Searches for Very Long-Lived Particles at the LHC

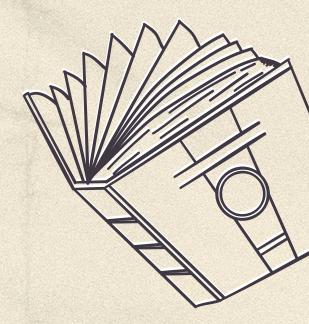
W

UNIVERSITY of

WASHINGTON

Cristiano Alpigiani

Interplay between Particle and Astroparticle physics Vienna, 09 September 2022


Table of Contents

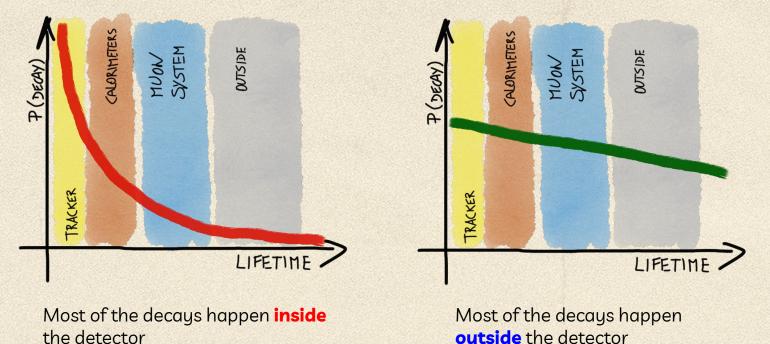
01 VLLP: Motivations

Why the current LHC detectors may not be enough?

- **02** Transverse Neutral LLP Detectors
- **03** Transverse Charged LLP Detectors
- **04** Forward LLP Detectors
- **05** Some Other New Ideas

Summary & Conclusions

01 Motivations

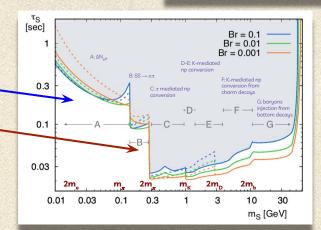

Theory intro in <u>Susanne's talk</u> today LLPs in current LHC experiments in <u>Daniele's talk</u> on Wednesday

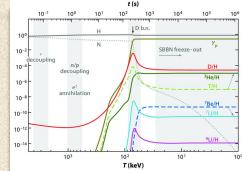
Long-Lived Particles Lifetime

The particle lifetime is a free parameter in the model

- It is sampled from an exponential
- Detector signature strongly depend on boost/mass of the LLP

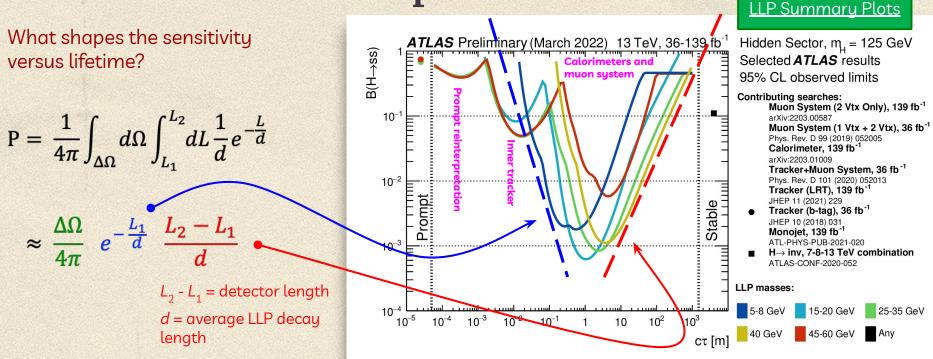
Need to adapt the search strategy!

