LHCb charm physics (including CPV)

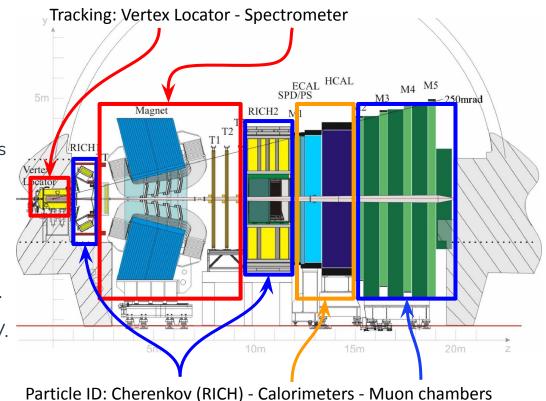
Federico Lazzari (università di Pisa, INFN) on behalf of the LHCb Collaboration

IPA 2022 - Sep 5 – 9 2022 - Wien

Charm Physics at LHCb

- Unique probe to study CPV in up-type quark.
- Difficult precise theoretical predictions.
- Expected small CPV ($\leq 0.1\%$).
- Large cross section: $\sigma(pp
 ightarrow c ar{c} X) pprox 2.4\,mb$ [JHEP 2016, 159 (2016)]

 $b \quad \sigma(pp o bar{b}X) pprox 144\,\mu b \quad @\sqrt{s} = 13\,TeV$ [Phys. Rev. Lett. 118, 052002 (2017)]


LHCb charm program:

- Search for direct *CP* violation.
- Search for CP violation in mixing.
- Measurement of rare decays.
- Amplitude analysis in multi-body decays.
- Spectroscopy.

Arguments of this talk

LHCb

- Single arm spectrometer
- Vertex Locator (VELO): impact parameter resolution $\sigma(IP) = (15+29/P_{\tau})\mu m$
- Spectrometer: measurement of tracks momentum resolution $\Delta P/P = 0.5\%$ at low momentum
- RICH, calorimeters, muon chambers: particle identification. $\varepsilon_{PID}(K \rightarrow K) \sim 95\%$ and $\varepsilon_{PID}(\pi \rightarrow K) \sim 5\%$.
- Run 1 (2011-2012): 3 fb⁻¹ at 7-8 TeV.
- Run 2 (2015-2018): 6 fb⁻¹ at 13 TeV.

3

Direct *CP* violation in $D^0 \rightarrow K^+K^-$ decays

Direct CP violation

• Time-integrated D^0 CP asymmetry depends on decay-time acceptance $\varepsilon(t)$ and is affected by mixing:

$$A_{CP}(f) = rac{\int arepsilon(t) \Gamma(D^0 o f) dt - \int arepsilon(t) \Gamma(ar{D}^0 o ar{f}) dt}{\int arepsilon(t) \Gamma(D^0 o f) dt + \int arepsilon(t) \Gamma(ar{D}^0 o ar{f}) dt} pprox a_f^d + rac{\langle t
angle_f}{ au_{d^0}} \Delta Y_f$$

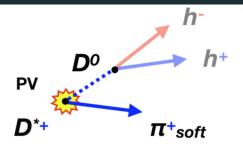
- 2019 first observation of CPV in charm decays [Phys. Rev. Lett. 122, 211803 (2019)]: $\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = a^d_{KK} - a^d_{\pi\pi} + \frac{\langle t \rangle_{KK} - \langle t \rangle_{\pi\pi}}{\tau_{D^0}} \Delta Y = (-15.4 \pm 2.9) \times 10^{-4}$
 - a^d_{KK} and $a^d_{\pi\pi}$ measurable combining ΔA_{CP} and $A_{CP}(D^0 o K^+K^-).$
 - LHCb measured $A_{CP}(D^0 o K^+K^-) = (4\pm12\pm10) imes10^{-4}$ with Run 1 data [Phys.Lett. B 767 (2017)]
 - Updated measurement of $A_{CP}(D^0 o K^+K^-)$ with Run 2 dataset [LHCB-PAPER-2022-024 (2022)] in preparation

