Proposal for an upgraded Beam Gas Ionisation profile monitor

LHC Beam Size Measurement Review, 1st October 2019

James Storey CERN BE-BI-BL

Acknowledgements:

S. Levasseur, H. Sandberg, W. Bertsche, A. Farricker,
S. Gibson, R. Jones, F. Roncarolo, B. Salvachua, B. Salvant,
G. Schneider, R. Veness, C. Vollinger, C. Zamantzas.

Contents

- 1. LHC MCP / optical based BGI profile monitors during Run 1 & 2 :
 - Technical problems ;
 - Performance limitations.
- 2. Significant BGI developments in the past few years :
 - IPMSim collaboration ;
 - Development of a Timepix3 based BGI profile monitor for the PS.
- 3. Proposal for a Timepix3 based BGI for HL-LHC.

1. LHC MCP / optical based profile monitors during Run 1 & 2

LHC MCP / optical based BGI profile monitor

Brief history

MCP / optical based BGI profile monitors with 0.2 T dipole magnets installed from the start of the LHC on both beams to measure both the horizontal & vertical beam profiles (4 instruments in total.)

Run 1 problems :

- Proton beam profiles at E>4 TeV found to be distorted w.r.t. wire scanner measurement. Simulations later identify problem – transport of ionisation electrons to imaging detector affected by transient beam electric fields.
- Inhomogeneous ageing of MCP, phosphor & intensified camera causes distortion to beam profile measurement and high maintenance costs.
- Technical issues (high voltage control, camera control) delayed progress.

Run 2 problems :

- Damage to instruments due to beam induced heating all instruments removed during EYETS 16/17.
- Consensus that instruments should only be re-installed if solution found to remove the heating. Solution requires re-design of electric field cage → new instrument design.

Technical problem 1: Damage to instrument due to beam induced heating

Beam induced heating

Consequence for the instrument

Prism broken at the contact locations with the aluminum support.

BGI impedance simulations

Aaron Farricker (BE-RF)

Simulation of LHC BGI

Power loss in the BGI = 90 - 260 W

However, impact of impedance on the beam in both transverse & longitudinal planes is minimal.

Simulation with design changes

11 W power loss in the BGI

Design change = surface of support arms non-conductive + smaller electrodes → new instrument design.

Technical problem 2: Ageing of MCP & phosphor screen & intensified cameras

MCP ageing

- Micro-Channel Plates (MCP) age due to bombardment by the ionisation electrons ;
- Since ageing is mainly where the ionisation electrons impact the MCP this leads to a time varying inhomogeneous gain and distortion to the beam profile measurement ;
- Common problem, with different solutions under development -
 - Limit MCP exposure time (J-PARC, Fermilab) ;
 - Physically change location of MCP exposure (Fermilab);
 - Calibrate MCP gain either with UV lamp (GSI) or Electron Glass Plate (CERN);
 - Long lifetime MCP's (Manufacturers);
 - Remove the MCP (CERN Timepix3-BGI).

Similar problem for the phosphor screen and intensified camera (includes MCP).

Performance limitation 1: Distortion to **proton** beam profile for E > ~4 TeV

At E = 450 GeV – effect of bunch electric field on the trajectories of ionisation electrons mitigated by 0.2 T magnetic field.

At E > 4 TeV – the 0.2 T magnetic field is insufficient to mitigate this effect \rightarrow **distortion to the measured beam profile.**

M. Sapinski et al., 2012, "The first experience with LHC Beam Gas Ionization Monitor", Proc. IBIC2012

Performance limitation 2: Optical aberration errors

Ionisation electron imaging detector "chain" consists of: MCP \rightarrow Phosphor \rightarrow Prism \rightarrow Optics \rightarrow Intensified camera.

Due to **optical aberrations** a point incident on the MCP becomes smeared; the total response of the imaging chain to the point is described by a **Point Spread Function** (**PSF**).

Detected image is the **convolution of the true beam image and the PSF**. Therefore to recover true beam image need to know the PSF.

Run1 approach: use wire scanner as the reference (i.e. true) measurement with which to determine PSF.

Consequence - BGI measurement dependent on another device and beta functions at two locations \rightarrow **not an independent beam size measurement.**

Summary of problems & limitations

Technical problems :

- 1. Damage to instrument due to beam induced heating.
- 2. Inhomogeneous gain due to ageing of imaging detector components.

Performance limitations :

- 1. Distortion to proton beam profiles for E > 4 TeV.
- 2. Not an independent measurement due to optical point spread.

