The FCC-ee Project: Plans and Physics Potential

IPA 2022, Vienna

Sep 07th, 2022 <u>Valentin Volkl</u>, for the FCC collaboration CERN

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future Experiments (https://cds.cern.ch/record/2649646/, CERN-OPEN-2018-006).

The Future Circular Collider Design Study

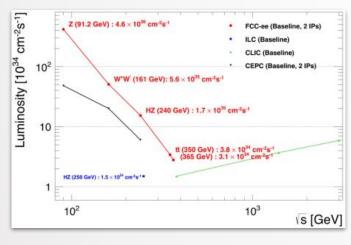
The FCC Design Study explores the potential and feasibility of a large (~100 km) collider ring in the Geneva area as successor to the LHC.

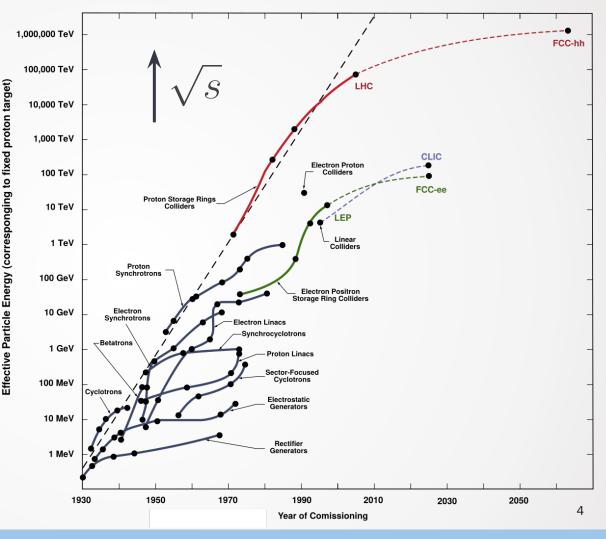
- A hadron collider (FCC-hh) could reach $\sqrt{s} = 100$ TeV with 16 T magnets.
- A lepton collider (FCC-ee) could reach record luminosities up to $\sqrt{s} = 365 \text{ GeV}$
- A hadron-electron collider (FCC-eh) is possible as well

These options are highly complementary and an **integrated FCC program** is the optimal solution!



photo: J. — Wenninger


FCC


SPS

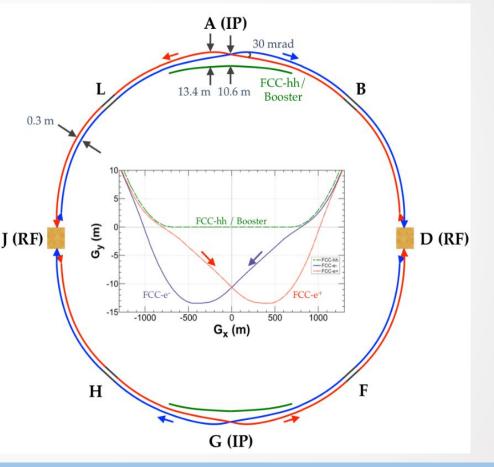
LHC

Energy and intensity frontier

- The historical exponential growth of collider energies is already tapering off
- The FCC-ee is not at the energy-, but at the intensity frontier, sensitive to higher energies via precision measurements!

