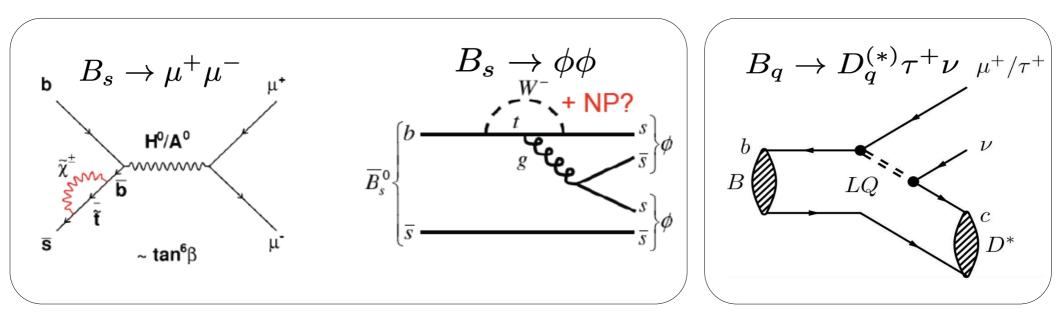
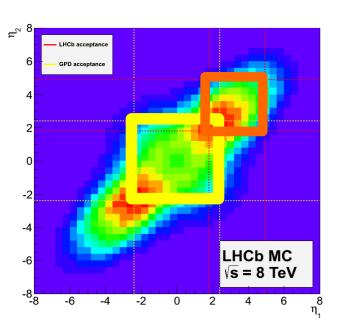
Astroparticle physics 2022 TU Wien, 5-9 September 2022

Significant LHCb results and plans for the future


M.Rotondo

Marcello Rotondo Laboratori Nazionali di Frascati On behalf of LHCb Collaboration

The flavor physics program


 New Physics evidence may appear in measurement of CP violation, rare decays or in tree level process with final states not fully explored in the past

- "High intensity frontier" is sensitive to high mass scale
- Complementary to direct searches (ATLAS & CMS)
 - When NP will be discovered, its structure need to be determined: flavor physics!

The 2010-2018 LHCb Apparatus

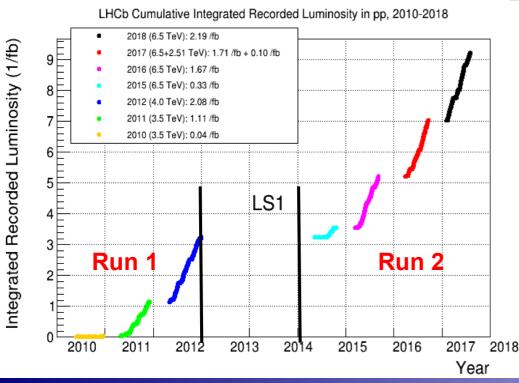
JINST 3 (2008) S08005

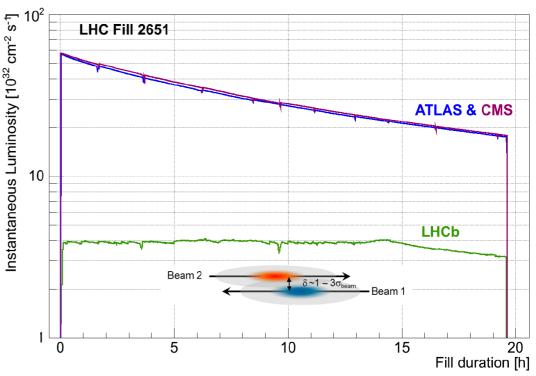
LHCb: a general purpose

spectrometer in the forward

direction (2 < η < 5) optimized for

- Huge bb cross section from pp collisions $\sigma(b\overline{b})(7 \ TeV) = 295\mu b$ $\sigma(b\bar{b})(13 \ TeV) = 560\mu b$ PLB 118, 052992(2017)
- Charm ~ 20 x Beauty JHEP 03(2016)159
- Production of $b\overline{b}$ / $c\overline{c}$ mostly in the forward direction
 - $2 < \eta < 5$: 4% of solid angle, 25% of bb acceptance (7 TeV)


- Excellent vertexing, tracking and particle identification (K, π, p, μ, e, γ)
- Low trigger threshold on hadrons, muons and photons
- Produce all types of b- and c- hadrons
- Huge cross section and large boost


Diagram by T. **Boettcher**

M.Rotondo

LHCb Detector Operations: Run1 & Run2

- LHCb designed to run at lower instantaneous luminosity compared to ATLAS and CMS
 - pp beams displaced to reduce ${\rm L}$
 - 4 x 10³² cm⁻²s⁻¹
 - Mean number of interactions per bunch crossing ~1-2

- 1 fb⁻¹ pf pp collisions at 7 TeV
- 2 fb⁻¹ of pp collisions at 8 TeV
- 6 fb⁻¹ of pp collisions at 13 TeV
- Total at end of Run2: 9 fb⁻¹

IJMP A30 (2015) 1530022

M.Rotondo

LHCb flavour physics program

CKM and CP violation

Rare decays

Spectroscopy

Electroweak, QCD

Ion physics, fixed target

Dark Sector

Sin2 β , γ , Φ_s , $|V_{ub}|/|V_{cb}|$, semileptonics, CPV in B⁰, B_s, D⁰, b-baryons...

 $\begin{array}{l} B_{d,s} \rightarrow \mu\mu, \ B_{d,s} \rightarrow \tau\tau, \ B_{s} \rightarrow \gamma\gamma, \ B_{d,s} \rightarrow \tau\mu, \\ b \rightarrow s\mu^{+}\mu^{-}, \ b \rightarrow se^{+}e^{-}, \ K \rightarrow \mu\mu, \ D \rightarrow \mu\mu \end{array}$

Tetraquarks, pentaquarks, double-heavy hadrons, excited states...

Z, W, top, $H \rightarrow bb$, $H \rightarrow cc$, proton structure...

Heavy ions, p-Pb, p-Gas (SMOG) ...

Long lived particles, dark photon...

Inclusive channels, or channels with many neutrals are difficult in LHCb

Complementarity with Belle-II

M.Rotondo

Outline

CKM and CP violation

Rare decays

Spectroscopy

Electroweak, QCD

Ion physics, fixed target

Dark Sector

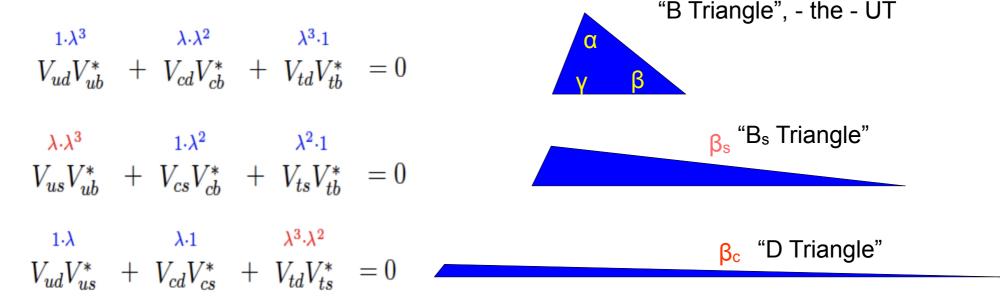
LHCb: preparation for Run3 Upgrade II γ , Φ_s , $|V_{ub}|/|V_{cb}|$, anomalies In b \rightarrow c

Status and news states

p-Pb, p-Gas (SMOG)

