

Status of the LUX-ZEPLIN (LZ) Experiment's Search for WIMP Dark Matter

Scott Haselschwardt (LBNL) On behalf of the LZ Collaboration

IPA 2022, Vienna September 9, 2022

The LUX-ZEPLIN (LZ) Collaboration

Black Hills State University Brandeis University Brookhaven National Laboratory Brown University Center for Underground Physics Edinburgh University Fermi National Accelerator Lab. **Imperial College London** Lawrence Berkeley National Lab. Lawrence Livermore National Lab. LIP Coimbra **Northwestern University** Pennsylvania State University Royal Holloway University of London **SLAC National Accelerator Lab.** South Dakota School of Mines & Tech South Dakota Science & Technology Authority STFC Rutherford Appleton Lab. **Texas A&M University** University of Albany, SUNY **University of Alabama** University of Bristol University College London University of California Berkeley **University of California Davis** University of California Los Angeles University of California Santa Barbara University of Liverpool University of Maryland University of Massachusetts, Amherst **University of Michigan** University of Oxford **University of Rochester** University of Sheffield University of Wisconsin, Madison

Thanks to our sponsors and participating institutions!

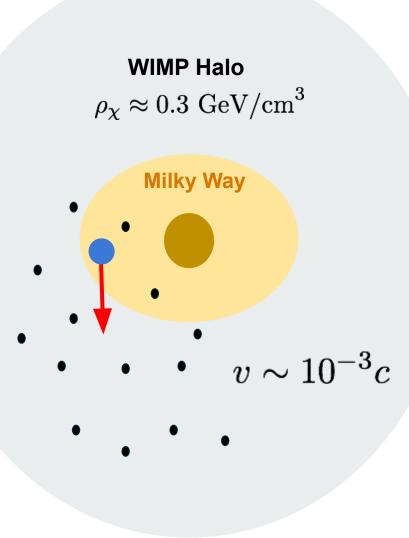
S. Haselschwardt

US

UK

Science and Technology **Facilities** Council

b^S Institute for Basic Science


Direct Detection Principle

Relative Earth-DM halo motion provides a flux of WIMPs:

$$\Phi = n_{\chi} v = \frac{\rho_{\chi}}{m_{\chi}} v$$

Recoiling target receives kick:

$$E_R \approx \frac{1}{2} m_T v^2$$
$$E_R \approx \frac{1}{2} (120 \text{ GeV}) 10^{-6}$$
$$E_R \approx 60 \text{ keV}$$

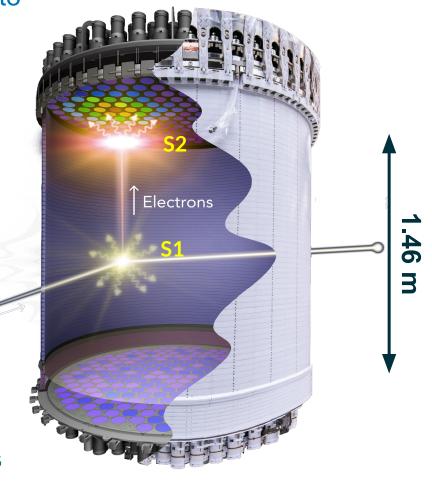
Assuming xenon, A = 131

Liquid Xenon TPC Operational Principle

High voltage grids provide electron drift to liquid surface

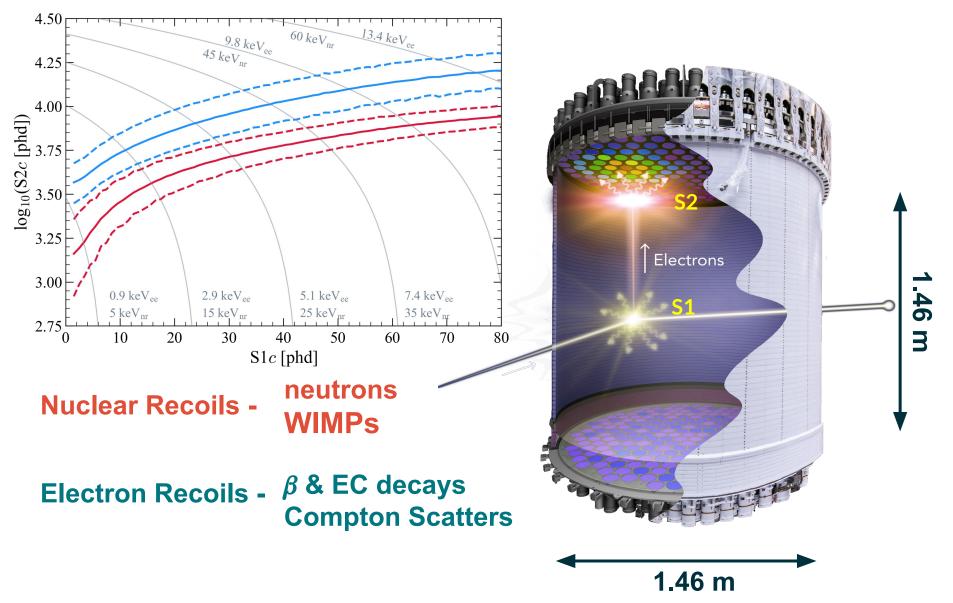
Top PMT array hit pattern gives (x,y)

