Physics prospects at PANDA

Johan Messchendorp (GSI, Darmstadt) on behalf of PANDA, IPA2022, September 6, 2022

Physics prospects at PANDA

Johan Messchendorp (GSI, Darmstadt) on behalf of PANDA, IPA2022, September 6, 2022

The dynamics of QCD！

The dynamics of QCD！

Why antiprotons?

Why antiprotons?

Large mass-scale coverage

- from light, strange, to charm-rich hadrons
- from quark/gluons to hadronic degrees of freedom

Why antiprotons?

Large mass-scale coverage

- from light, strange, to charm-rich hadrons
- from quark/gluons to hadronic degrees of freedom

Large production rates of (exotic) hadrons

- charm+strange factory -> charmonium, hyperons!
- gluon-rich production -> potential for glueballs!

Why antiprotons?

Large mass-scale coverage

- from light, strange, to charm-rich hadrons
- from quark/gluons to hadronic degrees of freedom

Why antiprotons?

- matter-antimatter asymmetry studies
- excellent experimental conditions

Why antiprotons?

Unprecedented tool to rigorously study non-perturbative QCD!

PANDA physics overview

PANDA physics overview

Bound States

 and Dynamics of QCD
PANDA physics overview

戸̈ョாda

PANDA physics overview

PANDA physics overview

PANDA physics overview

Charmonium-like particles - terra incognita

Narrow states
Heavy charm quarks

Charmonium-like particles - terra incognita

Charmonium-like particles - terra incognita

Charmonium-like particles - terra incognita

Charmonium-like particles - PANDA opportunities

- line shape of, f.e., X(3872)
- neutral+charged Z-states
- X,Y,Z decays
- search for h_{c}, ${ }^{3} \mathrm{~F}_{4}, \ldots$
- spin-parity/mass\&width of ${ }^{3} D_{2}$
- Search for glueballs/hybrids
- line shape/width of the eta ${ }_{c}, h_{c}$
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

Charmonium-like particles - PANDA opportunities

- line shape of, f.e., X(3872)
- neutral+charged Z-states
- X,Y,Z decays
- search for h_{c}, ${ }^{3} F_{4}, \ldots$
- spin-parity/mass\&width of ${ }^{3} D_{2}$
- Search for glueballs/hybrids
- line shape/width of the eta ${ }_{c}, h_{c}$
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

Charmonium-like particles - PANDA opportunities

- line shape of, f.e., X(3872)
- neutral+charged Z-states X,Y,Z decays
- search for h_{c}, ${ }^{3} F_{4}, \ldots$ spin-parity/mass\&width of ${ }^{3} D_{2}$
Search for glueballs/hybrids
- line shape/width of the eta ${ }_{c}, \mathrm{~h}_{\mathrm{c}}$
- radiative transitions
- hadronic transitions
- light-quark spectroscopy

Charmonium-like particles - PANDA opportunities

$J^{P C}$ glueballs

Line－shape study of the $\mathbf{X (3 8 7 2)}$

Strikingly narrow：

$\Gamma<1.2 \mathrm{MeV}$

＊recent LHCb observation： width $=1.4 \mathrm{MeV}$ assuming Breit－Wigner resonance

＊LHCb：Phys．Rev．D 102，9， 092005 （2020）

Line－shape study of the $\mathbf{X (3 8 7 2)}$

Strikingly narrow：

$\Gamma<1.2 \mathrm{MeV}$

＊recent LHCb observation： width $=1.4 \mathrm{MeV}$ assuming Breit－Wigner resonance

＊LHCb：Phys．Rev．D 102，9， 092005 （2020）

Line－shape study of the $\mathbf{X (3 8 7 2)}$

Strikingly narrow：

$\Gamma<1.2 \mathrm{MeV}$

＊recent LHCb observation： width $=1.4 \mathrm{MeV}$ assuming Breit－Wigner resonance

＊LHCb：Phys．Rev．D 102，9， 092005 （2020）

PANDA physics overview

Hyperon dynamics

Strong production dynamics

- Relevant degrees of freedom?
- Strange versus charm sector?
- Role of spin?