LHCb talks

Ying-Rui Hou: Rare B decays and flavour anomalies at LHCb


Federico Lazzari: LHCb charm physics

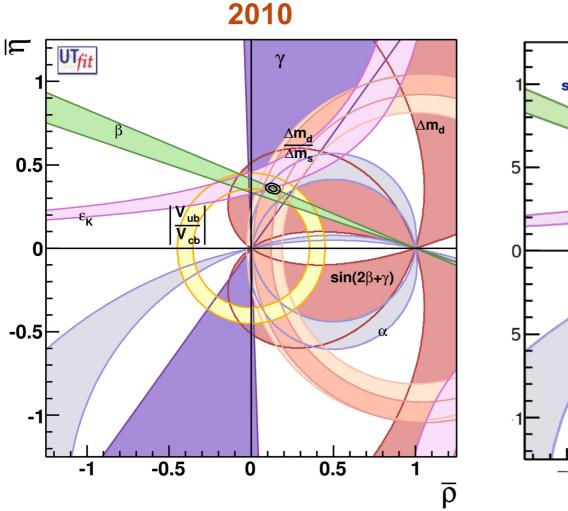
M.Rotondo

CKM and CP Violation (and a bit of LFU)

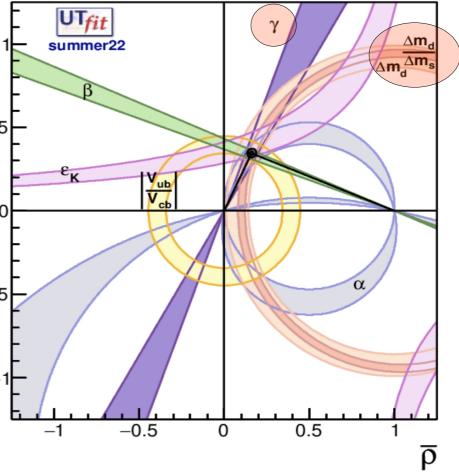
CKM and Unitarity Triangle

- Up to O(λ^6) the CKM matrix is $V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 \\ -\lambda + \frac{1}{2}A^2\lambda^5 \left[1 - 2(\bar{\rho} + i\bar{\eta})\right] \\ A\lambda^3 \left[1 - (\bar{\rho} + i\bar{\eta})\right] & - \end{pmatrix}$
- Many relations from Unitarity

- Measure CKM quantities from loop and tree level processes \rightarrow overconstrain the UTs, check the SM


IPA 2022

Single phase: responsible for all know CPV In the Standard Model


... 3

$$\lambda \qquad \qquad A\lambda^{3}\left(\bar{\rho}-i\bar{\eta}\right) \\ 1 - \frac{1}{2}\lambda^{2} - \frac{1}{8}\lambda^{4}(1+4A^{2}) \qquad \qquad A\lambda^{2} \\ -A\lambda^{2} + \frac{1}{2}A\lambda^{4}\left[1 - 2(\bar{\rho}+i\bar{\eta})\right] \qquad 1 - \frac{1}{2}A^{2}\lambda^{4}$$

UT: immense progresses

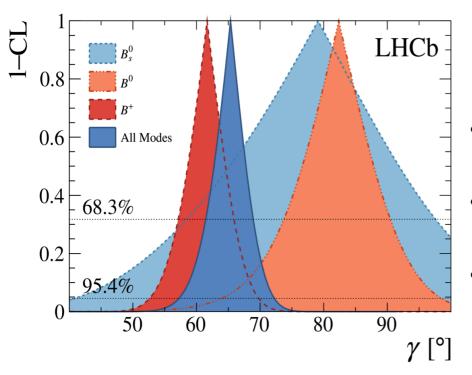
2022

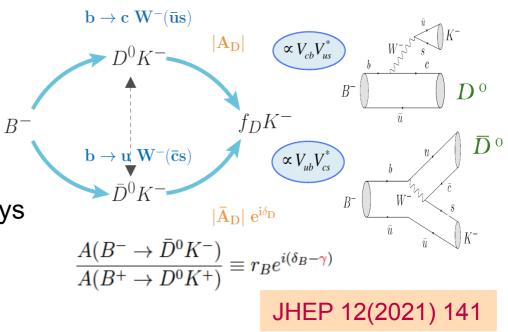
- Crucial inputs from LHCb
 - Measurements of γ (Φ_{3})
 - B_s oscillations

M.Rotondo

IPA 2022

M. Bona's talk


'CKM metrology"


Angle y

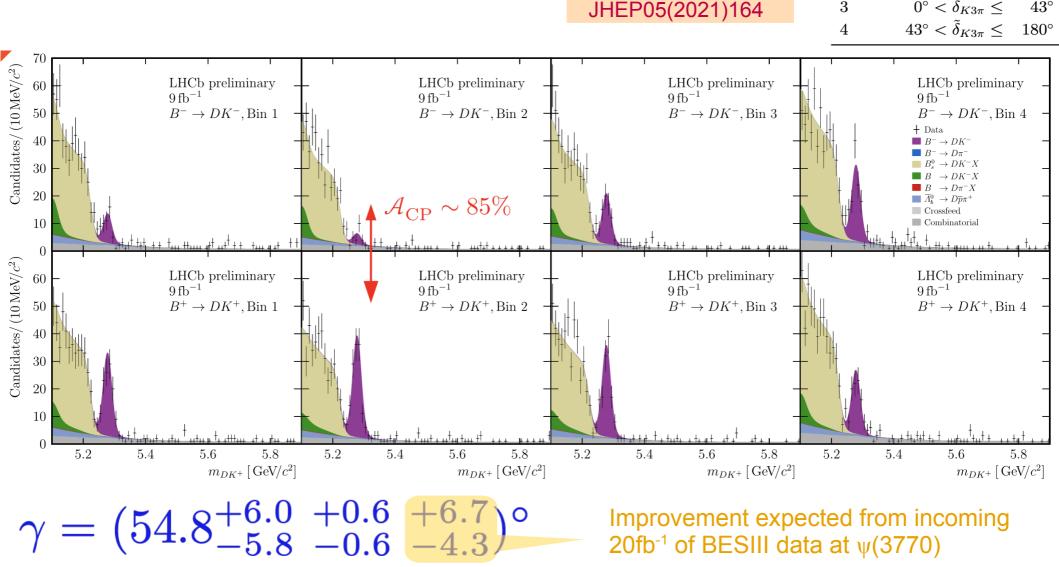
- From tree level processes
- Exploit interference between amplitudes

 $f_D = \pi^+ \pi^-, K^+ K^- \qquad \text{GLW}$ $K^+ \pi^- \qquad \text{ADS}$ $K_S^0 \pi^+ \pi^- \qquad \text{GGSZ}$

- Combination of 15 B-decays and 9 D-decays LHCb measurements
 - Simultaneous fit of γ and D^o mixing parameters (x = $\Delta M/\Gamma$ and y= $\Delta \Gamma/2\Gamma$)

$$\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$$

IPA 2022


 $\gamma_{\text{indirect}} \approx (65.5^{+1}_{-2})^{\circ}$

- Critical input from BES-III (CLEO-c) for D decay parameters
- Some B decays not updated yet to the full Run1+2 dataset
- Improved determination of D-mixing parameters!

