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Maximal cuts and Wick Rotations

• generalities & maxcuts ;

• the 1-loop Bhabha box and its (vanishing) maxcut;

• the Wick rotation for the Bhabha box;

• the equal mass sunrise (once more);

• the Bhabha planar double box maxcut (7 δ’s);

• the 6 δ’s subtopology;

• (¿ the 5 δ’s subtopology ?)
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Maximal cuts and Wick Rotations

If a Feynman propagator is written as

−i
D − iε

= P
(
−i
D

)
+ π δ(D) ,

the corresponding cut propagator is

δ(D) .

• Given any Feynman graph (fully scalar and without squared propagators, for
simplicity) the corresponding maximally cut graph (or maxcut for short) is
obtained by replacing all the propagators by the corresponding cut propagators.

• Feynman amplitudes satisfy non-homogeneous equations; it is known that
the corresponding maximally cut amplitudes satisfy the corresponding
homogeneous equation.
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Maximal cuts and Wick Rotations

• It is also known (from Euler) that the solutions of non-homogeneous
equations can be written as the integral (repeated, when needed) of a suitable
(and simple) expression built in terms of the homogeneous solutions;

• in the differential equation approach to the evaluation of Feynman graph
amplitudes, the homogeneous solutions, i.e. the it maximally cut graphs,
are the key ingredient for writing the solutions of the equations and therefore
for characterizing their analytic properties.
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Maximal cuts and Wick Rotations

The simplest approach to maxcuts is trying the direct evaluation by using the
very definition of the maximally cut amplitude as an integral on the
components of the loop momenta.

That näıve approach was used – and worked – for the imaginary parts
of the 1-loop self-mass, of the 2-loop sunrise as well as the 3-loop banana
graphs (P.Amedeo, L.Tancredi 2016)
(in all those amplitudes, imaginary parts and mxcuts are strictly related);

but in (almost) all the other cases, when integrating directly in the loop
components the näıve approach gives vanishing results.

Indeed, in (almost) all the other maxcuts there are too many
δ-functions and too few overconstrained integration loop components,

• and the multi-dimensional integration region shrinks to
an empty domain.
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Maximal cuts and Wick Rotations

As an example, consider the 1-loop Bhabha box

p2

p1

p4

p3

k

The process is p1 + p2 → p3 + p4 ,

with kinematics p2
1 = p2

2 = p2
3 = p2

4 = −m2 ,

p1 = (E , p, 0, 0) ,

p2 = (E ,−p, 0, 0) ,

p3 = (E , px , py , 0) .

s = −(p1 + p2)2 = 4E 2 = 4(p2 + m2) ,

t = −(p1 − p3)2 = −2p(p − px) ,

s + t − 4m2 = 2p(p + px) ,
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Maximal cuts and Wick Rotations

The maxcut, in the (usual) d-continuous dimensions, is

B(s, t) =

∫
Ddk δ(D1) δ(D2) δ(D3) δ(D4) ,

with

D1 = k2 ,

D2 = (p1 + k)2 + m2 = +2p1k + k2 ,

D3 = (p2 − k)2 + m2 = −2p2k + k2 ,

D4 = (p1 − p3 + k)2 = −t + 2p1k − 2p3k + k2 .

Quite in general ( i 6= j !)

δ(Di ) δ(Dj) = δ(Di ) δ(Dj + aDi ) ,

where a is any real quantity; as an example, in particular

δ(D1) δ(D2) = δ(D1) δ(D2 − D1) = δ(D1) δ(2p1k) = δ(D1) δ(D ′2)

which amounts to δ(D2)→ δ(D ′2), with D ′2 = D2 − D1 = 2p1k .
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Maximal cuts and Wick Rotations

By repeated use of the δ identities, and by introducing the vector components,
one arrives at

B(s, t) =

∫
dk0 dkx dky Ω(d − 3)