CP asymmetry in $D^0 \rightarrow K^+K^-$

- D^0 flavor tagged from prompt $D^{*\pm} o D^{0} \pi^{\pm}_{soft}$ decays (π -tagging).
- Measure raw asymmetry:

$$A(D^0 o K^+ K^-) = rac{N(D^0 o K^+ K^-) - N(ar{D}^0 o K^+ K^-)}{N(D^0 o K^+ K^-) + N(ar{D}^0 o K^+ K^-)}$$

• Subtract production and detection asymmetries:


$$A(D^0 o K^+ K^-) = A_{CP}(D^0 o K^+ K^-) + A_{prod}(D^0) + A_{det}(\pi^\pm_{soft})$$

exploiting high-statistics D^{\pm} and D^{\pm}_{s} decays

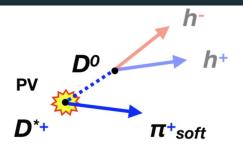
$$C_{D+}: A_{CP}(D^{0} \to K^{-}K^{+}) = +A(D^{*+} \to (D^{0} \to K^{-}K^{+})\pi_{soft}^{+}) - A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{soft}^{+}) + A(D^{+} \to K^{-}\pi^{+}\pi^{+}) - [A(D^{+} \to \overline{K}^{0}\pi^{+}) - A(\overline{K}^{0})]$$

• Particles kinematics are equalised with a reweighting procedure.

CP asymmetry in $D^0 \rightarrow K^+K^-$

- D^0 flavor tagged from prompt $D^{*\pm} o D^{0} \pi^{\pm}_{soft}$ decays (π -tagging).
- Measure raw asymmetry:

$$A(D^0 o K^+ K^-) = rac{N(D^0 o K^+ K^-) - N(ar{D}^0 o K^+ K^-)}{N(D^0 o K^+ K^-) + N(ar{D}^0 o K^+ K^-)}$$


• Subtract production and detection asymmetries:

$$A(D^0 o K^+ K^-) = A_{CP}(D^0 o K^+ K^-) + A_{prod}(D^0) + A_{det}(\pi^\pm_{soft})$$

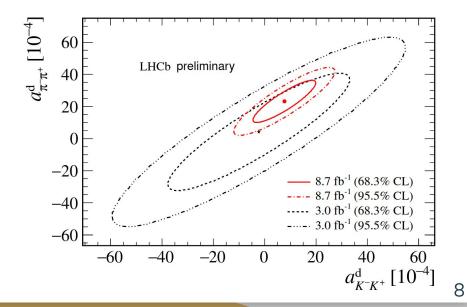
exploiting high-statistics D^{\pm} and D^{\pm}_{s} decays

$$\mathbf{C}_{\mathbf{D}\mathbf{s}+}: \quad A_{CP}(D^0 \to K^- K^+) = +A(\underline{D}^{*+} \to (D^0 \to K^- K^+) \pi^+_{soft}) - A(\underline{D}^{*+} \to (D^0 \to K^- \pi^+) \pi^+_{soft}) + A(\underline{D}^+_s \to \phi \pi^+) - \left[A(\underline{D}^+_s \to \overline{K}^0 \ K^+) - A(\overline{K}^0)\right]$$

• Particles kinematics are equalised with a reweighting procedure.

CP asymmetry in $D^0 \rightarrow K^+K^-$

Combining the result obtained with the two control modes:


$$A_{CP}(D^0 o K^+ K^-) = (6.8 \pm 5.4 \pm 1.6) imes 10^{-4}$$

more than twice times more precise than Run 1 measurement.

• From combination with Run 1, ΔA_{CP} , and ΔY measurements:

 $a^d_{KK} = (7.7 \pm 5.7) imes 10^{-4} \ a^d_{\pi\pi} = (23.2 \pm 6.1) imes 10^{-4}$

first evidence of direct CP violation in $D^0 \rightarrow \pi^+ \pi^-$ decays (3.8 σ).