Angle γ from B[±] \rightarrow D⁰K[±], D⁰ \rightarrow K3 π

Analysis based on T.Evans et al. Phys.Lett.B 802 (2020) 135188

D decay hadronic parameters from CLEO-c, BES III, LHCb

M.Rotondo

IPA 2022

LHCb-PAPER-2022-017 in preparation

Bin

1

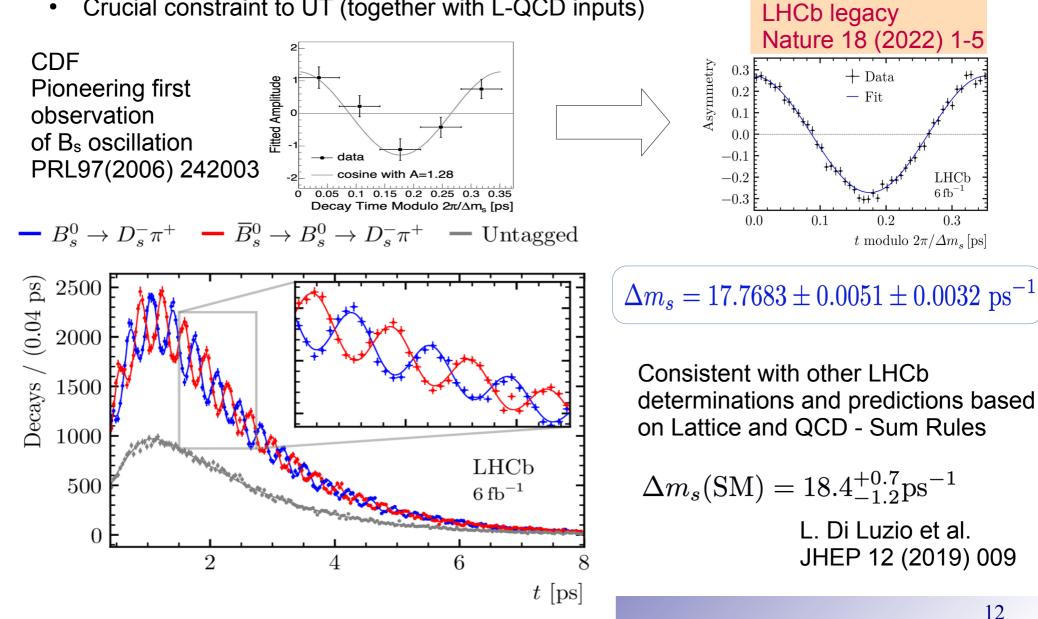
 $\mathbf{2}$

3

Limits $(\tilde{\delta}_{K3\pi})$

 0°

 43°

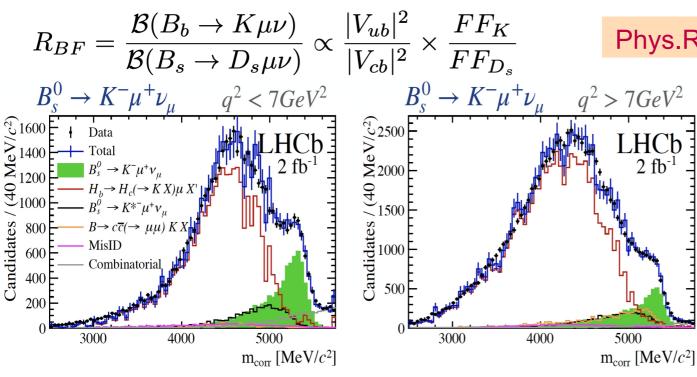

 $-180^{\circ} < \tilde{\delta}_{K3\pi} \leq -39^{\circ}$

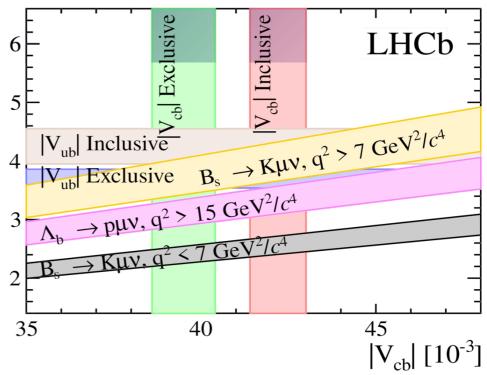
 $0^{\circ} < \tilde{\delta}_{K3\pi} <$

 $-39^{\circ} < \tilde{\delta}_{K3\pi} \leq$

Textbook measurement: B_s oscillation

- Measurement of $\Delta m_s = m_H m_L$ is crucial for γ measurements with time dependent $B_s \rightarrow D_s K(2\pi)$ measurements
 - Crucial constraint to UT (together with L-QCD inputs)


Sides of UT


 Pioneering result on |V_{ub}|/|V_{cb}| using Λ_b semileptonic decays

$$R_{BF} = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu\nu)} \propto \frac{|V_{ub}|^2}{|V_{cb}|^2} \times \frac{FF_p}{FF_{\Lambda_c}}$$

Nature Physics 11 (2015) 743

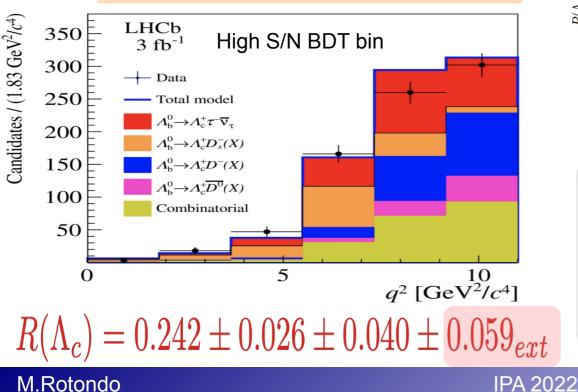
- Only 1 LQCD calculation available!
- Similar measurement with B_s decays

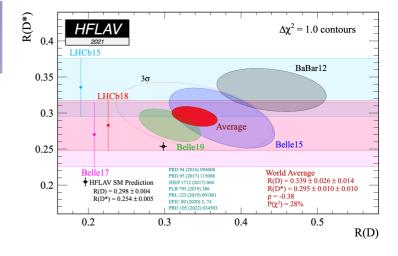
Phys.Rev.Lett. 126 (2021) 081804

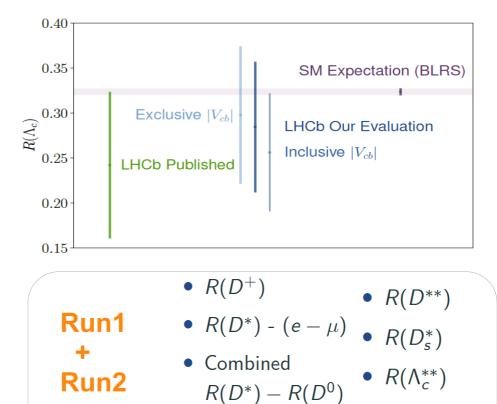
Discrepancy between low and high q² regions needs to be understood

For LQCD: golden mode!

