Exotic Charmonium at BESIII
 G. Cibinetto (INFN Ferrara) on behalf of the BESIII collaboration

IPA2022 - Wien, Sep 5-9, 2022

Exotic Charmonium Spectroscopy

- Exotic searches
- states with exotic quantum numbers
- states with internal exotic structure
- Heavy-quark exotics cleaner than light-quark sector
- Important interplay with advancements in theory (non-relativistic EFT and LQCD)
- Naming scheme used in this presentation
- $\mathrm{Y}->1^{--}$states
- Z -> charged states
- $X \rightarrow>$ all the remaining states

Exotic Charmonium Spectroscopy @ BCSIII

Experimental environment

- At BEPCII Electron-Positron collider
- $E_{C M}=2-4.95 \mathrm{GeV}$
- $\mathscr{L}_{\text {peak }}=1.0 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Physics data taking ongoing since 2009

Exotic Charmonium Spectroscopy @ BCSIII

Experimental environment

- At BEPCII Electron-Positron collider
- $E_{C M}=2-4.95 \mathrm{GeV}$
- $\mathscr{L}_{\text {peak }}=1.0 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Exotic Charmonium Spectroscopy @ BCSIII

Datasets and physics potential

- Center-of-mass energy spanning the τ-charm sector
- Region below 2 GeV directly accessible (via ISR)
- World's largest sample of
- J / ψ-> 10 billions
- $\psi(2 S)->3$ billions
- $\psi(3770)->2.9 \mathrm{fb}^{-1}\left(20 \mathrm{fb}^{-1}\right.$ with next data taking)
- About $22 \mathrm{fb}^{-1}$ of data for Exotic Charmonium Spectroscopy
- 46 XYZ data samples $\mathscr{L}_{i} \sim 21.9 \mathrm{fb}^{-1}$
- 29 with $\mathscr{L}_{i}>0.4 \mathrm{fb}^{-1}$
- Used also a smaller R scan sample
- 104 energy points, $\mathscr{L}_{i} \sim 0.8 \mathrm{fb}^{-1}$
- Machine upgrade to unlock more data and energies

Vectorial exotics

The Y states

Exotic Charmonium at BESIII

- Y(4260) first such-a-state discovered by BaBar PRL95 (2005) 142001
- Inconsistent with all 1^{--}quark model states
- Very suppressed open charm decays
- Decays into other exotics
- Cross section for different processes studied at BESIII

Study of $e^{+} e^{-} \rightarrow K^{+} K^{-} J / \psi$

Investigating the strange content inside $\mathrm{Y}(4230)$

- First observation of $\mathrm{Y}(4230)$ in $K^{+} K^{-} J / \psi$

$$
0.02<\frac{\mathcal{B}\left(Y(4230) \rightarrow K^{+} K^{-} J / \psi\right)}{\mathcal{B}\left(Y(4230) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}<0.26
$$

Large range due to multiple solutions in $\pi^{+} \pi^{-} J / \psi$

- Structure around 4.5 GeV observed for first time!
- New structure compatible with:
- 5S/4D mixing
- $D_{s} D_{s 1}$ hadronic molecule

$$
\begin{aligned}
& M_{Y(4230)}=4225.3 \pm 2.3 \pm 21.5 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma_{Y(4230)}=72.9 \pm 6.1 \pm 30.8 \mathrm{MeV}
\end{aligned}
$$

- lattice $c \bar{c} s \bar{s}$ structure
- $K_{s}^{0} K_{s}^{0} J / \psi$ paper in preparation

$$
\begin{aligned}
& M_{Y(4500)}=4487.7 \pm 13.3 \pm 24.1 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma_{Y(4500)}=111.1 \pm 30.1 \pm 15.2 \mathrm{MeV}
\end{aligned}
$$

Update of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ cross section

Higher statistics, higher precision, higher energies, better fit

Total data sample: 23/fb

- Structure around 4 GeV favors BW rather than exponential parametrization
- Large fluctuation at $3.8713 \mathrm{GeV}-\mathrm{X}(3872)$ not included in the fit
- $Y(4230)$ and $Y(4320)$ observed with $>10 \sigma$
- Evidence $\sim 3 \sigma$ of a structure at higher energies
- $\psi(4415)$? A new state at 4.5 GeV ?
- With the high energy state in the fit, the $Y(4320)$ parameters change

$$
\begin{aligned}
& M_{Y(4230)}=4221.4 \pm 1.5 \pm 2.0 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma_{Y(4230)}=41.8 \pm 2.9 \pm 2.7 \mathrm{MeV}
\end{aligned}
$$

$$
\begin{aligned}
& M_{Y(4320)}=4298 \pm 12 \pm 26 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma_{Y(4320)}=127 \pm 17 \pm 10 \mathrm{MeV}
\end{aligned}
$$

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$
Updated result up to 4.7 GeV based on 20.1/fb

- Confirmed both $Y(4220)$ and $Y(4390)$ contribution
- First observation of $Y(4660)$ at BESIII thanks to the center of mass upgrade!