∫ ∞
0

K d−4 dK δ(D ′1) δ(D ′2) δ(D ′3) δ(D ′4) ,

where:
• Ω(n) is the n-dimensional solid angle;
• the physical external vectors do not span the z-component, so that kz can be
lumped within the (d −3) (Euclidean) continuous regularizing components of k,
• and the new argument of the δ’s are

D ′1 = k2
y + K 2 ,

D ′2 = 4pkx ,

D ′3 = 2Ek0 ,

D ′4 = −t − 2pyky .
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Maximal cuts and Wick Rotations

It is apparent that
D ′1 = k2

y + K 2

cannot vanish; therefore
B(s, t) = 0 ,

which is a solution of the homogeneous equation for the Bhabha amplitude,
but obviously of no interest.
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Maximal cuts and Wick Rotations

Proposal:

• give a Minkowski metric to the (d − 3) regularizing components of Ddk.

• That is immediately achieved by a Wick rotation (or perhaps
counter-rotation), which gives an overall factor (−i)(d−3) (irrelevant for the
maxcut, as the maxcut is required to satisfy a homogeneous equation).

As already observed, those regularizing components do not mix with the
physical external vectors; the only effect of that change of the metric is to
modify D ′1

D ′1 = k2
y + K 2 → D ′1 = k2

y − K 2 .
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Maximal cuts and Wick Rotations

All the integrations are (anyhow) trivial, the result is

B(s, t) =
1

4
Ω(d − 3)

[
−t(s − 4m2)

4(s + t − 4m2)

] d−4
2

(
− 1

t
√

s(s − 4m2)

)
,

which is positive, as expected, because t is spacelike (and negative).

A short comment can be appropriate here.
• As already recalled, any propagator can be written as

−i/(D − iε) = −iP(1/D) + πδ(D) ;
when that is done, the the 4 propagators of the 1-loop Bhabha box become the
sum of 16 terms, the product of the 4 δ’s being just one of the 16 terms.
• The amplitude, which is the sum of the 16 teerms, does not change if the
(d − 3) regularizing dimensions are propely Wick-rotated, but the values of the
single terms can change (and do change);

• in particular, the product of the 4 δ’s vanishes with the usual Euclidean
regularization but gives the above non vanishing result when the Minkowskian
regularizing variables are used.
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Maximal cuts and Wick Rotations

As a less simple example, consider the 2-loop equal mass sunrise of external
momentum p of arbitrary components (p0, px)
(p can be timelike or spacelike, but in any case it spans only two dimensions,
say energy and x-direction).

"!
# 

p

k1

k − k1

p − k
The corresponding maxcut is

S(p2
0 − p2

x ) =

∫
Ddk Ddk1 δ(D1) δ(D2) δ(D3) ,

where

D1 = k2
1 + m2 ,

D2 = (k − k1)2 + m2 ,

D3 = (p − k)2 + m2 ,

12 / 28



Maximal cuts and Wick Rotations

The cuts of the sunrise (both the unitarity cut and the maxcut) do not vanish
even with the usual (Euclidean) d continuous regularization;
what happens with the Wick-rotated regularization?

The components of the loop momentum k are k0, kx and (d − 2) regularizing
Minkowskian components lumped into K , so that∫

Ddk =

∫
dk0 dkx Ω(d − 2)

∫ ∞
0

K d−3dK ,

and k2 = −k2
0 + k2

x − K 2

(the same applies to k1).
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Maximal cuts and Wick Rotations

It can be convenient to integrate k1 first.
Define s = −k2, (when k is spacelike s is negative and when k is timelike s is
positive) and

S(−k2) =

∫
Ddk1 δ(D1) δ(D2) ,

one finds:

• if −∞ < s < 0

S(s) =
1

2
2−(d−2)Ω(d − 1)(4m2 − s)

d−2
2 × 1

√
−s
√

4m2 − s
;