LHCb also measured $|V_{cb}|$ with $B_s \rightarrow D_s(*)$ decays

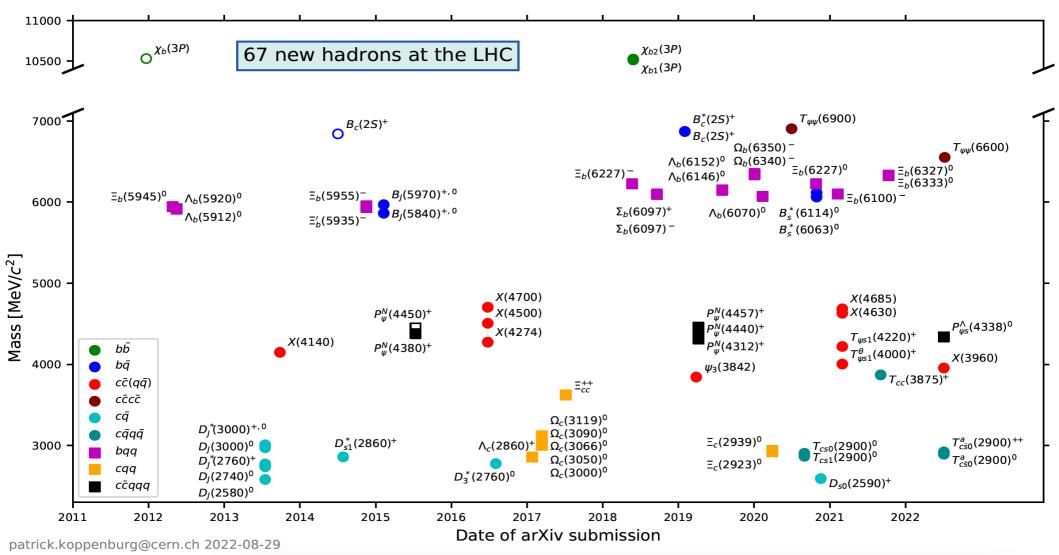

PRD101 (2020) 072004


M.Rotondo

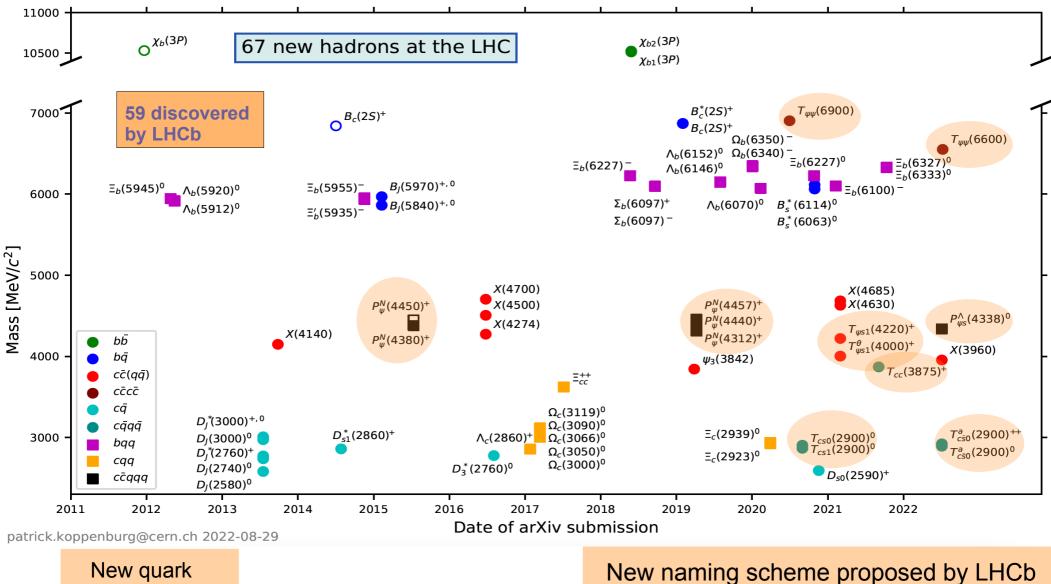

 10^{-3}

LFU in $b \rightarrow c$ transitions

- Intriguing tension in R(D*) $R(D^{(*)}) = \frac{\mathcal{B}(B^0 \to D^{(*)-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{(*)-}\mu^+\nu_{\tau})}$
 - Tree-level process
 - NP coupling to 3rd generation?
 - Possibile connetions with $b \to s \ I^*I^-$ anomalies
- First measurement using baryons (only Run1)
 - 1st observation of $\Lambda_b \rightarrow \Lambda_c \tau \nu$
 - Tau reconstructed in τ → 3 π ν Phys.Rev.Lett. 128 (2022) 191803



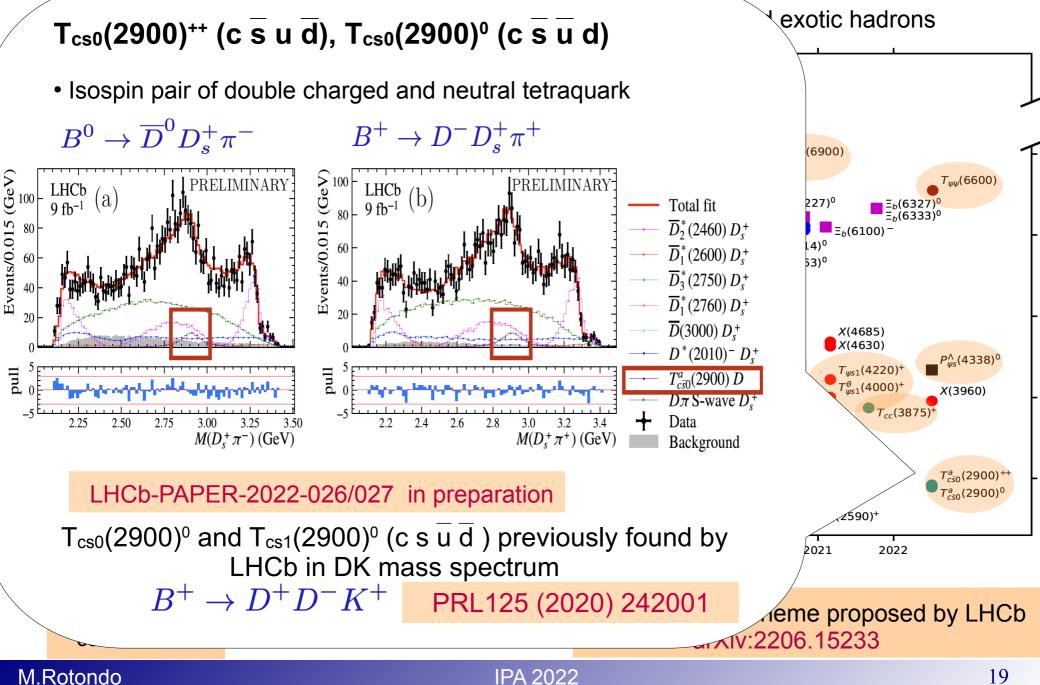
+ additional observables with angular distributions


14

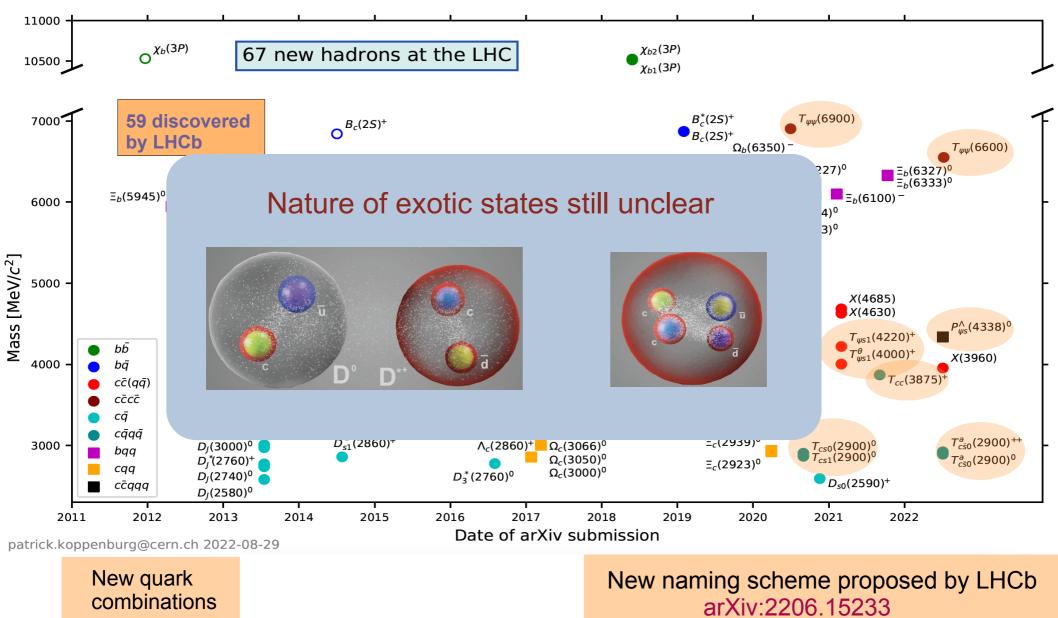
Exotic hadron states

LHC experiments steadily deliver new discoveries of conventional and exotic hadrons


