Module Intersection a powerful method for IBP reduction

Yang Zhang

University of Science and Technology of China
Max-Planck Institute Physics, Munich

Padova
MathemAmplitudes 2019

First, I apologize that "Module Intersection" is slightly different from the intersection theory for cohomology classes ...

Module intersection is similar to linear space intersection but over polynomials only ...
an computational algebraic geometry problem
"Module intersection" is to apply intersection of polynomial modules for finding particularly simple IBP vectors

Based on

Larsen, YZ 2015

YZ 2016
1805.01873, JHEP 1809 (2018) 024

Boehm, Schoenemann, Georgoudis
Larsen, $\mathbf{Y Z}$

1908.04301

Bendle, Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ

IBP is a fascinating problem for scattering amplitudes

If one wants to reduce IBP relations by linear algebra, then one need to make the linear system as small as possible ...

Truncate IBP linear systems

- (Gluza, Kajda, Kosower, 2010) no double propagator
- (Lee 2014) scalar integral only
all based on syzygies (linear constraints with polynomial coefficients) computation but direct syzygy computation may be impractical ...

Module Intersection

$$
\text { Larsen YZ } 2015 \text { YZ } 2016
$$

IBP relations in Baikov representation

- Easily get IBPs without double propagators (or propagator-degree increase)
- Naturally adaptable with unitarity cuts
- Usually much faster than direct syzygy approaches

In parallel with the developments of numeric unitarity
Ita 2015, Abreu, Cordero, Dormans, Ita, Page, Sotnikov
JHEP 1811 (2018) 116, Phys.Rev.Lett. 122 (2019) no.8, 082002, JHEP 1905 (2019) 084
Natural way to construct integrand with IBPs without doubled propagators very efficient for constructing multi-loop integrand

IBP in Baikov representation

$$
\int \frac{d^{D} l_{1}}{i \pi^{D / 2}} \ldots \int \frac{d^{D} l_{L}}{i \pi^{D / 2}} \frac{1}{D_{1}^{\alpha_{1}} \ldots D_{k}^{\alpha_{k}}} \propto \int_{\Omega} d z_{1} \ldots d z_{k} \frac{F^{\frac{D-L-E-1}{2}}}{z_{1}^{\alpha_{1}} \ldots z_{k}^{\alpha_{k}}}
$$

$$
0=\int_{\Omega} d z_{1} \ldots d z_{k} \sum_{i=1}^{k} \frac{\partial}{\partial z_{i}}\left(a_{i}(z) \frac{F^{\frac{D-L-E-1}{2}}}{z_{1}^{\alpha_{1}} \ldots z_{k}^{\alpha_{k}}}\right)
$$

No boundary term feel free to set some of z's to zero (unitary cut)

IBP in Baikov representation with constraints

Require

1. no shifted exponent:
$\sum_{j=1}^{k} a_{j}(z) \frac{\partial F}{\partial z_{j}}+\beta(z) F=0$

polynomials

2. no propagator degree increase:
$a_{i}(z) \in\left\langle z_{i}\right\rangle, \quad 1 \leq i \leq m \quad$ These $\left(a_{1}(z), \ldots a_{k}(z)\right)$ form a modul $M_{2} \subset R^{k}$.

Larsen, YZ 2015
Both M_{1} and M_{2} are pretty simple ...
YZ 2016

$$
M_{1} \cap M_{2}
$$

Intersection of two modules

Determine the first module

$$
\left.\sum_{i=1}^{k} a_{j}(z) \frac{\partial F}{\partial z_{j}}+\beta(z) F=0 \quad \bullet \text { syzygy for the } \frac{\partial F}{\partial z_{1}}, \ldots, \frac{\partial F}{\partial z_{k}}, F\right\} \quad \text { Roman Lee's trick }
$$

More Advanced

- Ann $\left(F^{s}\right)$, annihilator of F^{s} in Weyl algebra. Bitoun, Bogner, Klausen, Panzer Lett.Math.Phys.
If F is a determinant matrix whose elements are free variables, this kind of syzygy module is simple.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

equivalent to

canonical IBP
in momentum space
Laplace expansion

$$
\sum_{j} a_{k, j} \frac{\partial(\operatorname{det} A)}{\partial a_{i, j}}-\delta_{k, i} \cdot \operatorname{det} A=0
$$

Get all first order annihilator, proved by Gulliksen-Negard and Jozefiak exact sequences
Boehm, Georgoudis, Larsen, Schulze, YZ 2017

Module Intersection
computational
algebraic geometry
problem
controlled by
degree bound

$$
\begin{aligned}
& M_{1}=\left\langle v_{1}, v_{2}, \ldots v_{m}\right\rangle \text { each } v t \text { t-dim roo } \\
& M_{2}=\left\langle u_{1}, u_{2}, \ldots . u_{m}\right\rangle \text { each } u \text { t-dim roo }
\end{aligned}
$$

$$
\left(\begin{array}{ccccccc}
& \overbrace{1} & c_{1} & 1 & & & \\
& & \\
v_{2} & & 1 & \ldots & & & \\
\cdots & & \cdots & 1 & & \\
v_{m} & & & & 1 & & \\
u_{1} & & & & & & \\
u_{2} & & & & \cdots & \\
\cdots & & & & \cdots & \\
u_{n} & & & & & & 1
\end{array}\right)
$$

