix-valued one-form subject to integrability 
constraints:

Typically a polynomial in     :

[rich literature: Kotikov,
Remiddi, Gehrmann, Henn,…]

[Henn, Smirnov, …]
[talks by Henn, Herrmann]



To understand this better we need to address the questions:

• What is the vector space      ?
• What is the dual vector space       ?
• What is the scalar product                               ?

[Mastrolia, SM ‘18]
[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, SM ‘19]



Let us briefly review the definition of a single Feynman integral,

is universal for a family of Feynman integrals and can have different meanings:
• Loop-momentum representation:
• Baikov representation:  
• Feynman parametrization:                                    ,

[this version popularized by
Lee, Pomeransky ‘13]Symanzik polynomials



Example:

Defined on the moduli space of Riemannian metrics on a graph:



The idea of Aomoto, Gelfand: treat such integrals as pairings between twisted 
homology and cohomology classes

Broadly speaking, twisted cohomology is the space of integrands      up to 
integration-by-parts:

This is almost what we want, except for boundary terms at 

[Aomoto, Gelfand 70-80’s]
[talks by Aomoto, Mimachi, 

Yoshida, Matsubara-Heo]



Feynman integrals in dimensional regularization should be defined with a 
cohomology twisted along                            and relative to 

However, we can simplify our life a bit by regulating the “relative” boundaries

so that                                                                        and take                   at the end     

[Matsumoto ‘18]
[talk by Caron-Huot]

[Frellesvig, Gasparotto, Laporta, Mandal, Mastrolia, Mattiazzi, SM ‘19]
[SM, Pokraka ‘19]



Hence we obtain our model for the vector space V:

Feynman integrals are prescribed by twisted cohomology classes:

This motivates the identification 

fixed

specific representative: “twisted form”



Vanishing theorem:             non-trivial only for 
(assuming genericity conditions on the twisting)

In particular, the Euler characteristic equals

And therefore

This result is significant because Euler characteristics can be computed in many 
different ways

[Aomoto ‘75]

[Mastrolia, SM ‘18]
[by other techniques also

Bitoun, Bogner, Klausen, Panzer ‘17]



In particular, treating                as a Morse function we find

Since all critical points are saddles (          ) for holomorphic W

Different ways: Triangulations, Newton polytopes, finite fields,
Chern-Schwartz-MacPherson classes, …

[talks by Mastrolia, Frellesvig, Mandal, Laporta]

[Aluffi, Marcolli, … 00-10’s]
[talk by Aluffi]

often in D=4 for “graph hypersurface”



What is              actually computing? By definition rank of the period matrix:

Hence the number of linearly-independent Feynman integrals might in principle be 
smaller than             (cf. sector symmetries)

fixed



Note for mathematicians: often term “master integrals” is used for basis of 
Feynman integrals, though it has different meanings

• The basis of Feynman integrals in box topology is                       , e.g.,

• Requiring support on the maximal cut surface (top sector) gives 1 basis integral, 
e.g.,

(obtained by counting critical points of [Lee, Pomeransky ‘13])



To summarize, our model for V is given by the cohomology group 

We will take the dual vector space V* to be

Scalar product                                      is given by intersection numbers:

Before spending some time understanding what this formula means, let us recall 
why we need it

[Cho, Matsumoto ‘95]
[Matsumoto ‘98]

[Deligne, Mostow ‘86]
[Saito ‘83]

differential form with compact support 



Differential equations for Feynman integrals:

This is                                with the connection matrix

Similarly, any integration-by-parts identity becomes:

(If we didn’t know dual forms       , use                                      with                                   )

[Mastrolia, SM ‘18]

any auxiliary basis

[number-theoretic version: talks by Britto, Brown]



Since                                                  in the bulk of M, the integral has to localize on the 
boundaries                            and  

That’s what we wanted because intersection number should be easier to compute 
than the full integral



Explicit formulae for intersection numbers:
• :

• : Fiber M into many one-dimensional spaces and apply the above 
formula recursively

Has some limitations, but currently the most efficient technique

[Cho, Matsumoto ‘95]

[FGMMMM ‘19]
[talks by Mastrolia, Frellesvig, Mandal]

[SM ‘19]

W on each fiber 
is promoted to a 
matrix



Aside: Intersection numbers computed on the moduli space of genus-g Riemann 
surfaces with n punctures,                  , give a new definition of tree-level scattering 
amplitudes (loop-level integrands) of quantum field theories after summing over all 
Feynman diagrams

Seems to unify many aspects of scattering amplitudes, such as KLT and BCJ 
relations, scattering equations, color-kinematics duality, …

[SM ’17-19]
[talk by Weinzierl]



In this talk we’ll pursue an alternative approach by expanding intersection numbers 
in     , which localize on two distinct sets of points:

maximal-codimension 
components of the 
boundary divisor
(assume non-exceptional)

critical points of
(assume isolated and 
non-degenerate) 

poles of zeros of



Localization in the two limits
(recall                                                                           )

Physically the second formula seems completely crazy!
It computes scalar products between Feynman integrals in

[SM ’17-19]

higher residue pairings
[Saito 80’s]

independent of    , e.g.,
for logarithmic forms

[Matsumoto ‘98]



However, we can apply it to computing the connection matrix:

Both expansions truncate and give exact answers if the matrix is a polynomial. 
Demonstrated on simple examples as proof-of-principle:

Therefore regions of the loop-momentum space that were previously thought to 
dominate the                     asymptotics turns out to know everything about              !

[SM, Pokraka ’19]

expansion in expansion in 



Summary



What next?
• Practical computations: efficient implementations of algorithms computing 

intersection numbers (recursion relations,        -expansion). Should exploit the 
combinatorics of Feynman integrals, as opposed to treating them like generic 
hypergeometric integrals
• More conceptual: relative twisted cohomologies, their intersection pairings, 

relations to complex Morse theory
• Construction of Poincaré-dual bases of Feynman integrals. Geometric criterion for 

a “good” basis giving differential equations in a canonical form?
• Combining individual graph topologies to full scattering amplitudes, perhaps 

using moduli spaces of curves



Grazie!