2. Significant BGI developments in the past few years

Simulation of rest gas ionisation profile monitors : IPMSim collaboration

Inter-laboratory effort (CERN, J-PARC, GSI, Fermilab, BNL, ESS, ISIS) formed in 2016 to create a common tool for the design & understanding of rest gas Ionisation Profile Monitors ("IPM" == "BGI" at CERN).

1st IPMSim collaboration meeting at CERN (March 2016)

IPMSim is a **complete simulation of rest gas ionisation profile monitors**, including:

- Initial ionisation electron velocities ;
- Guiding electric & magnetic fields ;
- Beam fields ;
- & Particle tracking.

Now a well established tool, used to study in particular :

- Beam profile distortion ;
- Field cage design.

New BGI profile monitors for LIU-PS

Timepix3 hybrid pixel detector

Hybrid Pixel Detector (HPD): Pixelated sensor bump bonded to a pixelated readout chip.

Sensor: 256 x 256 matrix of **55μm x 55μm** PN-diodes (**pixels**), with total area of 2 cm². **Readout chip:** 256 x 256 matrix of readout channels (CMOS 130nm).

Timepix3 response to charge

Time-Over-Threshold (ToT) → Energy

Timepix3-BGI design for the PS

Realisation of UHV compatible detector

Ceramic carrier board

- 2 metal layers, Al₂O₃ substrate.
- 4 x Timepix3 with 100um n-on-p sensors.

Flexible cables

- Connect ceramic board to vacuum electrical feedthroughs.
- Two metals layers with a Liquid Crystal Polymer (LCP) substrate.

All components qualified by vacuum group for operation in PS primary vacuum.

Installation in the CERN PS

0.2T self-compensating triplet dipole magnet & instrument vacuum chamber

Timepix3-BGI before installation

Installation in the CERN PS

Vacuum pump down:

- 1 x 10-8 mbar after 24 hours,
- 2 x 10-10 mbar steady state.

Faraday cage for Timepix3 & cables

Example beam images

- Signal: Ionization electrons single-pixel events with low ToT.
- Background: beam loss particles multi-pixel events close in time with higher ToT.

Video of complete LHC cycle in the PS

• Video shows LHC type beam from injection, through acceleration and finally extraction.

- 1.5 seconds in real time: slowed down here for viewing purpose.
- Each frame is 10 ms of data
- Not filtered to show background particles.

http://bgi-web.web.cern.ch/bgi-web/images/iworid-2018-video.gif

Video of partially stripped lead ion beam

Raw data

Beam parameters:

- ILHC200#2b_2018_partial_strip
- Intensity = 8.9x10¹⁰
- Vacuum = 9.8 x 10⁻¹¹ mbar

After processing to remove unresponsive pixels

Beam profile measurement

Compute beam profile by summing counts in each column.

Evolution of beam size & position

Continuous beam profile measurements of a single PSB bunch at 2 kHz c.f. ~10 Hz for MCP-based BGI design.

Brightness curve

Good agreement between the Beam Wire Scanner (BWS) & BGI :

- \rightarrow Timepix3-BGI point spread function is negligible.
- BGI beam size measurement independent of other profile monitors & beta function.

Time structure of the ionisation electron counts

• Time for 1 revolution (turn) of the PS = $2.3 \mu s$.

Timepix3-BGI measurements of a single PSB bunch

 \rightarrow Longitudinal bunch length consistent with Wall Current Monitor (WCM).

Turn-by-turn beam position at injection

Measurement consistent with fractional tune measurement.

Turn-by-turn beam size at injection

Frequency of beam size beating consistent with SEM grid measurement.

Summary of Timepix3-BGI

- Timepix3 hybrid pixel detectors operated directly inside the beam pipe primary vacuum over a 2 year period without measurable effect on either the vacuum or beam loss.
- Direct detection of ionisation electrons with Timepix3 has significant benefits :
 - No need for MCP, phosphor and intensified cameras.
 - Beam size measurements are **independent** of other instruments.
 - Allows to **count individual ionisation electrons**; facilitates efficient data processing & estimation of the measurement precision.
 - Continuous beam profile measurement at ~1kHz.
 - Time-resolution allows for **bunch-by-bunch** and **turn-by-turn** measurements.

3. Proposal for a Timepix3 based BGI profile monitor for HL-LHC

MCP-BGI problems vs. Timepix3-BGI solutions

Problems & limitations

1. Instrument damage due to beam induced heating

Possible solutions

- Smaller electrodes & vacuum chamber; detector components hidden behind Faraday cage and actively cooled.
- Profile distortion due to ageing of MCP, phosphor & intensified cameras

MCP, phosphor & intensified camera replaced with Timepix3 hybrid pixel detector.

Distortion to proton beam profiles for E > 4 TeV

Not solved.