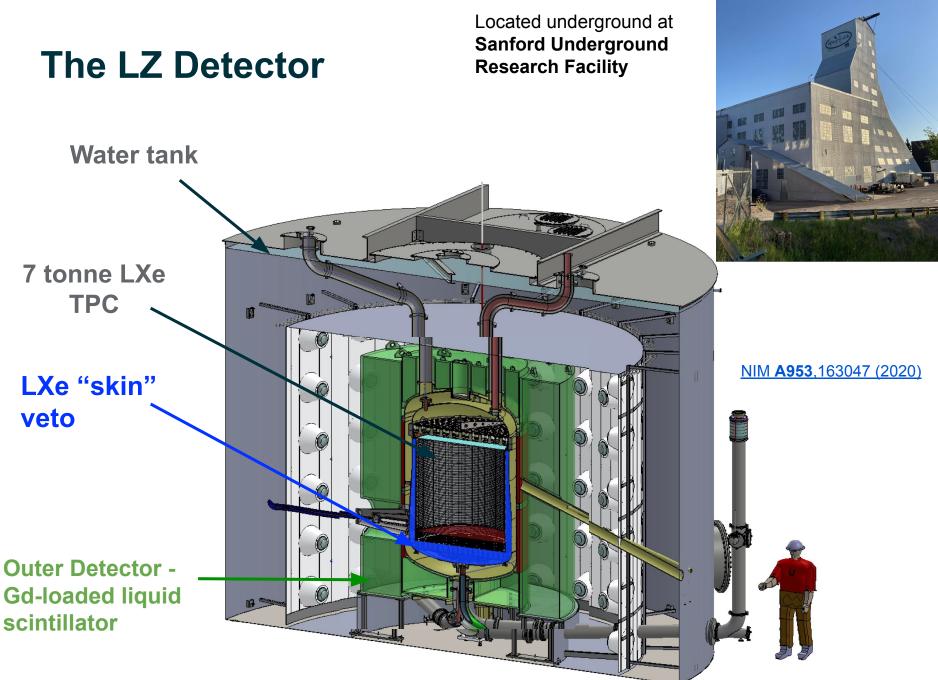
Time between S1 & S2 gives depth

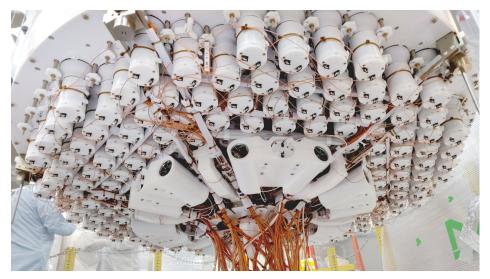

S2/S1 ratio gives particle ID between:

Nuclear Recoils -

neutrons WIMPs


Electron Recoils - β & EC decays

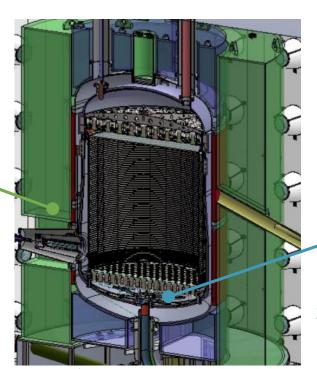

Compton Scatters


1.46 m

Liquid Xenon TPC Operational Principle

LZ in the Flesh

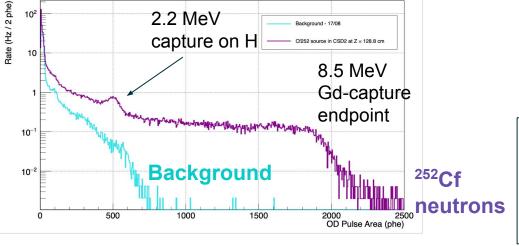
Outer Detector (OD)