FCC-ee basic design choices

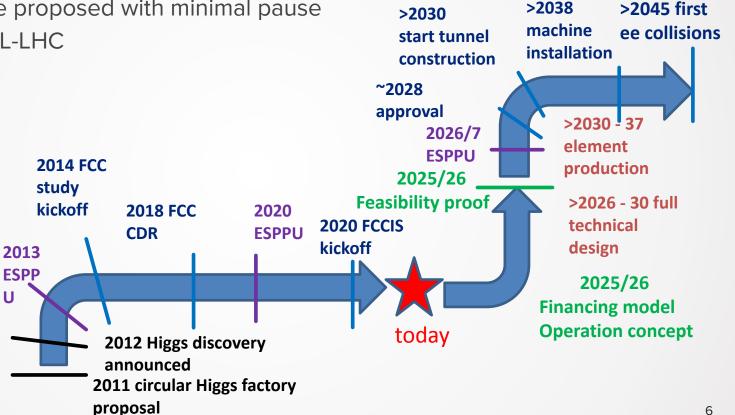
• Double ring e+e- collider + injector

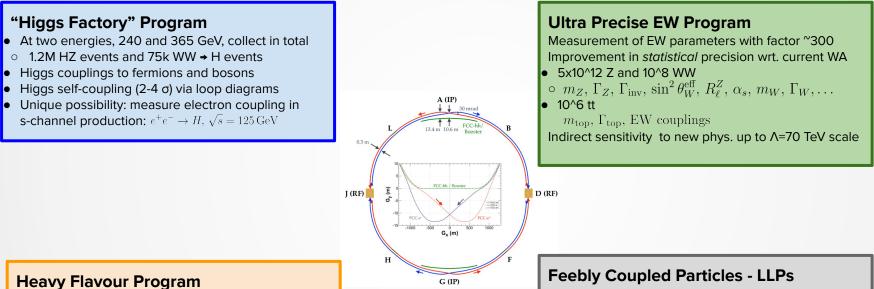

~100 km

- follows footprint of FCC-hh
 - except around IPs
- Asymmetric IR layout & optics to limit synchrotron radiation towards the detector - also separates detector from injector
- Presently 2 IPs (alternative layout with 4 IPs under study), large horizontal x-ing angle 30mrad
- crab-waist optics

0

- synchrotron radiation power 50 MW/beam at all beam energies; tapering of arc magnet strengths to match local energy
- common RF for running

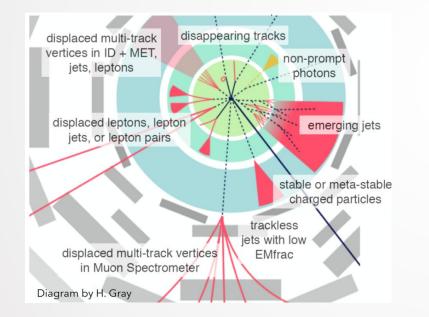

top-up injection requires booster synchrotron in collider tunnel Beam Polarization and energy calibration, wigglers, polarimeters, depolarization kicker for Z and WW operation.

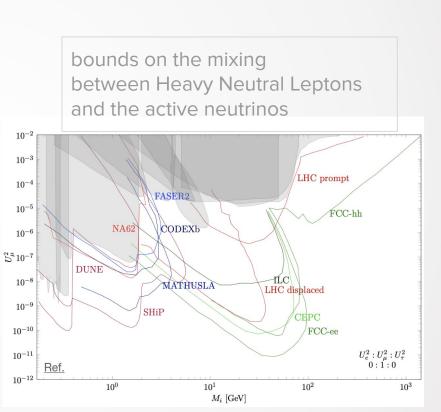

Timeline

Feasible schedule proposed with minimal pause of physics after HL-LHC

U

The FCC-ee Physics Landscape

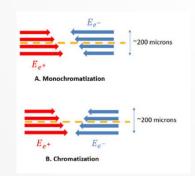

- Enormous statistics: 10^12 bb, cc; 1.7x10^11 ττ
- Extremely clean environment, favourable kinematic conditions (boost) from Z decays
- CKM matrix, CP measurements, "flavour anomaly" studies, e.g. b \rightarrow stt, rare decays, cLFV searches, lepton universality, PNMS matrix unitarity

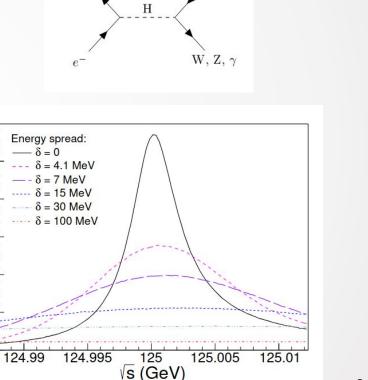

Intensity frontier: Opportunity to directly observe new feebly interacting particles with masses below m₂ :

- Axion-like particles, dark photons, Heavy Neutral Leptons
- Signatures: long lifetimes LLPs

Long Lived Particles

Interesting in many BSM and dark matter contexts, but challenging reconstruction


Suchita Kulkarni,


Rebecca Gonzalez Suarez 🔗

Electron Yukawa coupling

Unique possibility at FCC-ee, but formidable experimental challenge, requires:

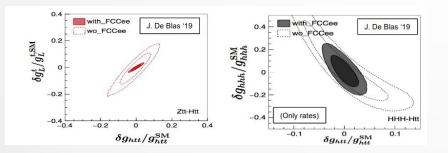
- (Mono)chromatisation: Γ_{μ} (4.2 MeV) << beam energy spread (100 Mev)
- Higgs boson mass prior knowledge to a couple MeV
- Huge luminosity (i.e., several years with possibly 4 IPs)
- Continuous monitoring and adjustment of \sqrt{s}
- Different e⁺ and e⁻ energies (to avoid integer spin tune)
- Extremely sensitive event selection against SM backgrounds
 - For all Higgs decay channels

David d'Enterria 🔗

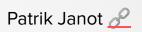
W, Z, γ

e

0.5


0.

10


Complimentarity

Higgs measurements will profit from both e+e- and pp collider

- FCC-ee measures g_{HZZ} to 0.2% (absolute, model-independent, standard candle) from σ_{ZH}
 - Fixes all other couplings (HL-LHC/FCC-hh/FCC-ee)
- FCC-hh produces over 10¹⁰ Higgs bosons
 - \circ (1st standard candle) $g_{H\mu\mu}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, Br_{inv}
- FCC-ee measures ttZ couplings (e⁺e⁻ → tt)
 - Another standard candle
- FCC-hh produces 10⁸ ttH and 2x10⁷ HH pairs
 - \circ ~~ (2nd standard candle) g_{Htt}^{} and g_{HHH}^{}

Collider	HL-LHC	FCC- $ee_{240\rightarrow 365}$	FCC-INT	
Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30	
Years	10	3 + 1 + 4	25	
$g_{\rm HZZ}$ (%)	1.5	0.18 / 0.17	0.17/0.16	
$g_{\rm HWW}$ (%)	1.7	0.44 / 0.41	$0.20/0.19 \star$	
$g_{\rm Hbb}$ (%)	5.1	0.69 / 0.64	0.48/0.48	ee
$g_{\rm Hcc}$ (%)	SM	1.3 / 1.3	0.96/0.96	(
g_{Hgg} (%)	2.5	1.0 / 0.89	0.52/0.5	
$g_{\mathrm{H}\tau\tau}$ (%)	1.9	0.74 / 0.66	0.49/0.46	
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9 / 3.9	0.43/0.43	
$g_{\rm H\gamma\gamma}$ (%)	1.8	3.9 / 1.2	0.32/0.32	
$g_{\mathrm{HZ}\gamma}$ (%)	11.	- / 10.	0.71/0.7	
$g_{\rm Htt}$ (%)	3.4	10. / 3.1	1.0/0.95	> pp
$g_{\rm HHH}$ (%)	50.	44./33.	3-5	
$g_{\rm HHH}$ (70)	50.	27./24.	00	
$\Gamma_{\rm H}$ (%)	SM	1.1	0.91	ee
BR_{inv} (%)	1.9	0.19	0.024	pp
BR_{EXO} (%)	SM (0.0)	1.1	1	ee
	•	* g _{HWW} includ	les also ep	

Summary of physics potential

			e+e	- collision	S			рр	collisions	FCC-ee note, 1906.03
√s → Physics ↓	mz	2m _W	HZ max. 240-250 GeV	2m top 340-380 GeV	500 GeV	1.5 TeV	3 TeV	28 TeV 37 TeV 48 TeV	100 TeV	Leading Physics Questions
Precision EW (Z, W, top)	Transverse polarization	Transverse polarization		m _W , αs						Existence of more SM- Interacting particles
$QCD(\alpha_{s})$ $QED(\alpha_{QED})$	5×10 ¹² Z	3×10 ⁸ W	105 H→gg							Fundamental constants and tests of QED/QCD
Model-independent Higgs couplings		→ H = m _H		nd 75k WW→H energies					<1% precision (*)	Test Higgs nature
Higgs rare decays									<1% precision (*)	Portal to new physics
Higgs invisible decays									10 ⁻⁴ BR sensitivity	Portal to dark matter
Higgs self-coupling				oop corrections oss sections					5% (HH prod) (*)	Key to EWSB
Flavours (b, τ)	5×10 ¹² Z								-	Portal to new physics Test of symmetries
RH v's, Feebly interacting particles	5×10 ¹² Z								10 ¹¹ W	Direct NP discovery At low couplings
Direct search at high scales					M _z <250GeV Small ∆M	M _x <750GeV Small ∆M	M _x <1.5TeV Small ∆M		Up to 40 TeV	Direct NP discovery At high mass
Precision EW at high energy							Ŷ		w, z	Indirect Sensitivity to Nearby new physics
Quark-gluon plasma Physics w/ injectors										QCD at origins