[LHCB-PAPER-2022-024 (2022)]

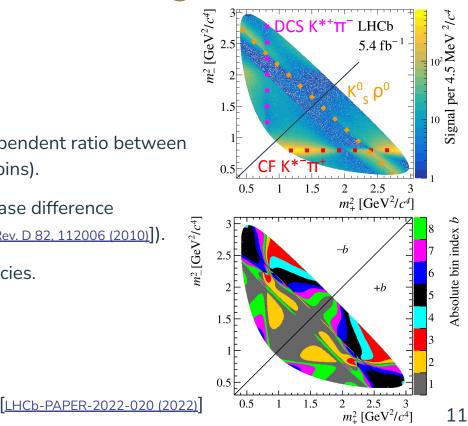
CP violation in mixing

CP violation in mixing

• Oscillation between $D^0 - \overline{D}^0$ mesons can be described by:

$$x=(m_1-m_2)c^2/\Gamma$$
 $y=(\Gamma_1-\Gamma_2)/\Gamma$

- With mass eigenstates $\ket{D_{1,2}} = p \ket{D^0} \pm q \ket{ar{D}^0}$.
- CP is violated if: $\left| rac{q}{p} \right|
 eq 1$ or $\phi \equiv arg\left(rac{qar{A}}{pA}
 ight)
 eq 0$
- LHCb observed x > 0 in π -tagged $D^0 \rightarrow K^0_S \pi^+ \pi^-$ decays [Phys. Rev. Lett. 127, 111801 (2021)]:

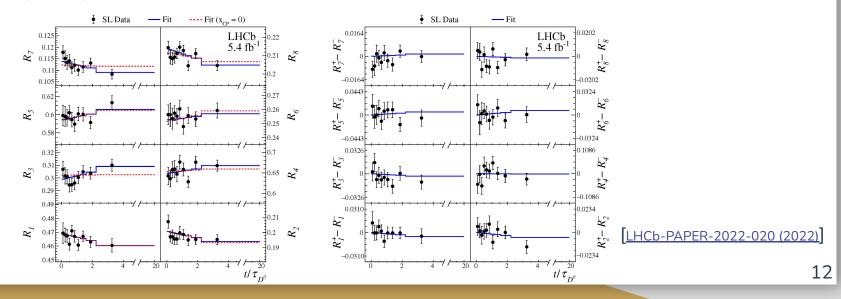

 $x = \left(3.98^{+0.56}_{-0.54}
ight) imes 10^{-3}$

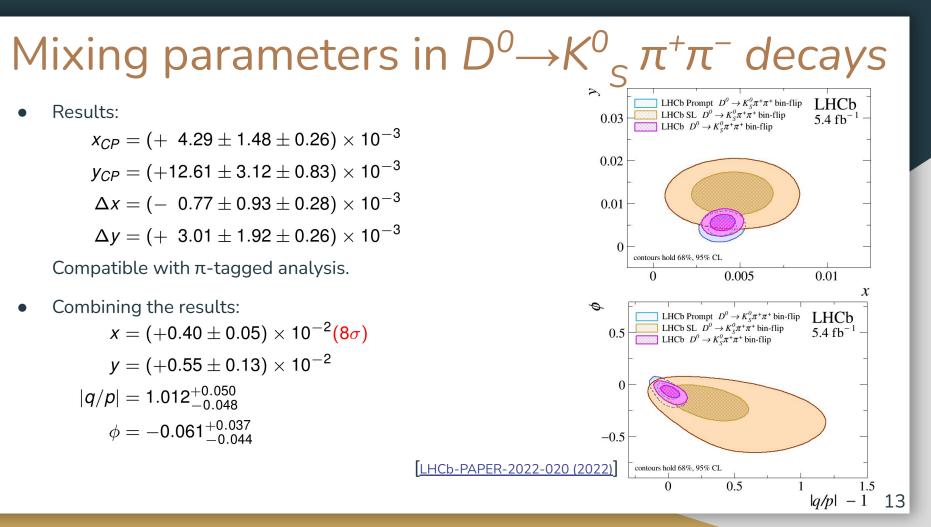
- New measurement with $ar{B} o D^0 \left(o K^0_S \pi^+ \pi^-
 ight) \mu^- ar{
 u}_\mu X$ decays [LHCb-PAPER-2022-020 (2022)].
 - Paper includes also results combination.
- Both analyses use bin-flip method.