Compute the Gröbner basis w.r.t. rows

$$
\text { Position }>\text { Term }
$$

Find the Gribner basis elements in H

Example, massless double box

$\mathbb{Q}(s, t)\left[z_{1}, \ldots z_{9}\right]: 2$ parameters, 9 variables

$M_{1} \cap M_{2}$ is computed within seconds, with Singular 4.1.2's intersect

Implements

- Use unitarity cuts
- Use degree bound
- Localization trick

Treat parameters as variables, and compute in a block ordering [variables] > [parameters]
A famous trick in computational algebra

Now module intersection is really fast

5 Mandelstam variables, with a triple cut seconds to get the module intersection (and truncated IBPs)

After module

Example, massless double box with spanning cut

Remove cuts overlap

$$
\left(\begin{array}{c:c:cc:c}
1 & 12 & 0 & 0 & -124 \\
0 & 0 & 1 & 0 & 31 \\
0 & 0 & 0 & 1 & -5 \\
0 & - & -1 & -1
\end{array}\right)
$$

Set one non-pivot column (one master integral) to zero before reduction, does NOT change other non-pivot columns after reduction

Chawdhry, Lim, Mitov Phys. Rev. D 99, 076011 (2019) also implemented in Kira

If one master integral appears on two cuts, pick up one cut and set this integral to zero.

Can also be used for double propagator integrals

$$
0=\int_{\Omega} d z_{1} \ldots d z_{4} \sum_{i=1}^{4} \frac{\partial}{\partial z_{i}}\left(a_{i}(z) \frac{F^{\frac{D-L-E-1}{2}}}{z_{1} z_{2} z_{3} \frac{2}{4}}\right)
$$

the fourth index must be less or equal 2

$$
(-5+d) G[1,0,1,2)+(5-d) G[1,1,1,1]-t G[1,1,1,2)=0
$$

targeted reduction for integrals with doubled (fourth-)propagator

Non-trivial example

Towards an industry-level row-reduction program

- Row Reduction code written in Singular
- With numeric fitting, powered by the large-scale parallelization framework GPI-space

Analytic (symbol)
Abreu, Dixon, Herrman, Page, Zeng
"The two-loop five-point amplitude in N=4 sYM theory ", Phys.Rev.Lett. 122 (2019), no. 12121603

Analytic (function)

Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia

"All master integrals for three-jet production at NNLO", Phys.Rev.Lett. 123 (2019), no. 4041603

Row Reduction

reduce all rank-4 numerato to master integrals

Cut	\# relations	\# integrals	size
$\{1,5,7\}$	1134	1182	0.77 MB
$\{1,5,8\}$	1141	1192	0.85 MB
$\{1,6,8\}$	1203	1205	1.1 MB
$\{2,4,8\}$	1245	1247	1.1 MB
$\{2,5,7\}$	1164	1211	0.84 MB
$\{2,6,7\}$	1147	1206	0.62 MB
$\{2,6,8\}$	1126	1177	0.83 MB
$\{3,4,7\}$	1172	1221	0.78 MB
$\{3,4,8\}$	1180	1226	1.0 MB
$\{3,6,7\}$	1115	1165	0.82 MB
$\{1,3,4,5\}$	721	762	0.43 MB

The analytical IBP reduction is actually NOT needed.
Just use these truncated, sparse IBP systems to generate numeric IBP for amplitude, and then interpolate!

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ 1908.04301

Row Reduction

reduce all rank-4 numerators analytically to master integrals

Cut	\# relations	\# integrals	size
$\{1,5,7\}$	1134	1182	0.77 MB
$\{1,5,8\}$	1141	1192	0.85 MB
$\{1,6,8\}$	1203	1205	1.1 MB
$\{2,4,8\}$	1245	1247	1.1 MB
$\{2,5,7\}$	1164	1211	0.84 MB
$\{2,6,7\}$	1147	1206	0.62 MB
$\{2,6,8\}$	1126	1177	0.83 MB
$\{3,4,7\}$	1172	1221	0.78 MB
$\{3,4,8\}$	1180	1226	1.0 MB
$\{3,6,7\}$	1115	1165	0.82 MB
$\{1,3,4,5\}$	721	762	0.43 MB

Hardest cut: done within 12 hours, 384 cores GPI-space

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ 1908.04301

Use UT integrals to simplify coefficients

UT integrals (Johannes Henn's talk)

	IBP total size	Highest power in s
Normal Basis	$\sim 2.0 \mathrm{~GB}$	35
UT Basis	0.48 GB	20

shorter coefficients
fewer numeric computations needed!

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ 1908.04301

You may ask about the rank-5 reduction ...

It is on the way ...
Sorry I am busy teaching this semester ...

Summary

- Module intersection + Large-scale parallelzation with GPI-space
- a powerful IBP algorithm
- Since we used Baikov cut form everywhere, some relation to Intersection Theory?
- efficient Lee-Pomeransky IBPs?

Advertisement

If you have interesting IBP problems,
you may send them to yzhphy@ustc.edu.cn. Thanks!