Study of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}(3823)$

First observation of vector Y states decaying to D-wave charmonium

mass and width of $\psi_{2}(3823)$:
$m=3823.12 \pm 0.43 \pm 0.13 \mathrm{MeV} / c^{2}$ $\Gamma<2.9 \mathrm{MeV} \quad$ (at $90 \% \mathrm{CL}$)

- Study the internal structure of Y states by measuring their coupling with D-wave charmonia
- $\psi_{2}(3823)$ candidates reconstructed in $\gamma \chi_{c 1,2}$

Study of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi_{2}(3823)$

First observation of vector Y states decaying to D-wave charmonium

- Study the internal structure of Y states by measuring their coupling with D-wave charmonia
- $\psi_{2}(3823)$ candidates reconstructed in $\gamma \chi_{c 1,2}$
- Two resonances hypothesis favored:
- to single resonance by 2.6σ
- to only continuum by more than 5σ
- Consistent with $\mathrm{Y}(4390)$ and $\mathrm{Y}(4660)$
- Second largest BF of $\mathrm{Y}(4660)$

[^0]
\[

$$
\begin{aligned}
& M_{Y(4390)}=4406.9 \pm 17.2 \pm 4.5 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma_{Y(4390)}=128.1 \pm 37.2 \pm 2.3 \mathrm{MeV}
\end{aligned}
$$
\]

$$
\begin{aligned}
& M_{Y(4660)}=4647.9 \pm 8.6 \pm 0.8 \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma_{Y(4660)}=33.1 \pm 18.6 \pm 4.1 \mathrm{MeV}
\end{aligned}
$$

Study of the $\pi^{+} \pi^{-} D^{+} D^{-}$lineshape

$$
\mathscr{L}_{i}=17.4 \mathrm{fb}^{-1}
$$

- Search for spin-3 partner of $\psi(3770)$ and $\psi(3823)$ in its DD decay
- Signal shape extracted using $e^{+} e^{-} \rightarrow f_{0}(500) \psi(3842) \mathrm{MC}$
- Combining all dataset in 4.6-4.7 GeV evidence of $\pi \pi \psi(3842)$ at 4.2σ level
- Study the 4-body final state to search for clues about vector resonance in the region $4-4.7 \mathrm{GeV}$
- 3 subprocesses accounted for: PHSP, $\pi \pi \psi(3770), D_{1}(2420) D$
- Fit to 37 energy values
- Partial reconstruction method (one $D \rightarrow K \pi \pi$, one in recoil mass)

Y decays to open Charm

- Conventional charmonium states above threshold match well quark potential model
- Main decays in open charm mesons
- Charmonium-like states (Y) disagree with quark model
- Main decay in hidden-charm mesons
- Open charm cross section measurements essential to fully understand XYZ states

$$
R=\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

$e^{+} e^{-} \rightarrow D^{*} D^{(*)}$

$15.7 \mathrm{fb}^{-1}$ collected between 4.085 and 4.6 GeV

- Reconstructed $D^{*+} \rightarrow \pi^{+} D^{0}$ with $D^{0} \rightarrow K^{-} \pi^{+}$
- $D^{(*)-}$ inferred kinematically
- Good agreement with existing measurements
- Confirmed structure around 4.39 GeV in D^{*} *
- Results can provide information to improve modelization of the cross section between 4.2 and 4.3 GeV (e.g. Eur. Phys. J. C 81 (2021) 83)
- With the new and more precise data, a simultaneous fit of combined measurements allows to test different hypotheses for the $Y(4230)$ and for the other charmonium(-like) states

$e^{+} e^{-} \rightarrow D^{*} D^{(k)}$
$15.7 \mathrm{fb}^{-1}$ collected between 4.085 and 4.6 GeV

- Reconstructed
$D^{*+} \rightarrow \pi^{+} D^{0}$ with
$D^{0} \rightarrow K^{-} \pi^{+}$
- $D^{(*)-}$ inferred kinematically

- Good agreement with existing measurements
- Confirmed structure around 4.39 GeV in $\mathrm{D}^{*} \mathrm{D}^{*}$
- Results can provide information to improve modelization of the cross section between 4.2 and 4.3 GeV (e.g. Eur. Phys. J. C 81 (2021) 83)
- With the new and more precise data, a simultaneous fit of combined measurements allows to test different hypotheses for the $Y(4230)$ and for the other charmonium(-like) states

