Deploying GPUs at Grid Sites

Daniel Traynor,
GridPP Technical Meeting 2/8/2019

Overview

- (Anti)Motivation.
- Obtaining and integrating GPUs into your cluster.
- Using GPUs use cases at QM.
- Caveats and Future devlopments.

Motivation

- GPUs are a commodity, programmable parallel architecture, ubiquitous as CPUs but offer significantly more parallel "streams".
- GPUs are significantly faster than CPU for appropriate problems and GPU optimised workflows often scale better when adding additional GPUs.
- GPU Performance (FLOPS) per watt is better than CPUs.
- GPUs Performance (FLOPS) per \$ is better than CPUs.

Anti motivation

- No point in buying GPU to speed up you work x10 if you only use it 1% of the time.
- "The GPU code gets a 200x speed improvement over a single CPU core". However my server has 64 Cores and costs half as much!
- Costs 5K per server + 6K for high end GPU.
- One high end GPU uses the same power as mid range duel socket server (300W).
- Utilising the power of GPUs is hard parallel algorithms CPU Workflows to GPU workflows – performance pitfalls.
- Broad overview of GPU vs CPU impact: https://www.anandtech.com/ show/14466/intel-xeon-cascade-lake-vs-nvidia-turing

Enabling GPUs

Obtaining 1st GPU

- Recycled desktop
 workstation capable of
 powering a GPU (top end
 GPU requires ~300W on
 top of existing CPU... +
 right connector 2*PCle 8 pin)
- Obtained Free GPU from NVIDIA GPU Grant Program (e.g. https://developer.nvidia.com/academic_gpu_seeding).

Dell T5500 Workstation + Nvidia K40c GPU

Obtaining Cheap GPUs

- Buy a gaming GPU.
- 1* NVIDIA 1080 Ti founders edition. Dell Alienware Aura 2017
- Brought "off the shelf" Dell Alienware PC.
 Able to buy via a framework agreement and get delivery in <10days (good for end of financial year).
- Be careful Nvida has restrictions on use of consumer GPUs in data centres.
 Research exceptions available.

Obtaining more GPUs

- Brought HPE server + Enterprise GPUs (K80s).
- Funded through money down "the back of the sofa"
- Nvidia+CUDA dominate the market so little point buying others YET.

HPE DL380 + 2* Nvidia K80s (~4* K40)

System Deployment

- https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
- Physically install a GPU and test that the kernel see it
 - lspci | grep -i nvidia
 - 01:00.0 3D controller: NVIDIA Corporation GK110BGL [Tesla K40c] (rev a1)
- Install the CUDA repo, install CUDA and reboot (this should install drivers).
 - yum install cuda gcc kernel-devel-\$(uname -r) kernel-headers-\$(uname -r)
- Run "nvidia-smi" to check GPU is available.
- Enable persistence of driver state across CUDA job runs (driver stay loaded).
 - systemctl [start|enable] nvidia-persistenced
- Install the CUDA Deep Neural Network library for tensor support
 - yum install libcudnn7-7.4.1.5-1.cuda10.0.x86_64
- compile and run the test program
 - cp -r /usr/src/cudnn_samples_v7/ \$HOME
 - cd \$HOME/cudnn_samples_v7/mnistCUDNN
 - make clean && make
 - ./mnistCUDNN

Note: may need to blacklist. Note: may need to blacklist.

SLURM Batch System Deployment

- Modify slurm to enable support for Generic resource (GRES), e.g. in /etc/slurm/slurm.conf
 - GresTypes=gpu
 - ...
 - NodeName=cn291 CPUs=8 Gres=gpu:teslaK40:1 RealMemory=31911 Sockets=1 CoresPerSocket=4 ThreadsPerCore=2 State=UNKNOWN
 - ...
 - PartitionName=centos7_gpu Nodes=cn291 MaxMemPerCPU=20480 DefMemPerCPU=12288 Default=NO MaxTime=99:00:00 State=UP
- In /etc/slurm/gres.conf
 - NodeName=cn291 Name=gpu Type=teslaK40 File=/dev/nvidia0
- cgroups for slurm should be enabled and in /etc/slurm/cgroup.conf (set exclusive use of a GPU for a user)
 - ConstrainDevices=yes
- Submit jobs: sbatch --gres=gpu:1 -n1 test_gpu.sh

Integrate with SGE

Create host complex : qconf -mc

Add complex attribute to host: qconf -me cn291

cn291.htc.esc.qmul hostname load scaling NONE complex values gpu=1 user lists NONE xuser lists NONE projects NONE xprojects NONE usage scaling NONE report variables NONE

Submit job: qsub -l gpu=1 testgpu.job

Possible out of date

Grid Enabling

- Previously we enabled GPUs via a CreamCE with requirement that user had to request a GPU in the jdl. CreamCE is being decommissioned.
- With arcCE the is simplified by adding in arcce.conf to the subsection
 - [queue:centos7_gpu]
 - ...
 - slurm_requirements= -gres=gpu:1 -n4
 - ...
- Now all you have to do is submit a job to the centos7_gpu queue and you will get one GPU+4cores+12GB RAM.

Use Cases

IceCube

- Initial GPU deployment was driven by desire to support icecube.
- Why GPUs: Modelling photon propagation through ice. Light propagation is pretty much what is done in video games, so they started using GPUs. GPUs are doing a good job in photon simulation — up to 300 times faster than (single core?) CPUs (https://sciencenode.org/feature/simulating-icecube-data-usinggpus.php)
- Have had both individual users (PhD students) and official grid production.
- Have yet to repeat for CentOS7.