4. Not an independent beam profile measurement.

Independent measurement due to direct detection of ionisation electrons.

Instrument dimensions

PS BGI-Horizonal : Anode – cathode distance = 70 mm ;

Vacuum chamber aperture = 118 mm ; Magnet aperture = 128 mm.

Current LHC MCP based BGI : Anode – cathode distance = 84 mm ; Vacuum chamber aperture = 182 mm ; Magnet aperture = 200 mm. Proposed LHC Timepix3 based BGI : Anode – cathode distance = 60 mm ; Vacuum chamber aperture = 108 mm ; Possible to ~half magnet aperture.

Dimensions of LHC Timepix3-BGI similar to PS BGI-Horizontal.

Simulation of Timepix3-BGI performance for HL-LHC

- 1) Simulation of rest gas ionisation electron generation & transport to the imaging detector plane with IPMSim.
- 2) Simulation of the response of the Timepix3 pixel detector to the ionisation electron image.

Ions: Simulation of ionisation electron production & transport to imaging detector plane

Input to IPMSim:

- Pb82+ at 7 TeV / proton
- Emittance = 1.65µm
- Beam size = 346 μm
- Intensity = 1.8×10^8
- BGI B-field = 0.2 T

Simulation of 50,000 ionisation electrons.

Output:

 $\sigma_{initial} - \sigma_{detected} / \sigma_{initial} = 1.4 \%$

Conclusion for ions: Systematic error due to electric bunch field on trajectories of ionisation electrons < 2 % - at all stages of the LHC cycle.

What about protons at 7 TeV?

Input to IPMSim:

- Protons at 7 TeV
- Emittance = 2.50 μm
- Beam size = 260 μm
- Intensity = 22x10¹⁰ ppb
- BGI B-field = 0.2 T

Simulation of 50,000 ionisation electrons.

Output:

 $RMS_{initial}$ - $RMS_{detected}$ / $RMS_{initial}$ = 17 %

As expected from Run1 - significant distortion to beam profile.

Simulation of systematic beam size error vs. magnetic field strength

Current BGI dipole magnets = 0.2 T

Simulation of protons at 7 TeV with **0.6 T magnetic** field

Input to IPMSim:

- As before, except...
- BGI B-field = 0.6 T

Simulation of 50,000 ionisation electrons.

Output:

 $\sigma_{initial} - \sigma_{detected} / \sigma_{initial} = 0.1 \%$

With 0.6 T magnetic field the distortion to proton beam profile at 7 TeV is negligible.

Can we trust this prediction? Measurements of PS Timepix3-BGI beam size vs. magnetic field strength

Prediction: IPMSim predicts B-field of at least 0.07 T is needed to prevent distortion to proton beam profile at E = 26 GeV.

Result:

Significant beam profile distortion when B-field is less than ~0.06 T.

Reasonable agreement with IPMSim prediction.

PS Timepix3-BGI

No distortion for $B > \sim 0.06 T$

Simulation of multiple measurements

Input: HL-LHC proton beam parameters at E=7 TeV.

Method:

- 1 x simulation = beam size measurement with **4000 ionisation electrons.**
- Repeat simulation x400 times with **B** = **0.6 T** and then again with **B** = **0.2 T**.

Result with B = 0.6 T :

Measurement spread (statistical error) = 3.2 μm / 260 μm = **1.2 % (*)**

Measurement offset (systematic error) = 260.1 μm – 260 μm / 260 μm = **0.1 %**

(*) consistent with statistical error expected for 4000 samples of a Gaussian distribution = 1 / sqrt(2*4000 - 2) = 1.1 %.

Simulation of the Timepix3 pixel detector response

Toy Monte-Carlo simulation of Timepix3 pixel detector response. Studied response of detector to a **260 μm beam**, e.g.

For each simulation calculate **residual** = true beam size – measured beam size.

Response of the Timepix3 pixel detector

Systematic error (accuracy)

e.g. single measurement with a sample size of 2000 ionisation \rightarrow 2 % statistical error.

→ Timepix3 detector predicted to have a negligible contribution to the measurement systematic error.