Charged exotics

Charged charmonium-like states

- Produced in $e^{+} e^{-}$collisions and in B decays
- Decays typically in hadron + charmonium
- Intrinsic nature unclear - exotic states? kinematic effects?
- Correlated to Y states?

$$
e^{+} e^{-} \rightarrow Y(4230) \rightarrow \pi^{0} Z_{c}(3900)^{0}
$$

$Z_{c}(3900)$ isospin triplet

$Z_{c s}(3985)^{ \pm} @$ BESIII
 Search for "strange" partner of the Zc(3900)

- Discovered by studying the K^{+}recoil mass in $e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)$
- Significance: 5.3σ
- Minimal quark content $c \bar{c} s \bar{d}$?

- Similar to $Z_{c s}$ (4000) seen by LHCb (widths differ) PRL127, 082001 (2021)

$$
\begin{aligned}
m_{\text {pole }}\left[Z_{c s}(3985)^{-}\right] & =\left(3982.5_{-2.6}^{+1.8} \pm 2.1\right) \mathrm{MeV} / c^{2}, \\
\Gamma_{\text {pole }}\left[Z_{c s}(3985)^{-}\right] & =\left(12.8_{-4.4}^{+5.4} \pm 3.0\right) \mathrm{MeV} .
\end{aligned}
$$

$z_{s,}(3985)^{\circ} @$ BESIII

Neutral partner of $Z_{c s}(3985)^{ \pm}$useful to assess their nature

$$
e^{+} e^{-} \rightarrow K_{s}^{0}\left(D_{s}^{-} D^{*+}+D_{s}^{*-} D^{+}\right)
$$

- Studied with partial reconstruction method in K_{s} recoil mass
- Evidence at 4.6σ level. Compatible with isospin predictions
- Minimal quark content $c \bar{c} s \bar{d}$?
- Mass and width consistent with charged $Z_{c s} \rightarrow$ isospin partner
- NPB 968, 115450 (2021): $M\left(Z_{c s}^{+}\right)<M\left(Z_{c s}^{0}\right)$

	Mass $\left(\mathrm{MeV} / c^{2}\right)$	Width (MeV)
$Z_{c s}(3985)^{0}$	$3992.2 \pm 1.7 \pm 1.6$	$7.7_{-3.8}^{+4.1} \pm 4.3$
$Z_{c s}(3985)^{+}$	$3985.2_{-2.0}^{+2.1} \pm 1.7$	$13.8_{-5.2}^{+8.1} \pm 4.9$

The X(3872)

Almost twenty years of $X(3872)$

The best studied exotic state

- Produced in B decays, in hadron collisions, in $e^{+} e^{-} \rightarrow Y(4230) \rightarrow \gamma X(3872)$
- Very close do the $D^{0} D^{* 0}$ threshold: $M_{X(3872)}-M_{D^{0} D^{* 0}}=0.01 \pm 0.14 \mathrm{MeV}$
- Very narrow: $\Gamma_{X(3872)}=0.96_{-0.18}^{+0.19} \pm 0.21 \mathrm{MeV}$
- Large isospin breaking $B(X \rightarrow \rho J / \psi) \simeq B(X \rightarrow \omega J / \psi)$
- $J^{P C}=1^{++}$
- Charged partner not found (yet) - iso-singlet state?
- Favorite interpretation: molecule mixed with charmonium, but other options are not ruled out

Search for $X(3872) \rightarrow \pi^{0} \chi_{c 0}$ and $X(3872) \rightarrow \pi \pi \chi_{c 0}$

- To understand the nature of $X(3872)$, verify prediction to test the charmonium-ness of the state
- $\chi_{c 0}$ reconstructed in 5 hadronic channels
$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}$ and $\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 1}\right)}$ sensitive to physical interpretation

	Interpretation	$\frac{B\left(X(3872) \rightarrow \pi^{0} \chi_{c}\right)}{B\left(X(3872) \rightarrow \pi^{+} \pi^{-J} / \psi\right)}$	$\frac{B\left(X(3872) \rightarrow \pi^{0} \chi_{00}\right.}{B\left(X(3872) \rightarrow \pi^{0} \chi_{c}\right)}$
1)	Four-quark/molecule	\ldots	2.97
1)	$\chi_{c 1}(2 P)$	0.0	0.0
2)	$D^{0} \bar{D}^{0 *}$	\cdots	$2.84-2.98$
$3)$	$D^{0} \bar{D}^{0 *}+D^{+} D^{-*}$	$1.3-2.07$	$1.65-1.77$
$4)$	$D^{0} \bar{D}^{0 *}+D^{+} D^{-*}$	\cdots	3.72
5) $D^{0} \bar{D}^{0 *}+D^{+} D^{-*}+\chi_{c 1}(2 P)$	0.094	1.15	