LHC experiments steadily deliver new discoveries of conventional and exotic hadrons

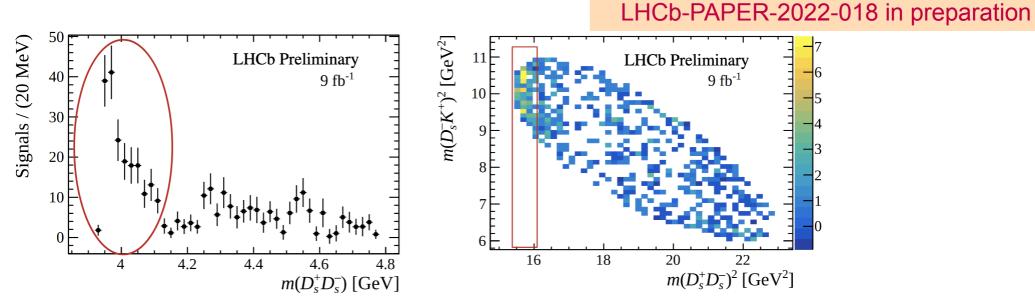

combinations

New naming scheme proposed by LHCb arXiv:2206.15233


M.Rotondo

M.Rotondo

LHC experiments steadily deliver new discoveries of conventional and exotic hadrons

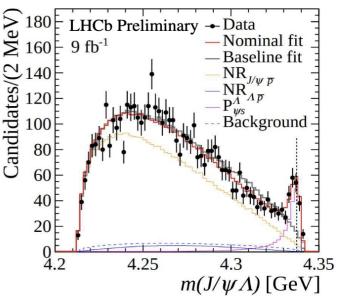


M.Rotondo

New entries in the arena

Resonant structure near D_s⁺D_s⁻ threshold

- $B^+ \to D_s^+ D_s^- K^-$
- Amplitude analysis favors exotic (c \overline{c} s \overline{s}) state with J^{PC}=1⁺⁺


• First strange pentaquark $P^{\mu_s}(4338)$ (c c u d s)?

 $B^- \to J/\psi \Lambda \overline{p}$

- Structure of a Jpsi/A resonance
- $J^{P} = \frac{1}{2}$ + is preferred

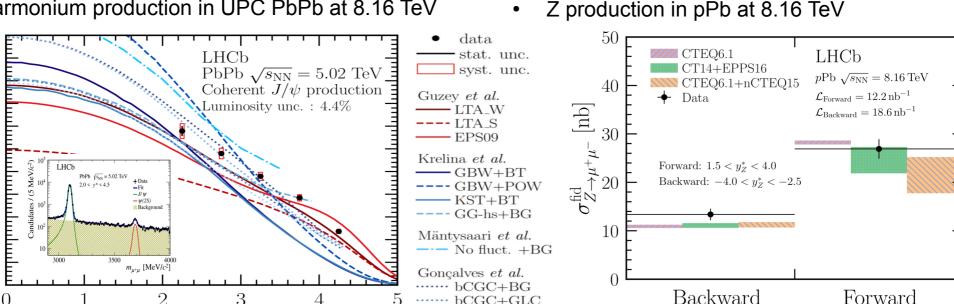
M.Rotondo

LHCb-PAPER-2022-031 in preparation

Heavy ions

Heavy ions and fixed target

3


SMOG: Gas injected system for fixed-target physics

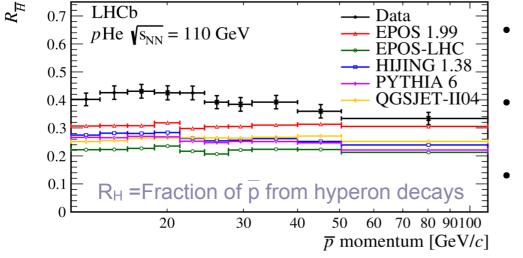
4

5

 y^*

Charmonium production in UPC PbPb at 8.16 TeV

······ bCGC+GLC IP-SAT+BG


IP-SAT+GLC

LHCb-PAPER-2022-012

2

arXiv:2205.09009 accepted by EPJC

LHCb-PAPER-2022-009

Important input for p flux calculation in cosmic rays

- Event generators used in cosmic rays physics consistently underestimate the data
- Consistent with pp result from ALICE and CMS