Estimated performance of Timepix3-BGI with B = 0.6 T dipole magnet

Performance estimates for beam profile measurements at injection, ramp and collision, assuming residual gas pressure 1×10^{-10} mbar (no gas injection) :

HL-LHC Pb82+

- Average beam size
 - Integration window = 0.1 ms \rightarrow 4000 electrons \rightarrow statistical error = 1%
- Bunch by bunch size
 - Integration window = $10 \text{ ms} \rightarrow 400 \text{ electrons per bunch} \rightarrow \text{statistical error} = 5\%$
- Systematic error < 2 % (IPMSim + Timepix3 detector response)

HL-LHC protons

- Average beam size
 - Integration window = $1 \text{ ms} \rightarrow 4000 \text{ electrons} \rightarrow \text{statistical error} = 1\%$
- Bunch by bunch size
 - Integration window = 100 ms \rightarrow 400 electrons per bunch \rightarrow statistical error = 5%
- Systematic error < 2 % (IPMSim + Timepix3 detector response)

Realisation

Starting point for the design = PS Timepix3-BGI

Additional developments needed for LHC Timepix3 –BGI:

- 1. After installation in the vacuum the pixel detector needs to be **vacuum bakeable** \rightarrow R&D effort in collaboration with vacuum group.
- 2. Need to optimise design to **minimise beam induced heating** of the instrument \rightarrow R&D effort in collaboration with RF group.

The **Timepix3 readout electronics & software** (BIPIX) & the PLC based instrument slow control system will be the **same as the PS instruments**.

Proposal summary

Timepix3-BGI with 0.6 T self-correcting dipole magnet :

- Independent beam profile measurements of ions & protons at all stages of HL-LHC cycle ;
- Residual gas ionisation **no gas injection**;
- Fast average beam and bunch-by-bunch measurements.

Based on successful development of Timepix3-BGI for LIU-PS and well established IPMSim simulation.

Special thanks to : Swann Levasseur & Hampus Sandberg (BE-BI-BL)

Radiation tolerant readout for Timepix3 (BIPIX)

Timepix3 specification

CMOS node	130nm			
Pixel Array	256 x 256			
Pixel pitch	55µm			
Charge collection	e⁻, h⁺			
Pixel functionality	TOT (Energy) and TOA (Arrival time)			
Preamp Gain	~47mV/ke⁻			
ENC	~60e-			
FE Linearity	Up to 12ke ⁻			
TOT linearity (resolution)	Up to 200ke ⁻ (<5%)			
TOA resolution	1.6ns			
Time-walk	<20ns			
Minimum detectable charge	~500e ⁻ → 2 KeV (Si Sensor)			
Max Analog power (1.5V)	500 mA/chip			
Digital Power (1.5V)	~400mA data driven			
Maximum hit rate	80Mhits/sec (in data driven)			
Readout	Data driven (44-bits/hit @ 5Gbps)			

PS vacuum pressure close to the Timepix3-BGI

Estimate of ionisation electron yields

Residual gas & gas injection parameters

Parameter	Units	PS	LHC
Vacuum pressure	10 ⁻¹⁰ mbar	1	1
Vacuum pressure with gas injection - minimum used in Run 1	10 ⁻¹⁰ mbar	-	30
Vacuum pressure with gas injection - maximum used in Run 1	10 ⁻¹⁰ mbar	-	700
Ionisation cross section of Neon	/ cross section of hydrogen	1	2.39

Protons beam parameters

Parameter	Units	PS	LHC
Bunch population	10 ¹⁰ ppb	70 (flat bottom)	12.5
Number of bunches		1	2556
Turn period	us	2.3	88.9
Ionisation electrons per bunch per turn - residual gas only	electrons	2.3 (1000 in 1ms = 1000 / 435 turns = 2.3 e/turn)	0.41
Integration time for beam size with 1% precision (= 4000 electrons)	ms (turns)		0.340 (3.8)
Integration time for bunch size with 5% precision (= 400 electrons)	ms (turns)		86.732 (976)
Timepix3 electrons per turn	events per turn		1000
Timepix3 electrons per pixel (assume spead over 1280 hot pixels)	events per pixel per second		9000 (TPX3 max. 975,000; sustainable 1,200)
Timepix3 electrons per chip per second	events per chip per second		10M (TPX3 max. 80 M/s)

Ion beam parameters Pb82+

Parameter	Units	PS	LHC
Charge	q		82
Bunch population	10 ¹⁰ ppb		0.018
Number of bunches		1	1232
Turn period	us	2.3	88.9
Ionisation electrons per bunch per turn - residual gas only	electrons	2.3 (1000 in 1ms = 1000 / 435 turns = 2.3 e/turn)	4
Integration time for beam size with 1% precision (= 4000 electrons)	ms (turns)		0.089(1)
Integration time for bunch size with 5% precision (= 400 electrons)	ms (turns)		8.890 (100)
TImepix3 electrons per turn	events per turn		5000
Timepix3 electrons per pixel (assume spead over 1280 hot pixels)	events per pixel per second		43,000 (TPX3 max. 975,000; sustainable 1,200)
Timepix3 electrons per chip per second	events per chip per second		55M (TPX3 max. 80 M/s)