Xenon Skin

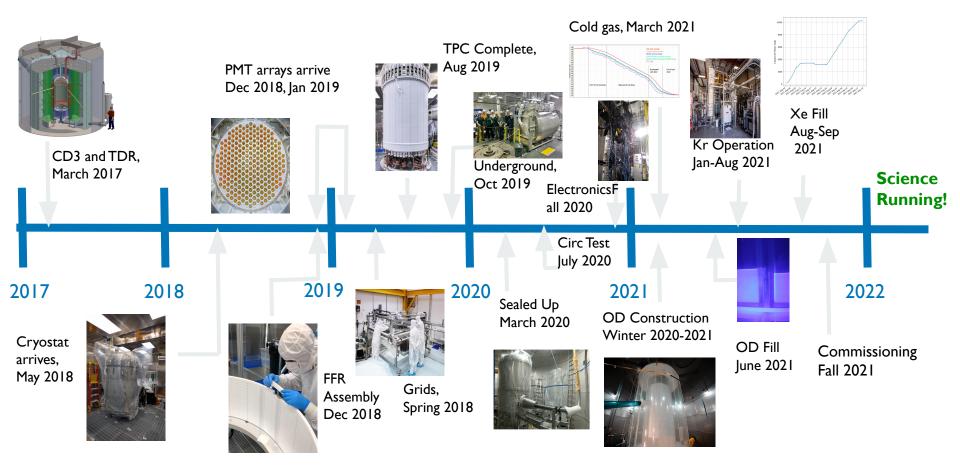
17t Gd-loaded liquid scintillator

Viewed by 120 8" PMTs

Gd n-capture gives ~8 MeV for clear neutron signal



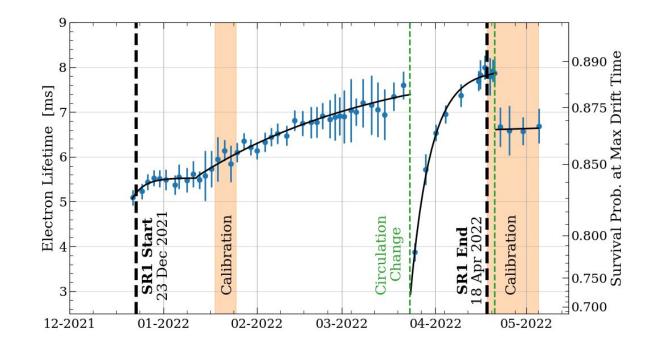
2t of liquid xenon between TPC and cryostat walls


93 1" and 38 2" PMTs

Efficiently tags γ -rays from detector materials and decays in the TPC xenon

Together, the Skin and OD reject & characterize the background!

LZ Timeline


LZ's First Science Run - "SR1"

Demonstrate LZ's physics readiness and expect world leading sensitivity

New detector \rightarrow SR1 unblinded/salted

Run/detector configuration:

- WIMP search livetime 60 days acquired 23 Dec 21 12 May 22
- Electron lifetime 5-8 ms
- Drift field **193 V/cm** (32 kV on cathode), uniform within 4% in fiducial volume
- Extraction field 7.3 kV/cm, 8 kV between gate-anode
- >97% PMTs operational

Calibration and Detector Response

Both internal and external sources calibrate response:

ERs: ^{83m}Kr, ^{131m}Xe, Activation lines, Rn-chain α 's, CH₃T (tritium), ²²⁰Rn, + more

NRs: AmLi, deuterium-deuterium (DD) neutrons, YBe

Calibration and Detector Response

Both internal and external sources calibrate response:

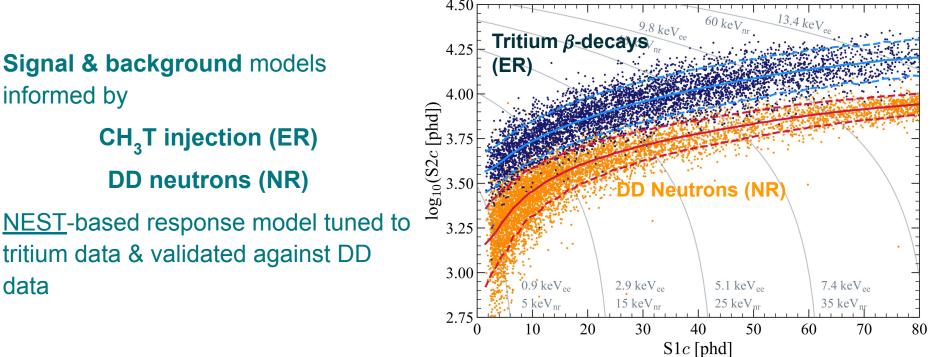
ERs: ^{83m}Kr, ^{131m}Xe, Activation lines, Rn-chain α 's, CH₃T (tritium), ²²⁰Rn, + more

NRs: AmLi, deuterium-deuterium (DD) neutrons, YBe

light collection efficiency, $g_1 = 0.114 \pm 0.002 \text{ phd/photon}$

charge gain, g₂ = 47.1 ± 1.1 phd/electron w/ 1 electron = 58.5 phd

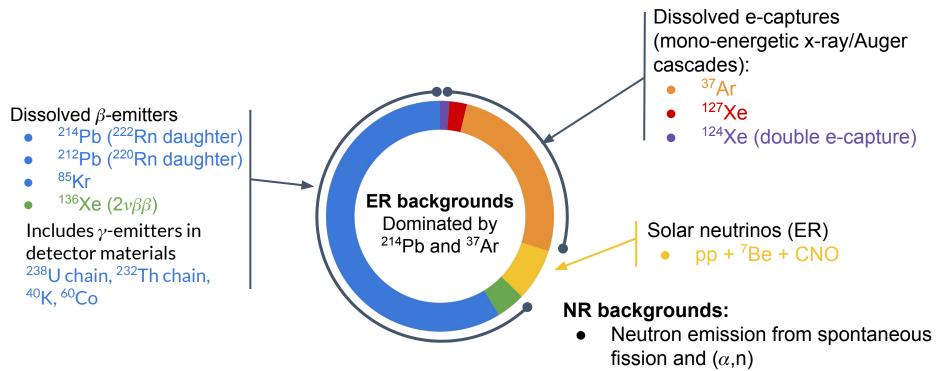
Calibration and Detector Response


Both internal and external sources calibrate response:

ERs: ^{83m}Kr, ^{131m}Xe, Activation lines, Rn-chain α 's, CH₃T (tritium), ²²⁰Rn, + more