M.Rotondo

5.5

5.0

4.5

3.0

2.5

2.0

1.5

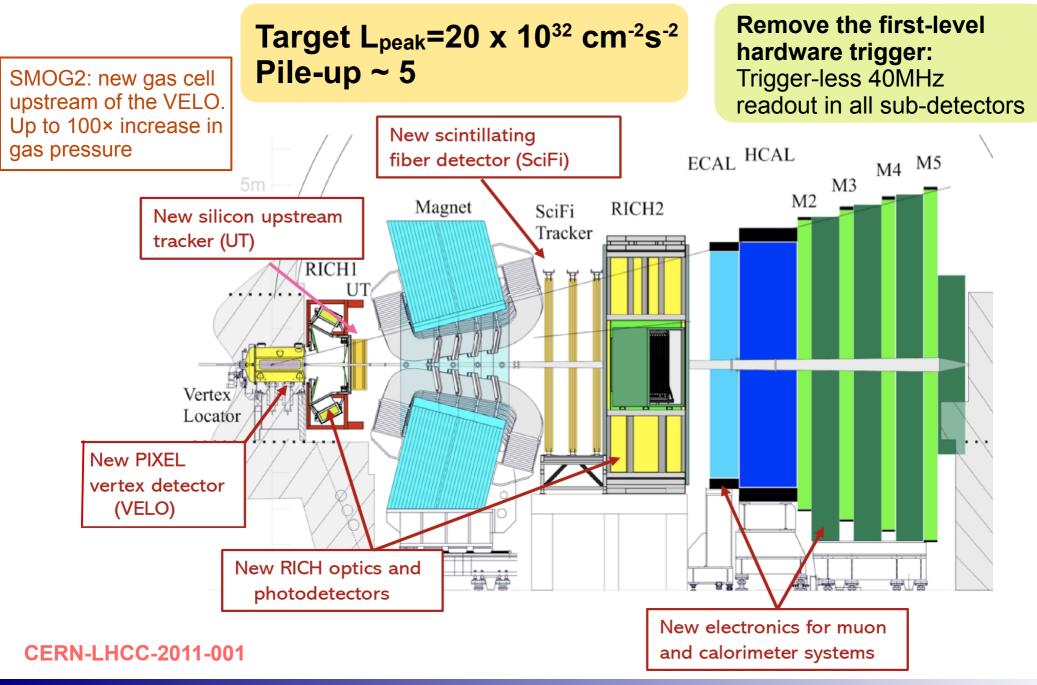
1.0

0.5

0.0

0

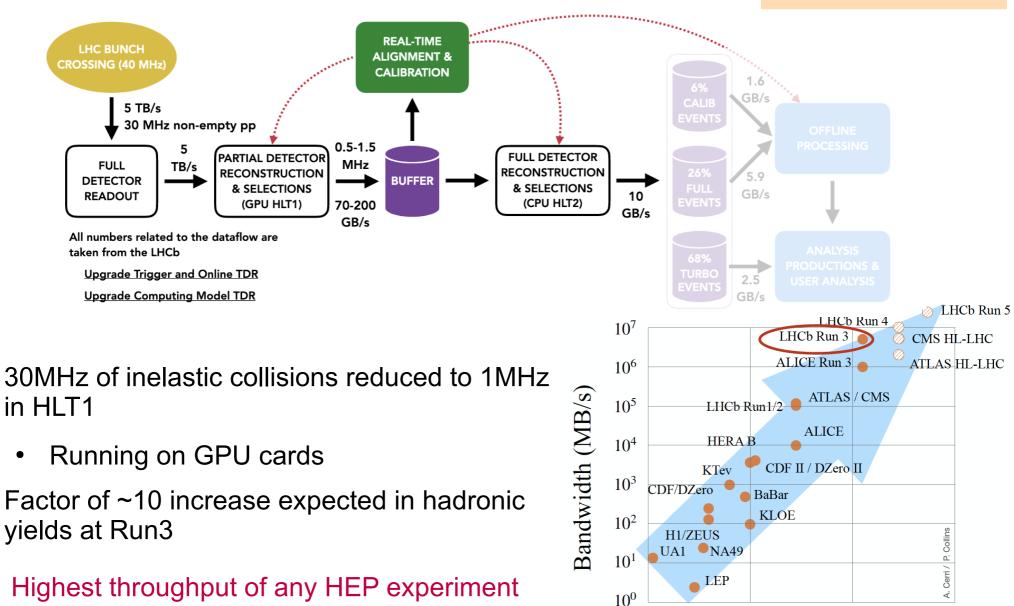
[역 4.0 3.5


 $\mathrm{d}\sigma_{\mathrm{J/\psi}}/\mathrm{d}y^{*}$

Forward

Beyond LS2

LHCb Upgrade I: Run3 and Run4



Fully software trigger

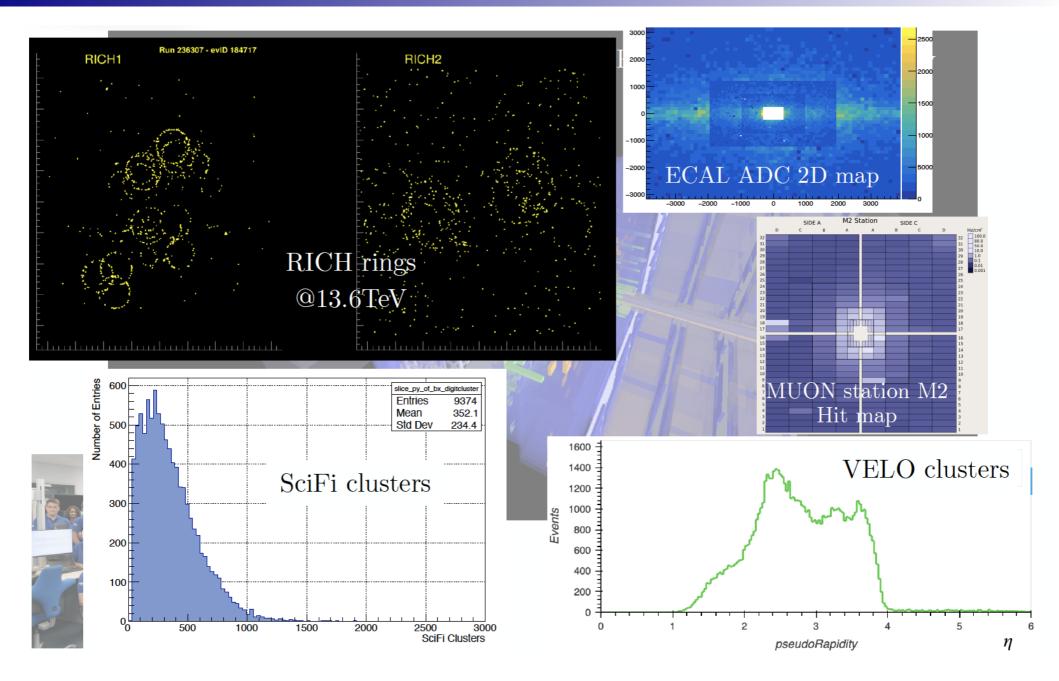
• All sub-detector readout at 40 MHz \rightarrow fully software trigger

CERN-LHCC-2014-016 CERN-LHCC-2020-006

M.Rotondo

IPA 2022

1980


2000

2020

Year

2040

First data at 13.6 TeV

M.Rotondo

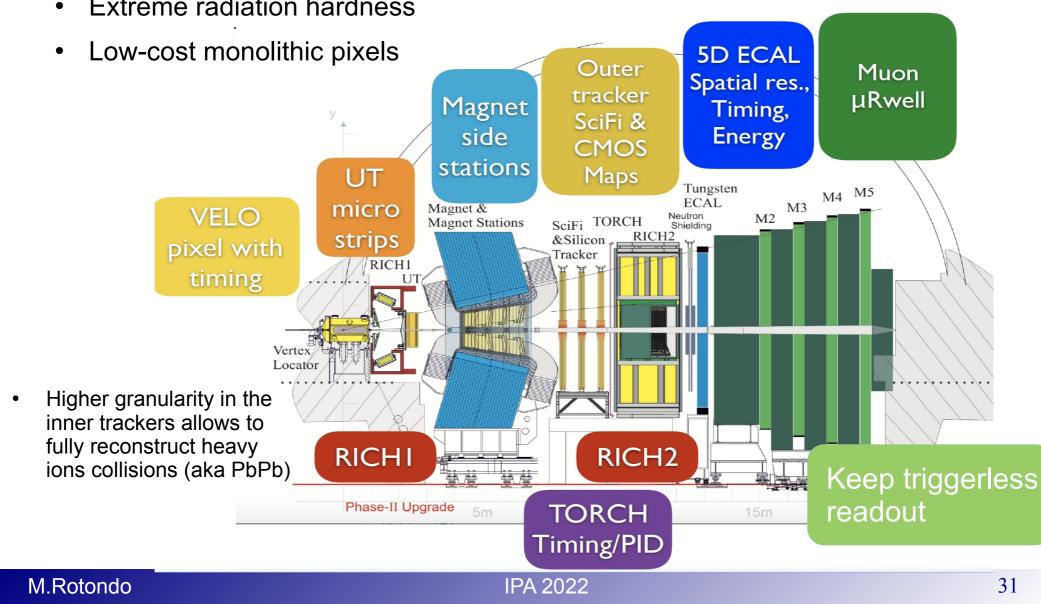
IPA 2022

LHCb Upgrade I: Physics Case

Observable	Current LHCb	Upgr	ade I	LHCC-2021-012
	$({ m up to } 9{ m fb}^{-1})$	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	
CKM tests				
$\gamma~(B ightarrow DK,~etc.)$	4° [9, 10]	1.5°	1°	
$\phi_s \; \left(B^0_s ightarrow J\!/\!\psi \phi ight)$	$32 \mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	
$ V_{ub} / V_{cb} ~(\Lambda^0_b o p\mu^-\overline{ u}_\mu,~etc.)$	6% [29, 30]	3%	2%	
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	$36 imes 10^{-4}$ [34]	$8 imes 10^{-4}$	$5 imes 10^{-4}$	
$a^{s}_{ m sl} \; (B^0_s o D^s \mu^+ u_\mu)$	$33 imes 10^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	
<u>Charm</u>	_			
$\Delta A_{C\!P}~(D^0 ightarrow K^+ K^-, \pi^+ \pi^-)$				
$A_{\Gamma}~(D^0 ightarrow K^+ K^-, \pi^+ \pi^-)$	$11 imes 10^{-5}$ [38]	$5 imes 10^{-5}$	$3.2 imes10^{-5}$	
$\Delta x \left(D^0 ightarrow K^0_{ m s} \pi^+ \pi^- ight)$	$18 imes 10^{-5}$ [37]	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$	
Rare Decays				
$\overline{\ \ }\mathcal{B}(B^0 ightarrow \mu^+ \mu^-)/\mathcal{B}(B^0_s ightarrow \mu^+ \mu^-)$	(-) 69% $[40, 41]$	41%	27%	
$S_{\mu\mu}~(B^0_s o\mu^+\mu^-)$				
$A_{ m T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	Belle-II: Belle II
$A_{\mathrm{T}}^{\mathrm{Im}}~(B^0 ightarrow K^{*0} e^+ e^-)$	0.10 52	0.060	0.043	1) Unique capability to
${\cal A}_{\phi\gamma}^{ar{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	perform inclusive
$S_{\phi\gamma}^{++}(B^0_s o \phi\gamma)$	0.32 [51]	0.093	0.062	measurements
$lpha_{\gamma}(\Lambda^0_b o \Lambda\gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097	2) precise studies with
Lepton Universality Tests	0.20			modes involving many
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	neutrals
$R_{K^*}(B^0 \to K^{*0}\ell^+\ell^-)$	0.12 $\overline{61}$	0.034	0.022	
$R(D^*)$ $(B^0 ightarrow D^{*-} \ell^+ u_\ell)$	0.026 [62, 64]	0.007	0.005	