PANDA is a hyperon factory！

$p_{\text {beam }}(\mathrm{GeV} / \mathrm{c})$	Reaction	$\sigma(\mu \mathrm{b})$	$\varepsilon(\%)$	Rate ＠ $10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	S／B	Events ／day
1.64	$\bar{p} p \rightarrow \bar{\Lambda} \Lambda$	64.0	16.0	$44 \mathrm{~s}^{-1}$	114	$3.8 \cdot 10^{6}$
1.77	$\bar{p} p \rightarrow \bar{\Sigma}^{0} \Lambda$	10.9	$5 \cdot 3$	$2.4 \mathrm{~S}^{-1}$	$>11^{* *}$	207000
6.0	$\bar{p} p \rightarrow \bar{\Sigma}^{0} \Lambda$	20	6.1	$5.0 \mathrm{~S}^{-1}$	21	432000
4.6	$\bar{p} p \rightarrow \bar{\Xi}^{+} \Xi^{-}$	~ 1	8.2	0.3^{-1}	274	26000
7.0	$\bar{p} p \rightarrow \bar{\Xi}^{+} \Xi^{-}$	~ 0.3	$7 \cdot 9$	0.1^{-1}	65	8600
						＊＊90\％C．

PANDA is a hyperon factory!

Weak decay: interference between parityconserving P-wave and parity-violation Swave amplitudes $->$ f.e. decay parameter α_{Y}
"Self-analyzing" hyperon decays: angular distribution related to polarization.

Provides a rich set of polarisation \& spin correlation observables!

PANDA is a hyperon factory!

Weak decay: interference between parityconserving P-wave and parity-violation Swave amplitudes $->$ f.e. decay parameter α_{Y}
"Self-analyzing" hyperon decays: angular distribution related to polarization.

Provides a rich set of polarisation \& spin correlation observables!

Test of matter-antimatter asymmetry!

CP symmetry studies in baryon sector

nature ${ }_{e^{+} e^{-} \rightarrow J / \Psi \rightarrow \equiv छ \rightarrow \Lambda \bar{\Lambda} \pi \pi}$
Article | Open Access | Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

606, 64-69 (2022) Cite this article

CP symmetry studies in baryon sector

$$
A_{\mathrm{CP}}^{Y}=\frac{\alpha_{Y}+\bar{\alpha}_{Y}}{\alpha_{Y}-\bar{\alpha}_{Y}}
$$

$$
\approx-\tan \left(\delta_{p}-\delta_{s}\right) \tan \left(\xi_{p}-\xi_{s}\right)
$$

CPV effects suppressed by small strong-phase differences
ท2tル1ヘ $e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Xi \bar{\Xi} \rightarrow \Lambda \bar{\Lambda} \pi \pi$
Article Open Access Published: 01 June 2022

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration
606, 64-69 (2022) Cite this article

CP symmetry studies in baryon sector

CP symmetry studies in baryon sector

$$
A_{\mathrm{CP}}^{Y}=\frac{\alpha_{Y}+\bar{\alpha}_{Y}}{\alpha_{y}-\overline{\alpha_{Y}}}
$$

$\approx-\tan \left(\delta_{p}-\delta_{s}\right) \tan \left(\xi_{p}-\xi_{s}\right)$

CPV effects suppressed by small strong-phase differences

$$
\Delta \phi_{\mathrm{CP}}=\frac{\phi_{Y}+\bar{\phi}_{Y}}{2}
$$

$$
\approx \frac{\alpha}{\sqrt{1-\alpha^{2}}}\left(\xi_{p}-\xi_{S}\right)_{L O} *
$$

Decouples strong and weak phases $\rightarrow>$ very sensitive to CPV!

112tulre $e^{+} e^{-} \rightarrow J / \Psi \rightarrow E \Xi \rightarrow \Lambda \bar{A} \pi \pi$
Article Open Access Published: 01 June 2022
BESIII: ~70 ooo $\bar{\Xi} \Xi$ events*
$\mathcal{O}\left(\xi_{p}-\xi_{s}\right): 0.01^{*}$
SM: $\xi_{p}-\xi_{S} \sim 10^{-4 * *}$

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration

606, 64-69 (2022) Cite this article

CP symmetry studies in baryon sector

$\Delta \phi_{\mathrm{CP}}=\frac{\phi_{Y}+\bar{\phi}_{Y}}{2}$ $\approx \frac{\alpha}{\sqrt{1-\alpha^{2}}}\left(\xi_{p}-\xi_{S}\right)_{L O^{*}}$

Decouples strong and weak phases -> very sensitive to CPV!