NRs: AmLi, deuterium-deuterium (DD) neutrons, YBe

light collection efficiency, $\mathbf{g}_1 = 0.114 \pm 0.002 \text{ phd/photon}$


charge gain, g₂ = 47.1 ± 1.1 phd/electron w/ 1 electron = 58.5 phd

Background Model

Total expected ER background in WIMP ROI: 276 + [0,291] ³⁷Ar

Total expected NR background in WIMP ROI: 0.15

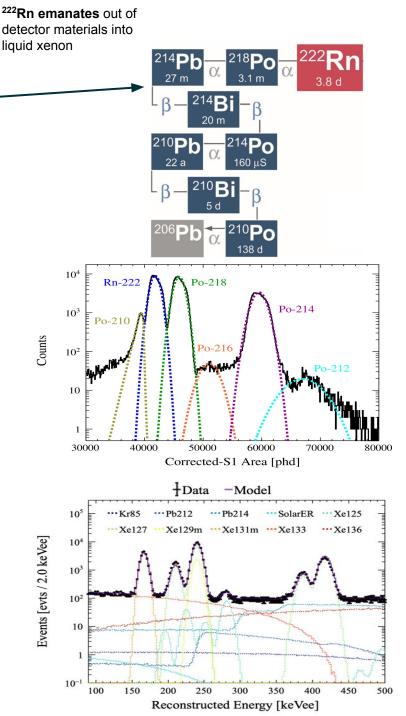
⁸B solar neutrinos

Accidental coincidence backgrounds

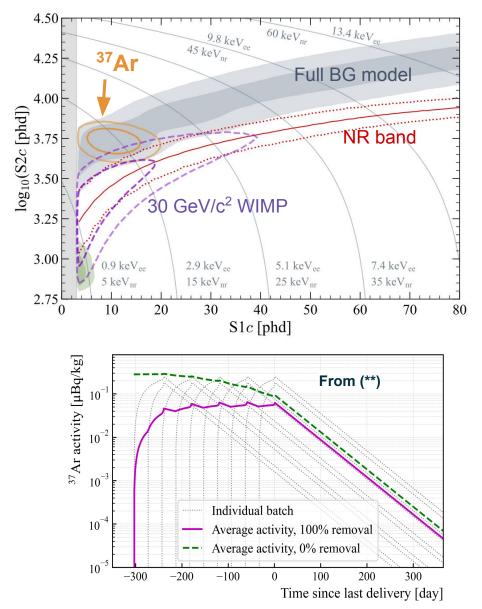
Pile up of isolated S1 and S2 pulses

Radon / ²¹⁴Pb Background

Ground state ²¹⁴Pb β -decays form dominant WIMP search background


We use two methods to constrain the amount of ²¹⁴Pb background:

- 1. High-energy α -decays before & after ²¹⁴Pb
- 2. Spectral fit at energies above WIMP ROI


Isotope	Activity [µBq/kg]	
222 Rn ($lpha$)	4.37 ± 0.31 (stat)	
218 Po ($lpha$)	4.51 ± 0.32 (stat)	
²¹⁴ Ρb (β)	3.26 ± 0.13(stat) ± 0.57(sys)	
²¹⁴ Ρο (<i>α</i>)	2.56 ± 0.21 (stat)	

Extrapolating these numbers to the WIMP ROI requires knowledge of β shape* and branching ratio

* **SJH**, Kostensalo, Mougeot, Suhonen, <u>Phys. Rev. C **102**</u>, 065501 S. Haselschwardt

³⁷Ar Background

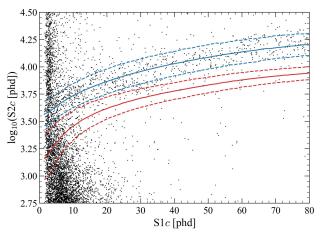
Electron capture, $T_{1/2} = 35$ days

Capture from K-shell releases 2.8 keV

Component in raw xenon stock purified away by chromatography BUT:

Cosmic-ray spallation on xenon produces ³⁷Ar continuously**...

Decay begins once xenon moves underground

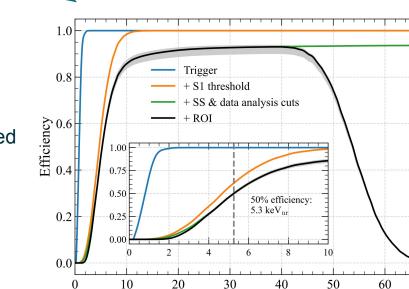

Predict 100 ³⁷**Ar events in SR1** using spallation model & Xe transport schedule

Large theoretical uncertainties

** LZ Collaboration, Phys. Rev. D 105, 082004

Data Quality

Events in the fiducial volume before pulse-based cuts


$\begin{bmatrix} 10^7 \\ 10^6 \\ 10^5 \\ 10^3 \\ 10^2 \\ 10^4 \\ 10^2 \\ 10^4 \\ 10^2 \\ 10^4 \\ 10^4 \\ 10^2 \\ 10^4$

Time-based cuts

remove periods of high rate from instrumental effects

impacts total livetime in search

largest contributor from post-S2 hold off, 70% live fraction

Recoil Energy [keV_{nr}]

Pulse-based cuts

Target coincident pile-up of S1s and S2s

Cuts on pulse shape, timing, distribution in PMTs, etc

signal acceptance evaluated using **tritium** and **AmLi** calibration data

S. Haselschwardt

17

70

Fiducial Volume & Veto Cuts

PTFE

Charge loss near detector wall degrades S2 size

Radial position resolution is degraded & background leaks in

=> S2 (electron) threshold and fiducial volume are chosen together to **expect negligible background** from wall events

Fiducial mass used here is 5.5 tonnes

S2 analysis threshold is 600 phd (10e⁻)