• if 0 < s < 4m2

S(s) =
1

2
2−(d−2)Ω(d − 1)

sin
(
π d−2

2

)
cos
(
π d−2

2

) (4m2 − s)
d−2
2 × 1

√
s
√

4m2 − s
;

• if 4m2 < s <∞

S(s) =
1

2
2−(d−2)Ω(d − 1)

1

cos
(
π d−2

2

) (s − 4m2)
d−2
2 × 1

√
s
√
s − 4m2

;
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Maximal cuts and Wick Rotations

The sunrise maxcut now reads

S(p2
0 − p2

x ) =

∫
Ddk S(−k2)δ(D3) ;

the explicit integration (in all the integration variables but one) is elementary
(even if non totally trivial, as for instance the implementation of the positive
constraints in terms of allowed integration regions) and the result depends (of
course) on the value of p2

0 − p2
x = E 2.

In the range and 3m < E <∞ , for instance, the result reads

S(W 2) =
1

16
Ω(d − 1)Ω(d − 2)B

(
d − 2

2
,

1

2
− d − 2

2

)
1

cos
(
π d−2

2

)E 2−d

×
∫ ∞
(E+m)2

db√
b

[((E + m)2 − b)((E −m)2 − b)(b − 4m2)]
d−2
2√

((E + m)2 − b)((E −m)2 − b)(b − 4m2)

+
1

16
Ω(d − 1)Ω(d − 2)B

(
1

2
− d − 2

2
,

1

2

)
1

cos
(
π d−2

2

)E 2−d

×
∫ (E+m)2

(E−m)2

db√
b

[((E + m)2 − b)(b − (E −m)2)(b − 4m2)]
d−2
2√

((E + m)2 − b)(b − (E −m)2)(b − 4m2)

to be continued in the next slide ...
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Maximal cuts and Wick Rotations

+
1

16
Ω(d − 1)Ω(d − 2)B

(
d − 2

2
,

1

2
− d − 2

2

)
1

cos
(
π d−2

2

)E 2−d

×
∫ (E−m)2

4m2

db√
b

[((E + m)2 − b)((E −m)2 − b)(b − 4m2)]
d−2
2√

((E + m)2 − b)((E −m)2 − b)(b − 4m2)

+
1

16
Ω(d − 1)Ω(d − 2)B

(
d − 2

2
,

1

2
− d − 2

2

)
sin
(
π d−2

2

)
cos
(
π d−2

2

)E 2−d

×
∫ 4m2

0

db√
b

[((E + m)2 − b)((E −m)2 − b)(4m2 + b)]
d−2
2√

((E + m)2 − b)((E −m)2 − b)(4m2 + b)

+
1

16
Ω(d − 1)Ω(d − 2)B

(
d − 2

2
,

1

2
− d − 2

2

)
E 2−d

×
∫ 0

−∞

db√
−b

[((E + m)2 − b)((E −m)2 − b)(4m2 − b)]
d−2
2√

((E + m)2 − b)((E −m)2 − b)(4m2 − b)
,

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Euler’s Beta function .
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Maximal cuts and Wick Rotations

Analog results (i.e. sums of 5 somewhat similar terms) hold for the ranges
m < E < 3m and 0 < E < m, as well for spacelike value of the external
momentum.

• According to the general discussion of the properties of the maxcuts, the
previous sum of 5 terms is a solution of the homogeneous equation for the
sunrise amplitude;

• on the other hand, as the 5 contributions above differ for the integration
region and the ”angular” factors, it is almost natural to consider the possibility
that the 5 terms satisfy separately the equation, so that they would provide
with 5 tentatively different solutions;

• but it is known that the equal mass sunrise has only two Master Integrals,
hence only two of the solutions, at most, can be independent.
Indeed, it is not difficult to identify the 2 terms corresponding to the two
solutions (known for a long time; look at the red symbol ×).