Green = Unique to FCC; Blue = Best with FCC; (*) = if FCC-hh is combined with FCC-ee; Pink = Best with other colliders

EPJ+ special issue "A future Higgs and EW Factory: Challenges towards discovery"

Δ

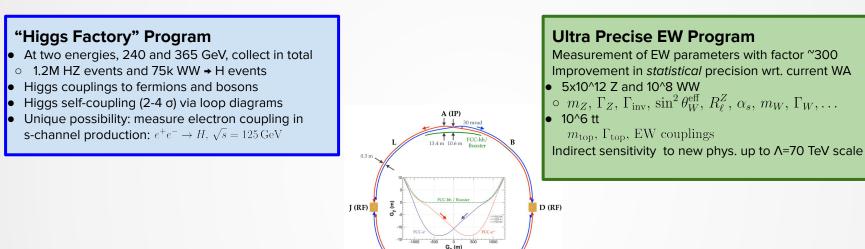
3 Part I: The next big leap – New Accelerator technologies to reach the pre			
	from	tier [4] (6 essays)	4
	3.1	FCC-ee: the synthesis of a long history of e^+e^- circular colliders [5]	4
	3.2	RF system challenges [6]	4
	3.3	How to increase the physics output per MW.h for FCC-ee? [7]	5
	3.4	IR challenges and the Machine Detector Interface at FCC-ee $[8]$	5
	3.5	The challenges of beam polarization and keV-scale center-of-mass energy calibration [9]	5
	3.6	The challenge of monochromatization [10]	5

MDI, √s

5	Part	t III: Theoretical challenges at the precision frontier [27] (7 essays)	11	
	5.1	FCC-ee: Physics Motivations [28]	11	
	5.2	Theory challenges for electroweak and Higgs calculations [29]	11	
	5.3	QCD at the FCC-ee [30]	12	
	5.4	New Physics at the FCC-ee: Indirect discovery potential [31]	12	
	5.5	Direct discovery of new light states [32]	12	
	5.6	Theoretical challenges for flavour physics [33]	12	
	5.7	Challenges for tau physics at the TeraZ [34]	12	

Theory Challenges

6	Par	t IV: Software Dev. & Computational challenges [35] (4 essays)	12
	6.1	Key4hep, a framework for future HEP experiments and its use in FCC [36]	13
	6.2	Offline Computing resources for FCC-ee and related challenges [37]	13
	6.3	Accelerator-related codes and their interplay with the experiment's software [38] .	13
	6.4	Online computing challenges: detector & readout requirements [39]	14


6
6
6
6
7
7
7
8
8
9
9
9
0
0
1
1

Challenges to match statistica
precision;
Detector requirements and
possible solutions

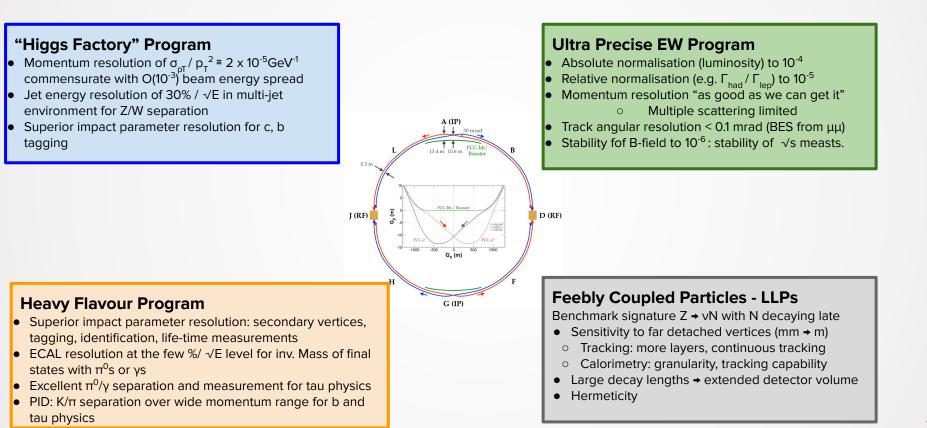
Software and computing challenges

12

Recap: The FCC-ee Physics Landscape

G (IP)