Mixing parameters in $D^0 \rightarrow K^0_{\ \varsigma} \pi^+ \pi^-$ decays

Bin-flip method [Phys. Rev. D 99, 012007 (2019)]:

- Model independent.
- Sensitive manly to *x* parameter but also to *y*.
- Access to mixing parameters through time-dependent ratio between
 -b and +b Dalitz bins (10 equipopulated time bins).
- Dalitz bins chosen to have constant strong-phase difference between D^0 and \overline{D}^0 (measured by CLEO [Phys. Rev. D 82, 112006 (2010)]).
- Suppresses biases due to non-uniform efficiencies.




Mixing parameters in $D^0 \rightarrow K^0_{\ S} \pi^+ \pi^-$ decays

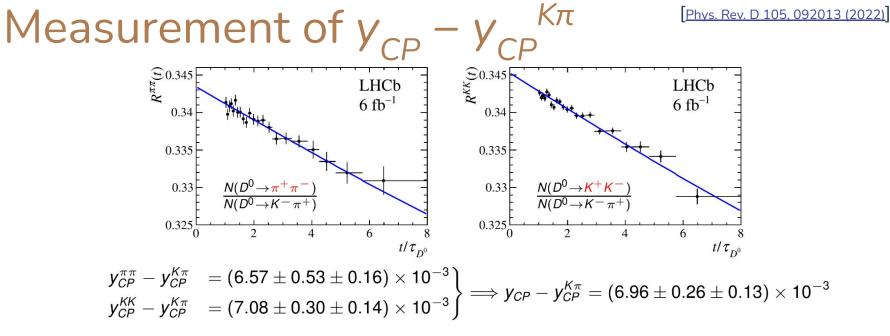
• Fit the ratio of Dalitz bin *b* and time bin *j* with:

$$R_{bj}^{\pm} \approx r_b - \langle t \rangle_j \sqrt{r_b} \big[(1 - r_b) c_b \ y - (1 + r_b) s_b \ x \big]$$

where "+" for D^0 and "-" for \overline{D}^0 , r_b the ratio of bins, $\langle t \rangle_j$ average decay-time in bin *j*, and c_b and s_b are the strong phase parameters.

Measurement of $y_{CP} - y_{CP}^{K\pi}$

Measurement of $y_{CP} - y_{CP}^{K\pi}$

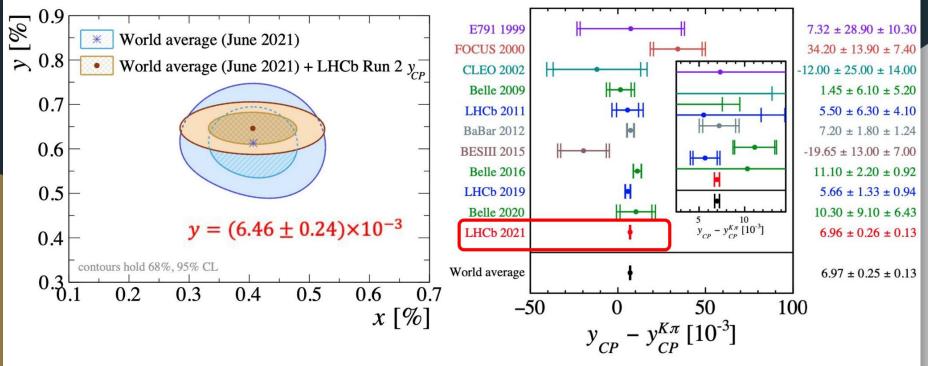

- Due to mixing, effective decay widths $\hat{\Gamma}$ of Cabibbo suppressed decays is not equal to Γ .
- From the decays rates, we define the observable [JHEP 2022, 162 (2022)]:

$$y^{hh}_{CP} - y^{K\pi}_{CP} pprox rac{\hat{\Gamma}(D^0 o h^+ h^-) + \hat{\Gamma}(ar{D}^0 o h^+ h^-)}{\hat{\Gamma}(D^0 o K^- \pi^+) + \hat{\Gamma}(ar{D}^0 o K^+ \pi^-)} - 1$$

•
$$y_{CP}^{hh} = y_{12} \approx y$$
 in absence of CPV.