ПスむU1e $e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Xi \bar{\Xi} \rightarrow \Lambda \bar{\Lambda} \pi \pi$
Article Open Access Published: 01 June 2022

BESIII: ~70 ooo $\bar{\Xi} \Xi$ events* $\mathcal{O}\left(\xi_{p}-\xi_{s}\right): 0.01^{*}$
SM: $\xi_{p}-\xi_{S} \sim 10^{-4 * *}$

Probing CP symmetry and weak phases with entangled double-strange baryons

The BESIII Collaboration
PANDA: $\mathcal{O}\left(\xi_{p}-\xi_{s}\right) \sim 0.01$ in <3 days

606, 64-69 (2022) Cite this article

PANDA physics overview

From matter of $\sim \mathbf{1 0}^{-15} \mathrm{~m}$ to $\sim \mathbf{1 0}^{\mathbf{4}} \mathrm{m}$

nature

NEWS FEATURE | 04 March 2020

The golden age of neutron-star physics has arrived

These stellar remnants are some of the Universe's most enigmatic objects - and they are finally starting to give up their secrets.

DENSE MATTER

Neutron stars get denser with depth. Although researchers have a good sense of the

Core scenarios
A number of possibilities have been suggested for the inner core, including these three options.

$$
\begin{aligned}
& a_{a}^{d} a^{(d)} \\
& \text { (d) d }{ }^{\text {d }} \text { d }{ }^{\text {d }} \\
& \text { u) (u) (i) (i) }
\end{aligned}
$$

Quarks

The constituents of protons and neutrons - up and down quarks - roam freely.

Bose-Einstein condensate Particles such as pions containing an up quark and an anti-down quark combine to form a single quantum-mechanical entity.
(a) Up quark
(s) Strange quark
(d) Down quark (d) Anti-down quark

Hyperons
Particles called hyperons form Like protons and neutrons they contain three quarks but include 'strange' quarks.

Hyperon puzzle in neutron stars?

D. Lonardoni et al., PRL114, 092301 (2015)

Quantum MC calculations including realistic NN, NNN potentials (Argonne-Illinois)

Hyperon puzzle in neutron stars?

D. Lonardoni et al., PRL114, 092301 (2015)

Quantum MC calculations including realistic NN, NNN potentials (Argonne-Illinois)

Hyperon puzzle in neutron stars?

Equation of State too soft with lightest hyperon (Y)

Strong repulsion in YN or YNN forces could resolve puzzle?

Precision measurements in the lab. of YN/YNN/YY forces needed!

Hyperon interaction studies @PANDA

Production of Ξ^{-}
Rescattering in primary target

Deceleration in secondary target

Capture of Ξ^{-}
Atomic cascade of Ξ^{-}
$\Xi^{-} p \rightarrow \Lambda \Lambda$ conversion
\rightarrow Excited $\Lambda \Lambda$-nucleus
γ-decay
Weak pionic decay

Hyperatoms***

Hypernuclei

Hyperon interaction studies @PANDA

Production of Ξ^{-}
Rescattering in primary target

Deceleration in secondary target

Capture of Ξ^{-}
Atomic cascade of Ξ^{-}
$\Xi^{-} p \rightarrow \Lambda \Lambda$ conversion \rightarrow Excited $\Lambda \Lambda$-nucleus

$$
\gamma \text {-decay }
$$

Weak pionic decay

Antihyperons in nuclei*,**

Hyperatoms***

Hypernuclei

*Pochodzalla: Phys. Lett. B 669, 306 (2008)
** PANDA: Eur. Phys. J A 57, 184 (2021)
***PANDA, Nucl. Phys. A 954, p. 323-340 (2016)