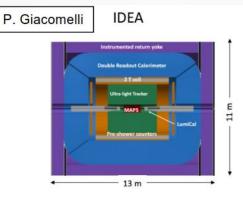
Heavy Flavour Program

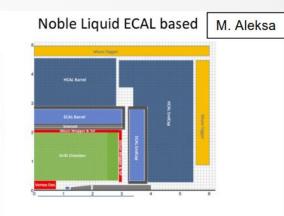

- Enormous statistics: 10^12 bb, cc; 1.7x10^11 ττ
- Extremely clean environment, favourable kinematic conditions (boost) from Z decays
- CKM matrix, CP measurements, "flavour anomaly" studies, e.g. b →sττ, rare decays, cLFV searches, lepton universality, PNMS matrix unitarity

Feebly Coupled Particles - LLPs

Intensity frontier: Opportunity to directly observe new feebly interacting particles with masses below m_7 :

- Axion-like particles, dark photons, Heavy Neutral Leptons
- Signatures: long lifetimes LLPs


Detector Requirements


Overview over detector concepts

A. Sailer	
	Scintillator-iron HCAL Stracker
	← 10.6 m

- Well established design
 - ILC -> CLIC detector -> CLD
- Engineering needed to make able to operate with continous beam (no pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations?
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?
 - ...
- Robust software stack
 - Now ported (wrapped) to FCCSW

- Less established design
 - But still ~15y history: 4th Concept
- Developed by very active community
 - Prototype construction / test beam compains
 - Italy, Korea,...
- Is IDEA really two concepts? Or will it be?
 - w, w/o crystals : EM resolution long. segmentation Maybe even GRAiNITA ?
- Software under active development
 - Being ported to FCCSW

- A design in its infancy
- High granul Noble Liquid ECAL is the core
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies
- Full simulation of ECAL available in FCCSW

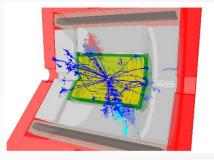
Software Challenges for (Future) Detector Developments

 10^{7}

 10^{6}

 10^{5}

 10^{4}

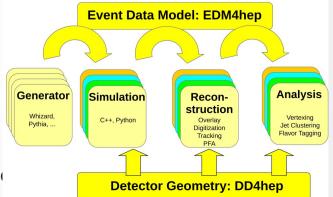

 10^{3}

 10^{2}

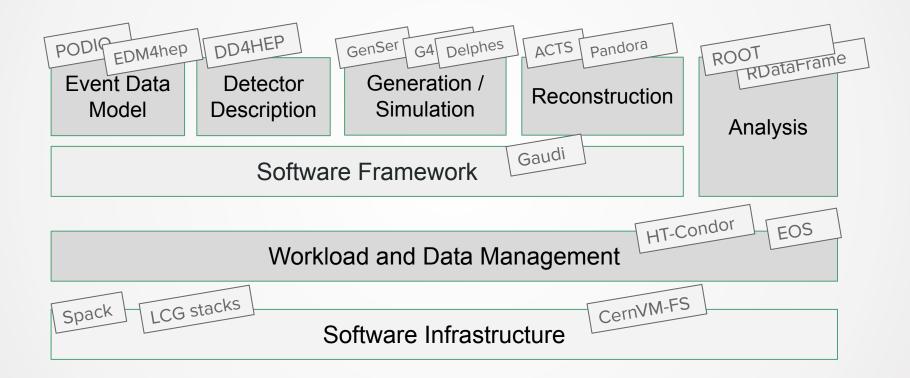
 10^{1}

 10^{0}

- Complex workflows
 - MC Simulations: Event Generation, Particle Propagation; Backgrounds, Digitization, Reconstruction, Analyses ...
- Performance
 - Need distributed computing infrastructure
 - And parallel programming to use evolving hardware efficiently
- Advantage: No "real-world" problems like Alignment and Conditions
 - ... but need to design for it!