M.Rotondo

LHCb at HL-LHC (LS4)



LHCb at HL-LHC (LS4)

- Fully exploit the HL-LHC for flavor physics & beyond
- Upgrade II for Run 5 and 6
 - L_{peak}=1.5 x 10³⁴ cm⁻²s⁻²
 - Pile-up ~40
 - Lint=300 fb⁻¹
 - F-TDR approved by LHCC
 - Target same performances as Run3
 - New detector technologies are needed
 - Subdetector TDRs at start of LS3
 - News collaborators welcome!

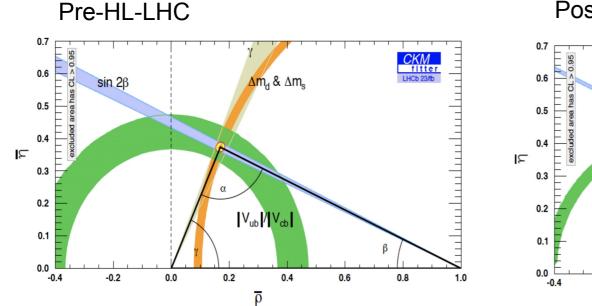
LHCb Upgrade II detector

- R&D phase of new technologies
 - Precise timing for tracking and PID ECAL
 - Extreme radiation hardness

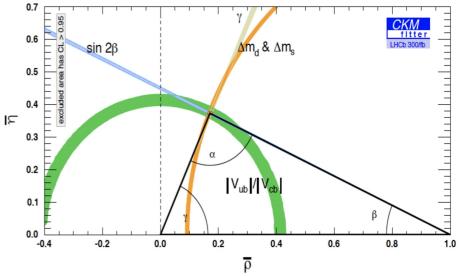
Detector must be faster, harder, finer, smarter

CERN-LHCC-2017-003

The B -Triangle: LHCb + Belle II (50 ab⁻¹)

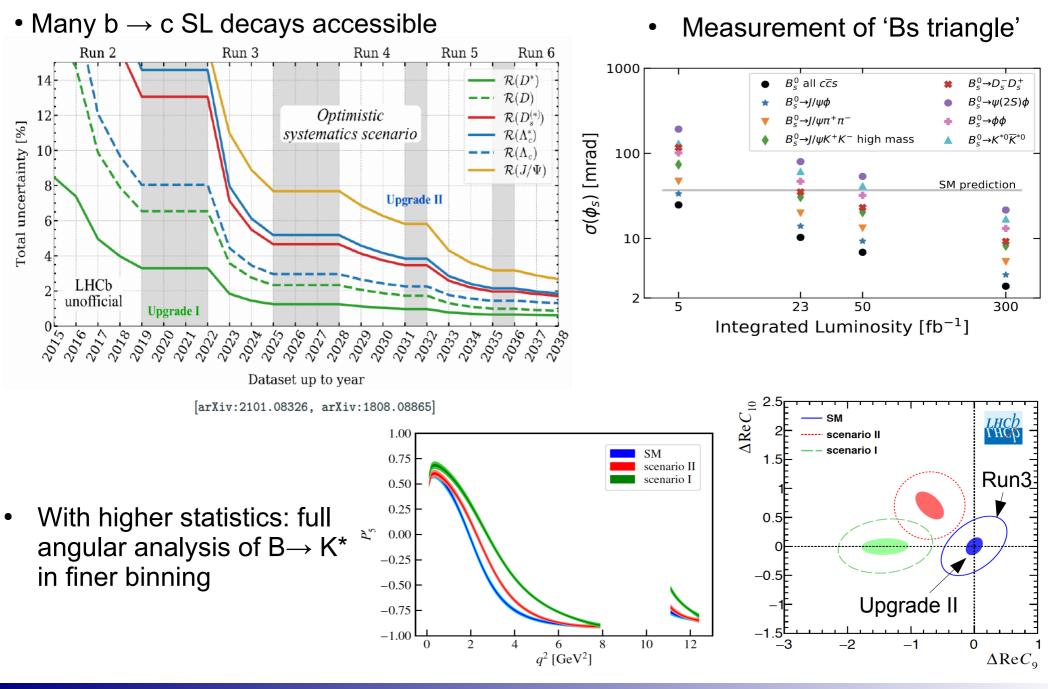


α β


arXiv:1808.08865

External crucial inputs:

- improvements from Lattice QCD
- improvements on external inputs
 Branching ratios (Λ_c → pKπ): Bellell, BESIII
 Strong phases over Dalitz of D decays: BESIII


Post-HL-LHC

M.Rotondo

Prospects on LFU and Anomalies

ArXiv:1812.07638 CERN-LPCC-2018-06

M.Rotondo

Conclusion

- Successful Run1 and Run2: 3+6 fb⁻¹, still many analysis ongoing
- Upgrade Phase I: commissioning ongoing
 - 10 times more data (20 times more hadronic events)
 - Complementarity with Belle
 - Synergy between LHCb, ATLAS and CMS on some important channels
- Upgrade Phase II: integrate overall sample larger than 300fb⁻¹
 - Several theoretically-clean observables can be drastically improved
 - New Physics scale probed will be highly increased
 - Widen the set of observables under study to search and characterize new physics (semitauonic, b→sll,...)
 - Many technological challenges, not all the answers yet:
 - You are welcome to join the enterprise!
- Strong program beyond flavour exploiting unique acceptance
 - Spectroscopy, electroweak, nuclear physics

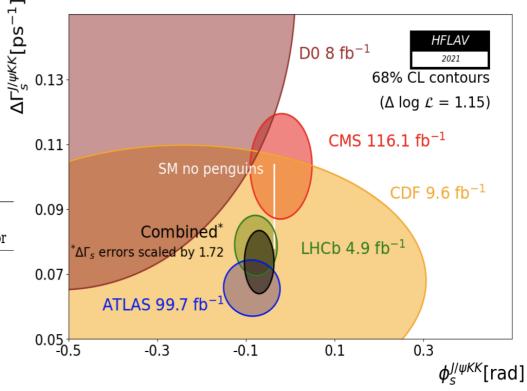
Backup

$\chi_{c1}(3872)$ in pp and pPb collisions

Production mechanism provides information about the structure of exotic hadrons.

PRL 126, 092001 (2021)

CMS $B(\chi_{_{cl}}(3872) \rightarrow J/ \psi \ \pi^+ \ \pi$ $p_{\rm T} > 15 \, {\rm GeV}/c$ 0.14HCb R $\frac{\sigma_{\chi_{cl}(3872)}}{\sigma_{\psi(2S)}} \frac{B(\chi_{cl}(3872) \rightarrow J/\psi\pi^{+}\pi^{-})}{B(\psi(2S) \rightarrow J/\psi\pi^{+}\pi^{-})}$ + b decays ŧ + Prompt $pp \sqrt{s} = 8 \text{ TeV}$ 0.12 $B(\psi(2S) \rightarrow J/\psi$ $p_{_{T}} > 5 \text{ GeV}/c$ LHCb Comover Interaction Model, Esposito et al. Preliminary 0.1 Compact Molecule Molecule (coalescence) tetraquark (geometric) $p_{_{\rm T}} > 5 {\rm ~GeV}/c$ 0.08 × 0.06 $\sigma_{\chi_{_{c_l}}^{(3872)}}$ $\sigma_{\psi^{(2S)}}$ 0.04 ψ(2S) 10^{-1} 0.02 0 1.5 < v < 4-5<y<-2.5 lyl<0.9 2<v<4.5 50 100 150 0 200 pp Pbp N_{tracks} p Pb PbPb


First evidence of $\chi_{c1}(3872)$ production in *p*Pb collisions. $\sigma_{\chi_{c1}(3872)}/\sigma_{\psi(2S)}$ appears to decrease with multiplicity in *pp*, but increase with increasing collision system size.