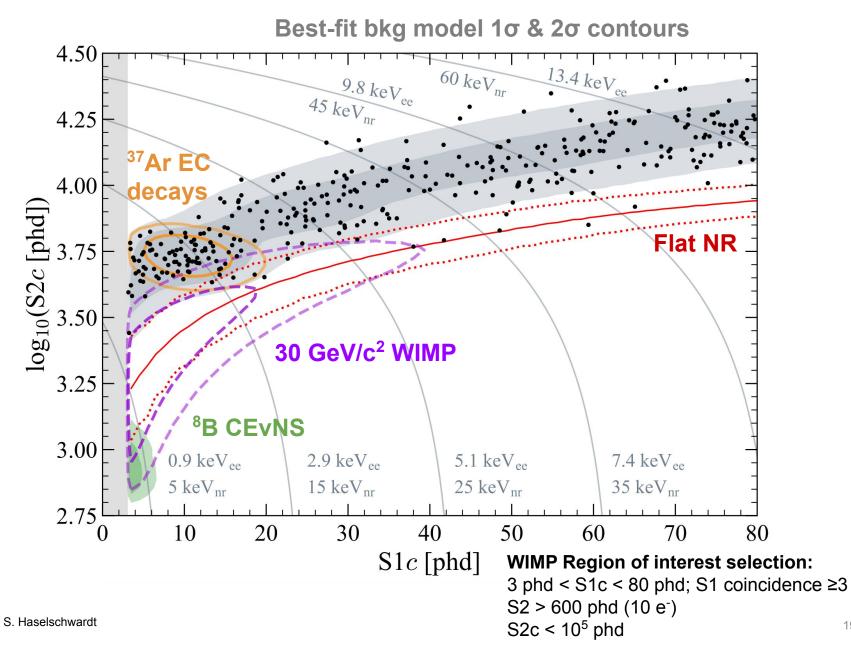
Veto tags with two windows:

- Prompt removes gammas and ¹²⁷Xe EC+gamma events
- Delayed tags neutrons capturing in OD: 1200 µs, 200 keV

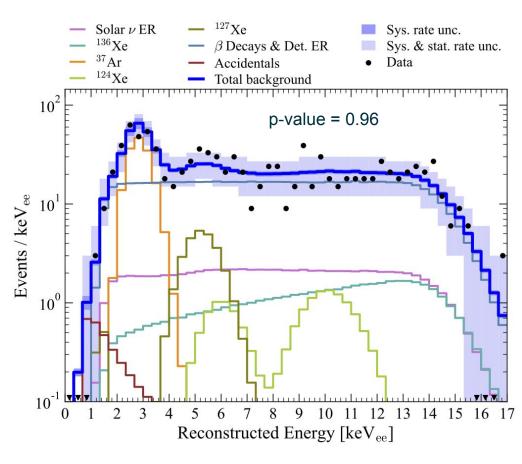
 \rightarrow Delayed tagged sample provides in situ sideband on neutron background