• The remaining 3 terms must therefore be a combination of those two
(or, in other words, different integral representations of the two solutions).
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Maximal cuts and Wick Rotations

As a further example we consider the maxcut of the planar double-box Bhabha
graph (and then of its ”subtopologies” as well)

p2

p1

p4

p3

k1 k2 − k1

p1 + k1 p1 + k2

The graph has been already evaluated analytically (J.M. Henn and
V.A.Smirnov, 2013), so that, strictly speaking, the knowledge of a few maxcuts
adds only some more or less irrelevant marginal details to their results;

the hope is that an elementary approach to the planar maxcut, when
successfull, might give some directions for the treatment of the non-planar
graph and other two loop amplitudes.
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Maximal cuts and Wick Rotations

The planar double-box Bhabha graph

p2

p1

p4

p3

k1 k2 − k1

p1 + k1 p1 + k2

has (of course) the same external kinematics of the 1-loop single-box graphs –
but two loop momenta, k1 and k2.

Following closely the 1-loop case, one could tentatively write the loop
momentum k1 as

k1 = (k10, k1x , k1y ,K1),
i.e. in terms of the 4 integration variables (k10, k1x , k1y ,K1), which give

k2
1 = −k2

10 + k2
1x + k2

1y − K 2
1 ;

similarly, the second loop variable could be written as
k2 = (k20, k2x , k2y ,K2), which give

k2
2 = −k2

20 + k2
2x + k2

2y − K 2
2 .
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Maximal cuts and Wick Rotations

The regularizing (and Wick-rotated) components K1 and K2 are not multiplied
by the external vectors pi (which do not span the space of the regularizing
components;
but in the 2-loop case (as matter of fact also in the previously discussed
sunrise) the scalar product (k1 · k2) is also present in one of the propagators.
One could write that scalar product as

(k1 · k2) = −k10k20 + k1xk2x + k1yk2y − K1K2 cos θ,
where θ is, say, the angle between the regularizing vectors with moduli K1,K2;
but it is perhaps more convenient to take the direction of K2 as the z-axis of
k1, so that

(k10, k1x , k1y ,K1z ,K1),

which give k2
1 = −k2

10 + k2
1x + k2

1y − K 2
1z − K 2

1 ,

(k1 · k2) = −k10k20 + k1xk2x + k1yk2y − K1zK2 ,

and

∫
Ddk1 =

∫
dk10 dk1x dk1y dK1z Ω(d − 4)

∫ ∞
0

K d−5dK ,

while

∫
Ddk2 =

∫
dk20 dk2x dk2y Ω(d − 3)

∫ ∞
0

K d−4
2 dK2 ,

i.e. keeping unchanged the components of k2.
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Maximal cuts and Wick Rotations

At this point, the calculation of the double box maxcut becomes the
(multidimensional) integration of the product of 7 δ-functions
(corresponding to the 7 propagators) in 9 phase-space integration variables.

All the integrations are essentially elementary, provided that
• they are carefully performed in the proper order;
• the positivity constraints are also properly accounted for.

It is convenient to integrate k1 first; the result is essentially the 1-loop Bhabha
box (the four ”external” electron lines are all on the mass-shell), but with the
would-be (spacelike) Mandelstam variable t now becoming k2

2 , where the
loop-momentum k2 can be also timelike.
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Maximal cuts and Wick Rotations

The integration of the 4 δ-functions of the k1 loop gives∫
Ddk1 δ(D1) δ(D2) δ(D3) δ(D4) = 2−d Ω(d − 3)

1

Ep

(
k4
2

)− 1
2
+ d−4

2

×
[

θ(k2
2y − K 2

2 )
(
k2
2y − K 2

2

)− d−4
2

+ θ(K 2
2 − k2

2y )
1

cos
(
π d−4

2

) (K 2
2 − k2

2y

)− d−4
2

]
;

the first term corresponds (of course) to the previous result for the 1 loop
Bhabha maxcut, where the momentum transfer t is spacelike.
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Maximal cuts and Wick Rotations