Cern@school

- Cern@school Significant use of GPUs at QMUL for about a year.
- Uses CERN's Timepix detectors on the LUCID TechDemoSat-1 which launched in late 2014 (http://www.sstl.co.uk/Blog/ February-2013/TechDemoSat-1-s- LUCID—a-novel-cosmic-ray-detector).
- Using https://github.com/willfurnell/lucid-grid/ (Python 3 (Anaconda) with Tensorflow) for the actual particle detection.
- Using the GPUs significantly sped up the workflow compared to using the CPU, and really is needed for Tensorflow use.
- https://iopscience.iop.org/article/10.1088/1748-0221/13/10/ C10004

enmr

- Deployment of AMBER and GROMACS on a GPGPU testbed of EGI by the MoBrain Competence Centre. Main use is for structural biology.
- Uses docker containers in udocker, udocker is a basic user tool to execute simple docker containers in user space without requiring root privileges.
- The only issue is that we regularly upgrade the kernel and NVIDIA drivers, so e..g DisVis and PowerFit application containers must be re-built with the corresponding NVIDIA driver in order to work in that site.
- NO Significant use of GPUs at QMUL. I think They really wanted GPUs in the cloud.

LHC

- Atlas have active group looking at GPU usage. Other LHC experiments have plans.
- https://indico.cern.ch/event/689511/
- See Alessandra talk.
- Note even though deployment via containers still needs drivers and local libs installed.

Other Users

- Lots of individual HEP researchers using GPUs at home institutes.
 Some of this will end up needing to scale up on the grid.
- MoEDAL developing new methods using Machine learning (Tensorflow) to ID magnetic monopoles signatures in Nuclear track detectors (https://indico.cern.ch/event/559774/ contributions/2669803/attachments/1509702/2354134/ MachineLearningMonopolesAndMoedal.pdf).

Getting GPUs used

- Difficult to get people to use GPUs:
 - Advertising their presence essentially done by word of mouth.
 Need a better way, but if it's not done by bdii how?
 - There is no single software platform used by the different VOs, singularity helps here.
 - GPU farms exist at HPC/supercomputers why use a GPUs at a grid site? Closeness to data!
 - Is there yet the workload yet to make use of GPUs. Chicken and egg/ bootstrap problem.

The Future is Complicated

Software Development

- OpenCL, CUDA: low-level API that situates above GPU drivers and below applications designed to utilise the computing power provided by GPUs (and others PU) for general computing applications.
- TensorFlow, Caffe: machine learning library.
- Lots of python stuff
 - PyTorch: PyTorch is an optimised tensor library for deep learning using GPUs and CPUs.
 - CuPy: implementation of most common NumPy operations (multidimensional array) on CUDA.
 - Numba: Compiling Python to CUDA

Not all GPUs are the same

	NVIDIA K40	NVIDIA V100	NVIDIA RTX 2080 SUPER	AMD MI60
RAM	12GB ECC	32GB ECC	8GB	32GB ECC
Memory badnwidth	288GB/s	900GB/s	496GB/s	1024GB/s
32bit(TFLOPS)	5	14	11.15	14.7
64bit (TFLOPS)	1.68	7	0.349	7.4
16bit(TFLOPS)	N/A	28	22.3	29.5
8bit (TFLOPS)	N/A	112	89.2	59

Informed Choice

- Deep Learning
 - Rule of thumb. Here some prioritisation guidelines for different deep learning architectures (https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/):
 - Convolutional networks and Transformers: Tensor Cores > FLOPs >
 Memory Bandwidth > 16-bit capability
 Recurrent networks: Memory Bandwidth > 16-bit capability > Tensor
 Cores > FLOPs
- 64bit (HPC/ simulation)
 - Enterprise GPUs (little choice here).
- Notes consumer grade GPUs may not have the build quality to last intensive use.

Alternative hardware

- Intel CPU chips AVX512, Deep Learning (DL)Boost (+Vector Neural Network Instruction (VNNI) set), bfloat16. Developing new discrete competitive GPUs.
- AMD GPUs/CPUs significant effort to develop ecosystem to enable and optimise AMD hardware (Radeon Instinct) in HPC (ROCm Platform) and open source projects (e.g. Tensorflow, Caffe).
- FPGAs (intel, Xilinx), Dedicated ASICs (Google TPUs, Intel Nervana NNP).
- But buying Nvidia is a safe bet but doesn't help develop competition.

Observations

- Further development of GPU resources will probably need dedicated funds. £15K for a cheep GPU server requires a big sofa.
- New Nvidia EULA of driver software prevents use of non enterprise GPUs (e.g. 1080Ti) in a "data centre". Can get research exception.
- Often see that CPU usage on our nodes are 100%. Posable limiting factor in making full use of GPU resources.
- We have significant performance difference not just between generations of GPUS (K40,P100,V100) but also for different types of calculations (8/16/32/64bit). Difficult for blind usage via pilot jobs.

Conclusions

- Deployment of GPUs on the grid is not hard. Getting them used is hard.
- Not all GPUs are the same. Different software require different balance of hardware features.
- Not yet clear what the workload/workflow will be. Will impact hardware choices (esp HL-LHC).
- Hardware development and related software support is in flux.
- HEP needs to move from "what can we do" on GPUs to "what should we do".
- No accounting in APEL for GPUs.