- Post fit prediction is **0.0**^{+0.2} evts

• Events surviving all selections

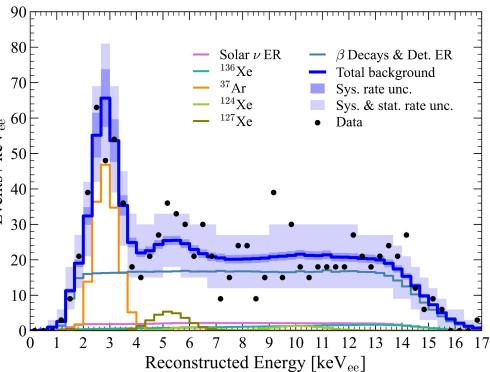

- × Skin-prompt-tagged events
- OD-prompt-tagged events

S. Haselschwardt

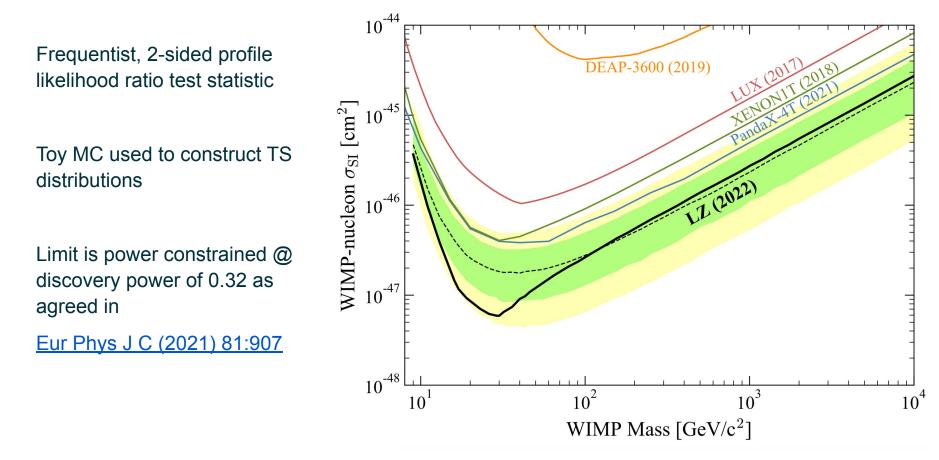

Final Dataset

335 events 60 ± 1 live days 5.5 ± 0.2 tonne FV

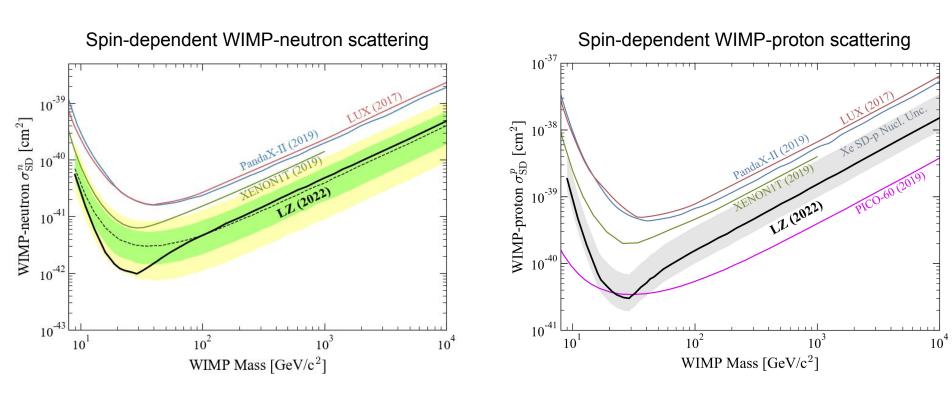
Final Dataset - Fit Results


Expected Events	Fit Result
218 ± 36	222 ± 16
27.3 ± 1.6	27.3 ± 1.6
9.2 ± 0.8	9.3 ± 0.8
5.0 ± 1.4	5.2 ± 1.4
15.2 ± 2.4	15.3 ± 2.4
0.15 ± 0.01	0.15 ± 0.01
1.2 ± 0.3	1.2 ± 0.3
276 ± 36	281 ± 16
[0, 291]	$52.1_{-8.9}^{+9.6}$
$0.0^{+0.2}$	$0.0^{+0.2}$
_	$0.0^{+0.6}$
-	333 ± 17
	218 ± 36 27.3 ± 1.6 9.2 ± 0.8 5.0 ± 1.4 15.2 ± 2.4 0.15 ± 0.01 1.2 ± 0.3 276 ± 36

Best-fit number of WIMPs is **zero** across all masses


Final Dataset - Fit Results

			_ 90 [
Source	Expected Events	Fit Result	
β decays + Det. ER	218 ± 36	222 ± 16	- 80 -
$ u { m ER}$	27.3 ± 1.6	27.3 ± 1.6	
127 Xe	9.2 ± 0.8	9.3 ± 0.8	70 -
124 Xe	5.0 ± 1.4	5.2 ± 1.4	
136 Xe	15.2 ± 2.4	15.3 ± 2.4	
${}^{8}\mathrm{B}~\mathrm{CE} \nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01	
Accidentals	1.2 ± 0.3	1.2 ± 0.3	X 20
Subtotal	276 ± 36	281 ± 16	$\int \operatorname{st} 40^{-1}$
³⁷ Ar	[0, 291]	$52.1^{+9.6}_{-8.9}$	Events / keV = 00 = 000 = 000 = 000 = 00 = 00 = 00 = 00 = 00 = 00 = 00 =
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$	^[1] 30
$30 \mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$	
Total	_	333 ± 17	


Best-fit number of WIMPs is **zero** across all masses

World-leading spin-independent limit

Leading 90% CL UL is 5.9 x 10⁻⁴⁸ cm² @ 30 GeV/c² WIMP mass

Spin Dependent Limits

Uncertainty band represents theoretical uncertainty on nuclear form factor for Xe