Hyperon interaction studies @PANDA

Production of Ξ^{-}
Rescattering in primary target

Deceleration in secondary target

Capture of Ξ^{-}
Atomic cascade of Ξ^{-}
$\Xi^{-} p \rightarrow \Lambda \Lambda$ conversion \rightarrow Excited $\Lambda \Lambda$-nucleus

$$
\gamma \text {-decay }
$$

Weak pionic decay

Antihyperons in nuclei*,**

Hyperatoms***

Hypernuclei

Hyperon interaction studies @PANDA

Production of Ξ^{-}
Rescattering in primary target

Deceleration in secondary target

Capture of Ξ^{-}
Atomic cascade of Ξ^{-}
$\Xi^{-} p \rightarrow \Lambda \Lambda$ conversion \rightarrow Excited $\Lambda \Lambda$-nucleus

$$
\gamma \text {-decay }
$$

Weak pionic decay

Antihyperons in nuclei*,**

Hyperatoms***

Hypernuclei

*Pochodzalla: Phys. Lett. B 669, 306 (2008)
** PANDA: Eur. Phys. J A 57, 184 (2021)
***PANDA, Nucl. Phys. A 954, p. 323-340 (2016)

Physics prospects at PANDA

Physics prospects at PANDA

... important pillar at FAIR

- ESFRI landmark near Frankfurt, top priority NuPECC
- civil construction of FAIR well underway
- presently under 'scientific' review
... covers particle, hadron, and nuclear aspects
- quark \& gluon d.o.f.: quarkonium exotics, glueballs, etc.
- meson \& baryon d.o.f.: B-B interaction in SU(3)
... is complementary and competitive
- unique antiproton facility
... remains vigilant (and patient)

Backup

BESIII Result $e^{+} e^{-} \rightarrow J / \Psi \rightarrow \Xi \bar{\Xi} \rightarrow \Lambda \bar{\Lambda} \pi \pi$

Parameter	This work	Previous result	Reference
a_{ψ}	$0.586 \pm 0.012 \pm 0.010$	$0.58 \pm 0.04 \pm 0.08$	Ref. ${ }^{49}$
$\Delta \Phi$	$1.213 \pm 0.046 \pm 0.016 \mathrm{rad}$	-	
$a_{\text {三 }}$	$-0.376 \pm 0.007 \pm 0.003$	-0.401 ± 0.010	Ref. ${ }^{26}$
ϕ_{\equiv}	$0.011 \pm 0.019 \pm 0.009 \mathrm{rad}$	$-0.037 \pm 0.014 \mathrm{rad}$	Ref. ${ }^{26}$
$\overline{\mathrm{a}}_{\underline{\text { I }}}$	$0.371 \pm 0.007 \pm 0.002$	-	
$\bar{\Phi}_{\overline{\text { E }}}$	$-0.021 \pm 0.019 \pm 0.007 \mathrm{rad}$	-	
a_{\wedge}	$0.757 \pm 0.011 \pm 0.008$	$0.750 \pm 0.009 \pm 0.004$	Ref. ${ }^{4}$
\bar{a}_{\wedge}	$-0.763 \pm 0.011 \pm 0.007$	$-0.758 \pm 0.010 \pm 0.007$	Ref. ${ }^{4}$
$\xi_{\mathrm{p}}-\xi_{\mathrm{s}}$	$(1.2 \pm 3.4 \pm 0.8) \times 10^{-2} \mathrm{rad}$	-	
$\delta_{P}-\delta_{S}$	$(-4.0 \pm 3.3 \pm 1.7) \times 10^{-2} \mathrm{rad}$	$(10.2 \pm 3.9) \times 10^{-2} \mathrm{rad}$	Ref. ${ }^{3}$
$A_{\text {CP }}^{\overline{\#}}$	$(6 \pm 13 \pm 6) \times 10^{-3}$	-	
$\Delta \phi_{\mathrm{C}}^{\equiv}$	$(-5 \pm 14 \pm 3) \times 10^{-3} \mathrm{rad}$	-	
$A_{\text {CP }}^{\wedge}$	$(-4 \pm 12 \pm 9) \times 10^{-3}$	$(-6 \pm 12 \pm 7) \times 10^{-3}$	Ref. ${ }^{4}$
$\left\langle\phi_{\equiv}\right\rangle$	$0.016 \pm 0.014 \pm 0.007 \mathrm{rad}$		