The calculation of the maxcut continues with the (almost obvious) integration
in k20, k2y and K2 of the 3 remaining δ functions, and a final integration in k2x
is left.
The k2x integration requires only some care in working out the integration
intervals which satisfy the positivity constraints, and the final result for the
7-cut Bhabha, expanded up to the next to leading order in (d − 4), can be
written as

B7(s, t) = B7a(s, t) + B7b(s, t) ,

B7a(s, t) =
1

256
Ω2(d − 3)

1

E 2p3(p − px)

(
1

d − 4
+ ln

p2(p − px)

p + px

)
,

B7b(s, t) =
1

256

Ω2(d − 3)

cos
(
π d−4

2

) 1

E 2p3(p − px)

(
1

d − 4
+ ln

p(p − px)

2

)
.

The two terms are (slightly) different, not only in the angular factors.
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Maximal cuts and Wick Rotations

Indeed, the above maxcut satisfies a second order (homogeneous) differential
equation (both on s and t).
The equation on t, for instance, is (courtesy of L. Mattiazzi)

t(s + t − 4m2)
d2

dt2
B7(s, t)

+

[
3t + 2(s − 4m2)− 1

2
(s − 4m2)(d − 4)

]
d

dt
B7(s, t)

+

[
1 +

s − 4m2

2t

(
(d − 4)− (d − 4)2

)]
B7(s, t) = 0 ;

it is easy to check that the equation is satisfied (up to next-to-leading
order in (d − 4)) by the two above terms B7a(s, t) and B7b(s, t),
– separately.
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Maximal cuts and Wick Rotations

Consider now the maxcut of the subtopology of the double box planar Bhabha
in which one electron propagator is missing

�
�
�
�

p2

p1

p4

p3

k1 k2 − k1

p1 + k1

p2 − k1 p2 − k2

The k2 loop now correspond to a vertex amplitude for the process
(p4 − p2 + k1)→ (k1 − p2) + p4.
It is convenient to evaluate the k2 loop first; the resulting vertex amplitude
(dropping an overall solid angle factor) can be written as

V (−m2,V2,V3) = −1

2

π

d − 4

cos
(
π d−4

2

)
sin
(
π d−4

2

) ×Θ
(
R2(−m2,V2,V3)

)
×md−4 (V 2

2

) d−4
2
(
R2(−m2,V2,V3)

)− 1
2
+ d−4

2 ,

where −m2 = p2
4 ,V2 = (p4 − p2 + k1)2, V3 = (k1 − p2)2,

and R2(V1,V2,V3) = V 2
1 + V 2

2 + V 2
3 − 2V1V2 − 2V2V3 − 2V1V3.
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Maximal cuts and Wick Rotations

By integrating also in k1, and dropping again any overall d dependent factor,
the final result for the 6-cut Bhabha subtopology, expanded up to the next to
leading order in (d − 4) is

B6(s, t) =
1√

s(s − 4m2)
√

t(t − 4m2)

×
[
− 1

d − 4

+ ln (2m) +
1

2
ln

s + t − 4m2

s − 4m2
− ln (−t)− 1

2
ln (4m2 − t)

]
,

(which satisfies the homogeneous equation in s for the maxcut up to first order
in (d − 4) ).
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Maximal cuts and Wick Rotations

The next maxcut to consider should be the subtopology with 5 propagator

�
�
�
�

p2

p1

p4

p3

,

which has several (4 ?) Master Integrals, and which appears in the
inhomogeneous parts of the equations of the previous amplitudes ....

• but unfortunately I am not (not yet, hopefully) able to give the results.
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Maximal cuts and Wick Rotations

• conclusion:

• Generalized cuts and maxcuts are an important first step in evaluating
Feynman graph amplitudes;

• the Wick (counter)-rotation of the continuous d regularizing dimensions
can be one more useful tool when dealing with maxcuts.
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