48 Years of Microprocessor Trend Data ransistors thousands) Single-Thread Performance (SpecINT x 10³ Frequency (MHz) vpical Power Vatts) Number of Logical Cores 1980 1990 2000 2010 1970 2020 Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp


Common software tools for future colliders - a.k.a. Key4hep

Software stack that connects and extends packages to provide a complete data processing framework, comprising fast and full simulation, reconstruction, and analysis.

- Contributions from different Future Collider communities
 - FCC, CLIC, ILC, CEPC, EIC, ...
- Consistent choice of technologies for interoperability
 - EDM4hep: data model
 - Gaudi: framework
 - DD4hep: geometry description
 - Spack: package manager
- Ease of use for librarians, developers and users
- Provide examples, documentation, templates and communication practices

Software: Fostering a common ecosystem

ACTS A Common Tracking Software

ats

FCC-hh detector concept with 1000 p-p events with ACTS fast simulation

Project to preserve and enhance LHC track reconstruction software for future detectors

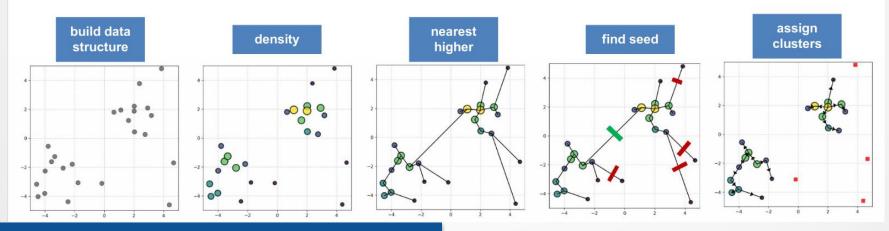
A flexible, open source R&D testbed:

- Facilitate collaboration across experiments and external contributors, e.g. machine learning experts
- Allow for novel algorithms and detector components (e.g. timing, tracklets)

A high-performant toolbox for track reconstruction based on LHC experience

- Modern code and software concepts to allow for concurrent computing
- Support high luminosity and high precision tracking algorithms

Very active ongoing efforts:


- Updating geometry loading for seamless use with FCC detector models
- Include existing EIC framework components

2D Clusters with CLUE

- CLUE (**CLUstering by Energy**) is an algorithm inspired by "Clustering by fast search and find of density peaks" (<u>Ref.</u>)
- Main characteristic:
 - *Energy density* rather than individual cell energy used to define ranking, seeding threshold, etc...
- GPU-friendly, i.e. suitable for the upcoming era of heterogeneous computing in HEP

Erica Brondolin, Marco Rovere, Felice Pantaleo

Conclusions

FCC-ee could explore, observe, and discover:

- **Explore** the 10-100 TeV energy scale (and beyond) with precision measuremenents
- 20- 100 fold improved precision on many EW quantities (equivalent to factor 5-10 in mass)
- $m_r, m_w, \sin^2 \theta_w^{eff}, R_h, \alpha_{QED}, \alpha_s$, Higgs and top quark couplings
- And provide model independent Higgs measurements which can be propagated to LHC and FCC-hh
- **Observe** at the > 3 σ level, the Higgs couplings to the 1st generation, the Higgs self-coupling
- Discover a violation of flavour conservation or universality and unitarity of PMNS @ 10⁻⁵
- FCNC (Z $\rightarrow \mu\tau$, et) in 5x10¹² Z decays and t BR in 2x10¹¹ Z $\rightarrow \tau\tau$
- + flavour physics (10^{12} bb events) ($B \rightarrow s \tau \tau$ etc.)
- Discover dark matter as "invisible decay" of H or Z (or in LHC loopholes)
- Discover very weakly coupled particles in the 5 to 100 GeV energy scale
 - Such as: Right-handed neutrinos, Dark photons, ALPS, etc, ...
- Many other opportunities in e.g. QCD ($\alpha_s @ 10^{-4}$, fragmentations, H \rightarrow gg) etc, ...

→ Not only a Higgs Factory: Z, Heavy Flavor, and top are also important for 'discovery potential'