- New measure of $y_{CP} y_{CP}^{K\pi}$ with π -tagged decays [Phys. Rev. D 105, 092013 (2022)].
- Measure of $R^{hh}(t) = rac{N(D^0 o h^+ h^-, t)}{N(D^0 o K^- \pi^+, t)} \propto e^{(y^{hh}_{CP} y^{K\pi}_{CP})t/ au_{D^0}} rac{arepsilon(h^+ h^-, t)}{arepsilon(K^- \pi^+, t)}$

Combine $y_{CP}^{KK} - y_{CP}^{K\pi}$ and $y_{CP}^{\pi\pi} - y_{CP}^{K\pi}$ in $y_{CP}^{} - y_{CP}^{K\pi}$.



- $y_{CP}^{K\pi} \approx -4 \times 10^{-4}$
- Previous world average: $y_{CP} y_{CP}^{K\pi} = (7.19 \pm 1.13) imes 10^{-3}$
- 4 times more precise.

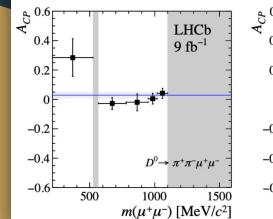
[Phys. Rev. D 105, 092013 (2022)]

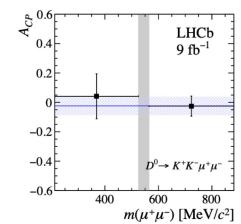
Measurement of $y_{CP} - y_{CP}^{K\pi}$

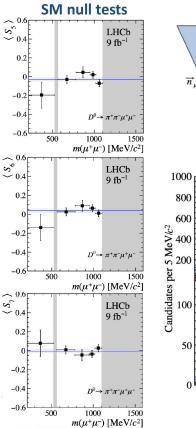
• New constrain to world average

Rare decays

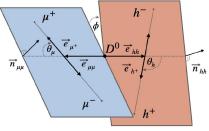
$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ rare decays

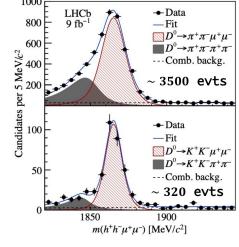

- FCNC $c \rightarrow ul^+l^-$ transitions sensitive to BSM contribution
 - More suppressed than $b \rightarrow sl^+l^-$ due to GIM mechanism.
- 4-body decays have measurable BFs.
 - Measured in 2017 using 2012 data (2 fb⁻¹) [Phys. Rev. Lett. 119, 181805 (2017)].

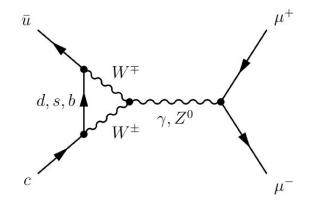

$${{\cal B}(D^0 o \pi^- \pi^+ \mu^+ \mu^-)} \sim 9.6 imes 10^{-7} \ {{\cal B}(D^0 o K^- K^+ \mu^+ \mu^-)} \sim 1.5 imes 10^{-7}$$


- World's first full angular analysis of a rare decays [Phys. Rev. Lett. 128, 221801 (2022)].
- SM null tests in regions dominated by resonances (due to interference between short- and long-distance contributions)

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ rare decays


- Measurement of the full set of CP-averaged angular observables and CP asymmetries as function of $q^2 \equiv m^2(\mu^+\mu^-)$.
- Updated measurement of CP asymmetry.
- Results consistent with SM null hypothesis.

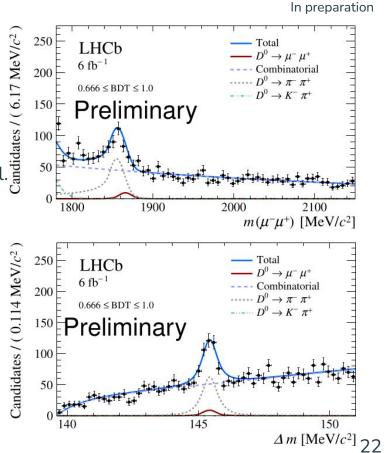



[Phys. Rev. Lett. 128, 221801 (2022)]