LHCb-CONF-2022-001

Current status: Φs with $B_s \rightarrow J/\psi$ K+K-

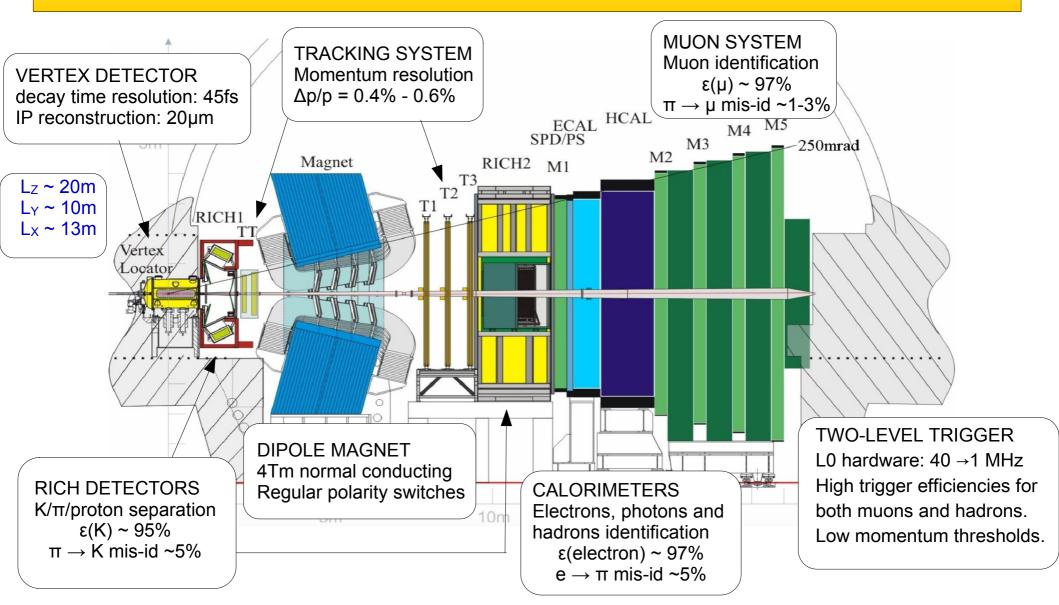
- B_s → J/ψ K⁺K⁻ requires a full angular analysis because of the presence of scalar K⁺K⁻contribution
- LHCb added also J/ψ π⁺π⁻, ψ(2S) K⁺K⁻, D_s⁺D_s⁻

Parameter	all $b \to c\bar{c}$	s	$B^0_s ightarrow J\!/\!\psi\phi$		
	fit result	scale factor	fit result	scale factor	
$ A_0 ^2$	0.520 ± 0.003	1.46	0.519 ± 0.003	1.46	
$ A_{\perp} ^2$	0.253 ± 0.006	2.45	0.254 ± 0.006	2.37	
$ A_{ m S} ^2$	0.030 ± 0.005	1.00	0.030 ± 0.005	1.00	
δ_{\parallel}	3.18 ± 0.06	1.46	3.18 ± 0.06	1.46	
δ_{\perp}	3.08 ± 0.12	2.04	3.08 ± 0.13	2.07	
$\delta_{ m S}-\delta_{\perp}$	0.23 ± 0.05	1.00	0.23 ± 0.05	1.00	
Γ_s	$0.663\pm0.004~{\rm ps}^{-1}$	2.60	$0.664\pm0.004~{\rm ps}^{-1}$	2.44	
$\Delta\Gamma_s$	$+0.077\pm0.006~{\rm ps}^{-1}$	1.78	$+0.074\pm0.006~{\rm ps}^{-1}$	1.72	
ϕ_s	-0.049 ± 0.019	1.00	-0.070 ± 0.022	1.00	

 LHCb, ATLAS and CMS have not analyzed the full Run2 yet

LHCb			ATLAS					
	Category	$\varepsilon_{ m tag}(\%)$	\mathcal{D}^2	$arepsilon_{ ext{tag}}\mathcal{D}^2(\%)$	Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
Tagging	OS-only	11.35	0.078	0.88 ± 0.04	Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
performances	SSK-only	42.57	0.032	1.38 ± 0.30	Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
	OS&SSK	23.84	0.104	2.47 ± 0.15	Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
					Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
	Total	77.76	0.061	4.73 ± 0.34	Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01

M.Rotondo

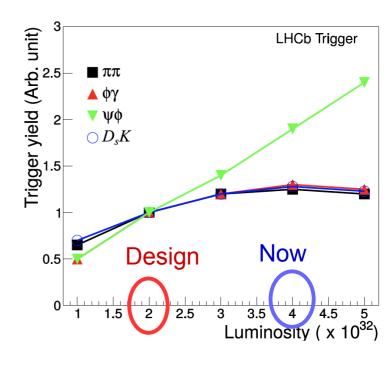

LHCb Upgrade II: Physics Case

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II
EW Penguins				
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 275	0.031	0.032	0.008
$R_{\phi}, R_{pK}, R_{\pi}$	·	0.08,0.06,0.18	_	$0.02,\ 0.02,\ 0.05$
CKM tests				
$\overline{\gamma, \text{ with } B^0_s} \to D^+_s K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	_	$4 \mathrm{mrad}$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad	$35 \mathrm{\ mrad}$	_	$9 \mathrm{mrad}$
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	$39 \mathrm{\ mrad}$	_	$11 \mathrm{mrad}$
$a_{ m sl}^s$	33×10^{-4} 211	10×10^{-4}	_	3×10^{-4}
$ ec{V}_{ub} / V_{cb} $	6% [201]	3%	1%	1%
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%
$\tau_{B_s^0 \to \mu^+ \mu^-}$	22% 264	8%	_	2%
$S_{\mu\mu}^{s}$	<u> </u>	_	_	0.2
$b \to c \ell^- \bar{\nu_l} { m LUV} { m studies}$				
$\overline{R(D^*)}$	0.026 215 217	0.0072	0.005	0.002
$R(J/\psi)$	0.24 220	0.071	_	0.02
Charm				
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [613]	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}
$A_{\Gamma} \approx x \sin \phi$	2.8×10^{-4} 240	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}
$x\sin\phi$ from multibody decays	·	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm s}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$

N A			-		
IVI	.ĸ	\mathbf{O}	[0]	nd	0

The 2010-2018 LHCb Apparatus

LHCb: a general purpose spectrometer in the forward direction optimized for highprecision heavy-flavor physics


M.Rotondo

JINST 3 (2008) S08005

LHCb Upgrade I

- Excellent results from Run-I and Run-II physics data analysis
- In most of the case the precision is limited by statistical uncertainties
 - Hardware trigger limited @1MHz rate
 - The high p_{T} and E_{T} cuts saturate hadronic channels

- At higher luminosity the current LHCb could not perform successfully track reconstruction and PID information
 - Larger number of primary vertexes: much higher track multiplicity
 - Higher occupancy in the detector
 - Processing time in the online farm too high

• $L = 20 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

M.Rotondo