The $J / \psi \rightarrow \bar{\Xi}^{-} \bar{\Xi}^{+}$angular distribution parameter a_{ψ}, the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\Xi^{-} \rightarrow \wedge \pi^{-}\left(a_{\Xi}, \phi_{\Xi}\right), \bar{\Xi}^{+} \rightarrow \bar{\Lambda} \pi^{+}\left(\bar{a}_{\equiv}, \bar{\phi}_{\equiv}\right) \wedge \rightarrow p \pi^{-}\left(a_{\Lambda}\right)$ and $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \Pi^{+}\left(\bar{a}_{\Lambda}\right)$; the CP asymmetries $A_{\overline{\overline{C P}},}^{\overline{P^{\prime}}} \Delta \phi_{\overline{\mathrm{CP}}}^{\overline{\bar{r}}}$ and A_{CP}^{\wedge}, and the average $\langle\phi \equiv$. The first and second uncertainties are statistical and systematic, respectively.

Resonance scanning, a case study

- Width assuming B-W:
$\Gamma=1.39 \mp 0.24 \mp 0.10 \mathrm{MeV}\left(\mathrm{LHCb} 2020^{*}\right)$
- Width assuming Flatté model:

FWHM $=0.22_{-0.08-0.17}^{+0.06+0.25} \mathrm{MeV}($ LHCb 2020*) $)$
\rightarrow Not possible to distinguish by LHCb

* LHCb: Phys. Rev. D 102, 9, 092005 (2020)

Resonance scanning, a case study

- Width assuming B-W:
$\Gamma=1.39 \mp 0.24 \mp 0.10 \mathrm{MeV}\left(\mathrm{LHCb} 2020^{*}\right)$
- Width assuming Flatté model:

FWHM $=0.22_{-0.08-0.17}^{+0.06+0.25} \mathrm{MeV}($ LHCb 2020*) $)$
\rightarrow Not possible to distinguish by LHCb

* LHCb: Phys. Rev. D 102, 9, 092005 (2020)

Resonance scanning, a case study

- Width assuming B-W:
$\Gamma=1.39 \mp 0.24 \mp 0.10 \mathrm{MeV}\left(\mathrm{LHCb} 2020^{*}\right)$
- Width assuming Flatté model:

FWHM $=0.22_{-0.08-0.17}^{+0.06+0.25} \mathrm{MeV}($ LHCb 2020*) $)$
\rightarrow Not possible to distinguish by LHCb

* LHCb: Phys. Rev. D 102, 9, 092005 (2020)

Resonance scanning, a case study

Antihyperons in nuclei @ Day-1

Day-1: antihyperon optical potential

Exploit abundantly produced hyperonantihyperon pairs near threshold

Spectrum: less than 1 hour of beam time at Day-1 luminosities!

First step towards hyperatom and hypernuclei program

Ξ^{-}Hyperatoms at Phase One

Measure strong interaction shift
and width at periphery of nucleus
Measure strong interaction shift
and width at periphery of nucleus

X-ray spectroscopy of transition prior to capture

PANDA unique: high neutron density probed using Pb target

Hyperatoms - potential sensitivity

Marcell Steinen, PhD dissertation

Double hypernuclear spectroscopy

戸̈ョானの

Hyperon spectroscopy

戸゙ョாの』

Hyperon spectroscopy

Map out the |S|=2 excited baryon spectrum

Analytical nature of form factors

Time－like Electromagnetic Form Factors＊

 （lepton pair production）

$$
R=\frac{\left|G_{E}\right|}{\left|G_{M}\right|}
$$

Phase－1
$\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
＠1．5 GeV／c～220／day
$\mathrm{pp} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
＠3．3 GeV／c～10／day

Analytical nature of form factors

Time－like Electromagnetic Form Factors＊

 （lepton pair production）

$$
R=\frac{\left|G_{E}\right|}{\left|G_{M}\right|}
$$

凹