$D^0 \rightarrow \mu^+ \mu^-$ rare decays

- Very rare decay: FCNC + helicity suppression.
- Lepto-quarks in tree-level.
- SM branching fraction [Phys. Rev. D 93, 074001 (2016)]:
 - Short Distance: ${\cal B}(D^0 o \mu^+ \mu^-) \sim 10^{-18}$
 - Long Distance: ${\cal B}(D^0 o \mu^+ \mu^-) \sim 10^{-11}$
- Current upper limit (1 fb⁻¹) [Phys. Lett. B 725. 15-24 (2013)]: $\mathcal{B}(D^0 o \mu^+\mu^-) < 6.2 imes 10^{-9} @ 90\% \, CL$
- New upper limit with Run 1 + Run 2 π-tagged data [LHCB-PAPER-2022-029 (2022)].

in preparation


$\rightarrow \mu^+ \mu^-$ rare decays

- Analysis strategy:
 - BDT trained against combinatorial background.

 - PID based classifier to suppress misID. $D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow \pi^+\pi^-$ as normalisation channel.
 - Simultaneous fit to $m(D^0)$ and $\Delta m = m(D^{*+}) m(D^0)$.
- No significant signal observed:

 ${\cal B}(D^0 o \mu^+ \mu^-) < 2.9 imes 10^{-9} \, @\, 90\% \, CL$

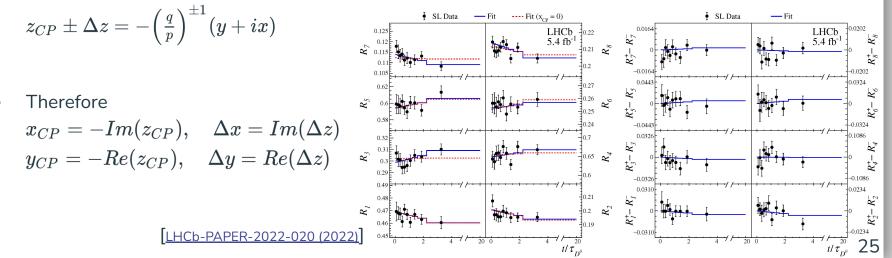
- Improvement of more than a factor two.
 - Most stringent limit of FCNC in the charm sector.

[LHCB-PAPER-2022-029 (2022)]

Conclusion

- LHCb collected the largest dataset of charm hadron decays.
- Major contribution in charm sector:
 - Many LHCb measurements are world's best.
- Measurements are still limited by statistical uncertainties.
 - With Run 3-4 data we expect to improve our results.

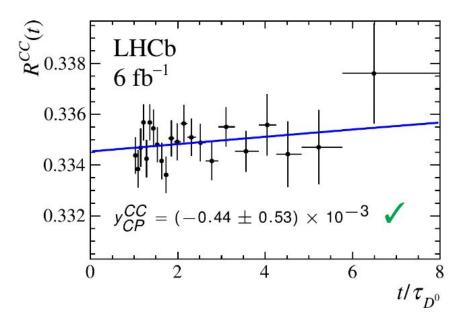
Backup



Mixing parameters in $D^0 \rightarrow K^0_{\ S} \pi^+ \pi^-$ decays

• Fit the ratio of Dalitz bin *b* and time bin *j* with:

$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4}r_b\left\langle t^2\right\rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4}\left\langle t^2\right\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b}\left\langle t\right\rangle_j \operatorname{Re}\left[X_B^*(z_{CP} \pm \Delta z)\right]}{1 + \frac{1}{4}\left\langle t^2\right\rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b\frac{1}{4}\left\langle t^2\right\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b}\left\langle t\right\rangle_j \operatorname{Re}\left[X_B(z_{CP} \pm \Delta z)\right]}$$


where "+" for D^0 and "–" for $\overline{D}{}^0$, $r_{_b}$ the ratio of bins, $\langle t \rangle_j$ average decay-time in bin j, and

Measurement of $y_{CP} - y_{CP}^{K\pi}$

• Control channel:

$$R^{CC}(t) = rac{N(D^0 o \pi^+ \pi^-, t)}{N(D^0 o K^+ K^-, t)} \propto e^{y^{CC}_{CP} t/ au_{D^0}} \, rac{arepsilon(\pi^+ \pi^-, t)}{arepsilon(K^+ K^-, t)}$$

[Phys. Rev. D 105, 092013 (2022)]