[^1]
Search for $X(3872) \rightarrow \pi^{0} \chi_{c 0}$ and $X(3872) \rightarrow \pi \pi \chi_{c 0}$

- To understand the nature of $X(3872)$, verify prediction to test the charmonium-ness of the state
- $\chi_{c 0}$ reconstructed in 5 hadronic channels
- No significant results $->$ Upper Limits

$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)}$ and $\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 1}\right)}$ sensitive to physical interpretation

Interpretation	$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \psi_{0}\right)}{B\left(X(382)-\pi^{+} \pi^{-} J / \psi\right)}$	$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 1}\right)}$
1) Four-quark/molecule	\ldots	2.97
1) $\chi_{c 1}(2 P)$	0.0	0.0
2) $D^{0} \bar{D}^{0 *}$	\ldots	2.84-2.98
3) $D^{0} \bar{D}^{0+}+D^{+} D^{-*}$	1.3-2.07	1.65-1.77
4) $D^{0} \bar{D}^{0 *}+D^{+} D^{-*}$	\ldots	3.72
${ }^{5)} D^{0} \bar{D}^{0 *}+D^{+} D^{-*}+\chi_{\text {cl }}(2 P)$	0.094	1.15

Ratio	90% C.L. upper limit
$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-J} / \psi\right)}$	3.6
$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \chi_{c 1}\right)}$	4.5
$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-J} / \psi\right)}$	0.56
$\frac{\mathcal{B}\left(X(3872) \rightarrow \pi^{0} \pi^{0} \chi_{c 0}\right)}{\mathcal{B}\left(X(3872) \rightarrow \pi^{+} \pi^{-J} / \psi\right)}$	1.7

[^2]Upper limits (90\% C.L.) still not conclusive. New statistics will be collected with BEPCII-U

Conclusions

Outlook
 Other results not shown

- Many other great results have been recently published
- e.g. exotics' decay to light hadrons and baryons
- Connections between exotic states are also investigated at BESIII
- $e^{+} e^{-} \rightarrow \gamma X(3872) ; X(3872) \rightarrow \pi^{+} \pi^{-} J \psi$

PRL 122, 232002 (2019)

- $e^{+} e^{-} \rightarrow \pi^{0} Z_{c}(3900)^{0} \rightarrow \pi^{0} \pi^{0} J / \psi$
- $e^{+} e^{-} \rightarrow \pi^{0} Z_{c} ; Z_{c} \rightarrow \gamma X(3872)$

PHYS. REV. D 102, 012009 (2020)

PRD 104, 012001 (2021)

Summary

- Exciting results from new $X Y Z$ data are presented
- Studies of $X(3872)$ continue thanks to the $e^{+} e^{-} \rightarrow Y(4230) \rightarrow \gamma X(3872)$ process
- Mapping out fine structures of Y states
- $Z_{c s}(3985)$ triplet
- Data with unprecedented statistical accuracy from BESIII provides great opportunities to study QCD exotics. Will continue to run until ~2030
- Further upgrade in energy (5.6 GeV) and luminosity (BEPCII-U) coming

Thanks for your attention!

$\chi_{c 1}(1 P)$ direct production

First observation (5б) of $\chi_{c 1}(1 P)$ direct production at $e^{+} e^{-}$collider

- Similar approach for X(3872). Paper in preparation!
- Study of $e^{+} e^{-} \rightarrow \gamma J / \psi$ to extract interference pattern
- Electronic width same order of magnitude with theoretical calculation

$$
\Gamma_{e e}=\left(0.12_{-0.08}^{+0.13}\right) \mathrm{eV}
$$

[^0]: mass and width of $\psi_{2}(3823)$: $m=3823.12 \pm 0.43 \pm 0.13 \mathrm{MeV} / c^{2}$ $\Gamma<2.9 \mathrm{MeV} \quad$ (at $90 \%{ }^{\mathrm{CL}}$)

[^1]: ${ }^{1)}$ PRD77,014013(2008) 2)PRD78,094019(2008) 3)EPJC81,193(2021) 4)PRD79,094013(2009) 5)PRD100,094025(2019)

[^2]: ${ }^{1)}$ PRD77,014013(2008) 2)PRD78,094019(2008) 3)EPJC81,193(2021) ${ }^{4}$)PRD79,094013(2009) ${ }^{5}$)PRD100,094025(2019)