Summary & Outlook

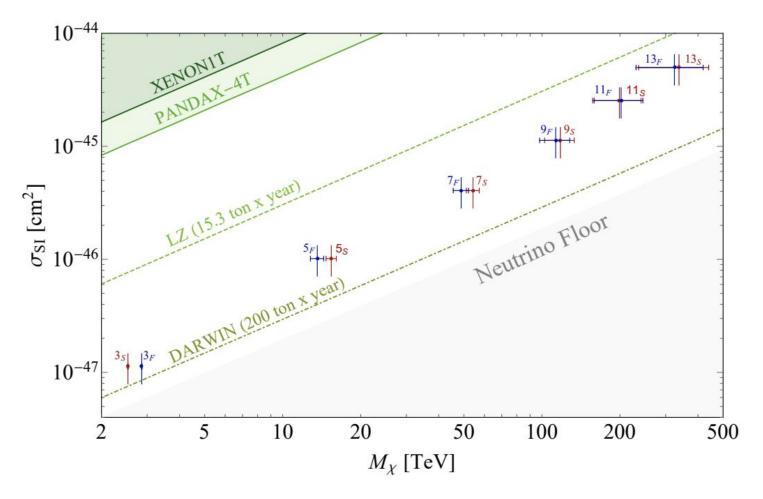
- LZ is currently running and collecting high quality data
- LZ has world-leading limits on WIMP-nucleon scattering
- More science running to come this year
- Many more physics analyses to come with LZ's data ER searches: Solar v MM, ALPs, Migdal, …
 WIMP EFT
 - Lowering S1+S2 thresholds/accidentals: ⁸B CEvNS
 - Double-weak processes (ECEC, $0\nu\beta\beta$)

. . .

XLZD Consortium - Towards the ultimate xenon detector

The **XLZD Consortium:** XENON + LZ + DARWIN

https://xlzd.org/


White Paper: arXiv2203.02309

First meeting June 2022

XLZD Consortium - Towards the ultimate xenon detector

Parameter space down to the neutrino floor is prime WIMP hiding place: <u>arxiv2107.09688</u>

Thank you!

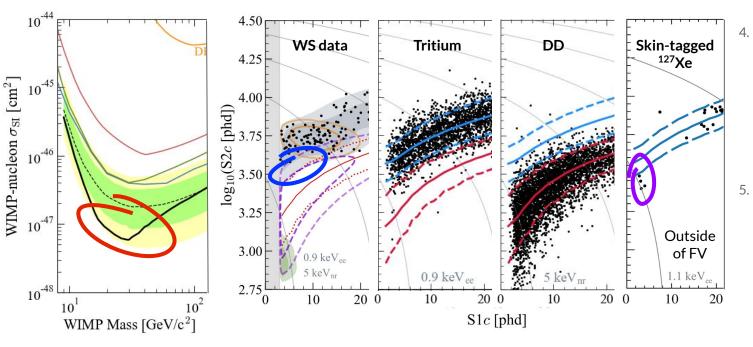
Supporting Slides

S1 and S2 Sources

S1-only sources:

PMT dark count pile-up Above-anode events Light leaks from outside TPC Radioactivity from grid wires Cherenkov from PMT windows Fluorescence of PTFE Charge loss events near TPC walls Reverse Field Region events

Rate of O(1 Hz) after cuts


S2-only sources:

Above-anode events
Extraction region gas events
Near liquid surface events
Sub-S1 threshold ER events
Electrons in S2 tails
Radon daughters from cathode
Electron emission from grids

Rate of O(10⁻³ Hz) after cuts

credit: I. Olcina

Power Constraint at 30 GeV

- Bare M-shell decays of ¹²⁷Xe
 populate near deficit region.
 Observed rate of M-shell
 decays with coincident γ-ray
 tagged by the skin is
 consistent with expectation,
 given signal efficiencies.
- 5. Deficit appears consistent with under-fluctuation of background.

- Downward fluctuation in the observed upper limit near 30 GeV/c² is a result of the deficit of events under the ³⁷Ar population.
 Due to background under-fluctuation or unaccounted for signal inefficiency? Probe the latter.
- 2. **Tritium** data analyzed identically to WS data. Deficit region is well-covered.
- DD data also shows deficit region is well-covered. (Not shown here) AmLi neutron calibration data also shows deficit region well-covered.

Best fit model in 'discrimination' projection