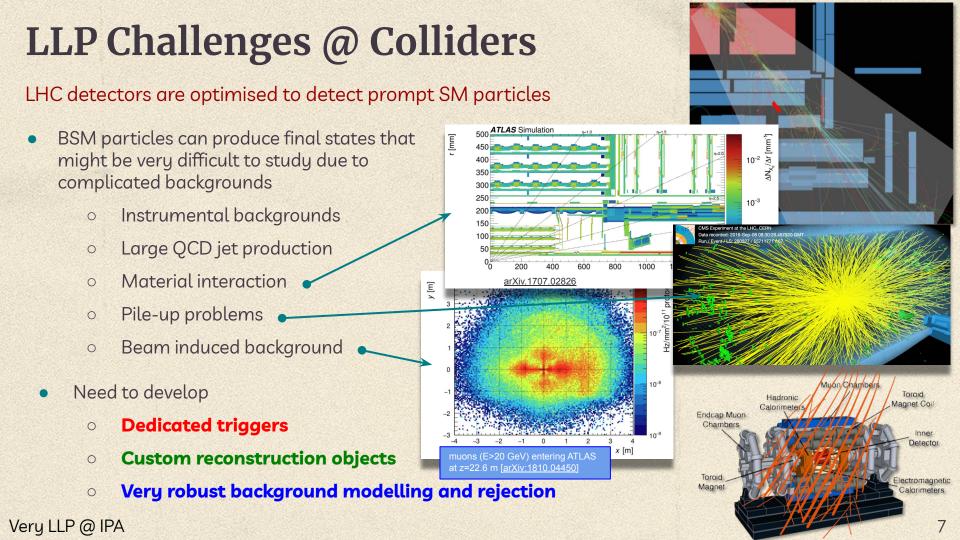



arXiv:1706.01920

LLP Lifetime: Any Limit?

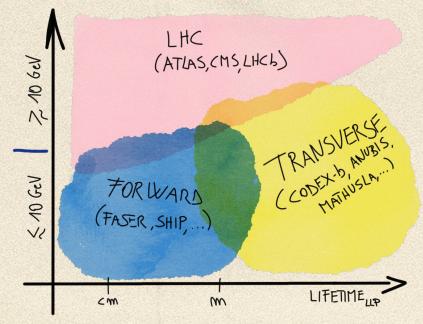
The lifetime of a metastable particle can be limited by cosmology, in particular by the Big Bang Nucleosynthesis (BBN)


- BBN very well understood within the SM physics and well constrained
 - Happened between ~10 s 15 mins after the Big Bang
- LLP lifetime should be smaller or n/p ratio should have been increased by mesonic and nucleonic LLP decays spoiling the final light nuclei abundances
 - Possible constraint studied on a scalar model coupled through Higgs portal (h→ss)
 - For $m_s < 2m_u \rightarrow lifetime$ can go up to 1 s
 - For $2m_{\mu} < m_s < m_h/2 \rightarrow \text{lifetime} < 0.1 \text{ s}$
- Conclusions do not depend strongly on BR($h \rightarrow ss$)



Very LLP @ IPA

LLP Geometrical Acceptance


- Good solid angle coverage \rightarrow lifetime independent
- Sensitivity to smaller lifetimes \rightarrow need high efficiency close to the IP
- Sensitivity to larger lifetimes \rightarrow need longer detector

The Proposed LLP Detectors @ LHC

Big variety of complementary detectors

 Allow to cover a big range of lifetimes up to BBN limit, couplings, masses, decay modes

Transverse <u>Neutral</u> LLP detectors

MATHUSLA

<u>arXiv:2005.02018</u> (Test stand) <u>arXiv:2009.01693</u> (update Lol) <u>arXiv:2203.08126</u> (Snowmass22)

Jura Side

LLP decay volum

Multi-layer tracker

Double layer tracker

Floor detector

Beam line

v(cm

LHC beam pipe

Surface

Dedicated detector sensitive to neutral LLP with lifetime up to BBN

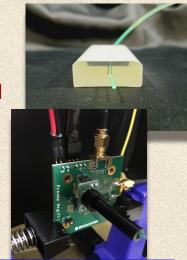
- Proposed a large area surface detector located above CMS
 - Robust tracking + excellent background rejection
 - Floor detectors to reject interactions occurring near the surface
 - **Extruded scintillators + SiPMs** (good time/space resolution)
- **Cosmic** μ rate of about **1.7 MHz** and **10 Hz LHC** μ rejected with timing
- **LHC neutrinos:** expected 0.1 events from high-E neutrinos (W, Z, top, b), ~1 events from low-E neutrinos (π/K) over the entire HL-LHC run
- Upward atmospheric neutrinos (70 evts/y above 300 MeV) "decaying" to low momentum proton
 - Advantages: sensitive to very long lifetimes, almost fully shielded from IP background, can do interesting cosmic ray studies

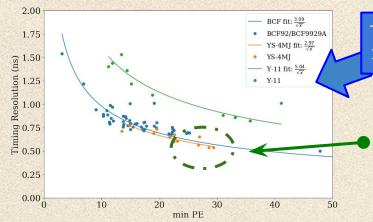
Very LLP @ IPA • Drawback: big detector, need to excavate 20 m (which increases the cost)

Core position

op plane

RPC lave

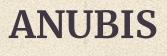

x(cm)


MATHUSLA - Status

Extruded scintillator bars with wavelength shifting fibers coupled to SiPM (tested extrusion facilities - Fermilab and Uniplast)

- Critical features of the detector design
 - Separates downwards from upwards going tracks
 - Reject low beta particles from neutrino QIS

 \rightarrow Need ~1 ns with >15 photoelectrons



Timing measurement for a 5 m long fiber through a $1 \times 4 \text{ cm}^2$ extrusion located at the center of the fiber

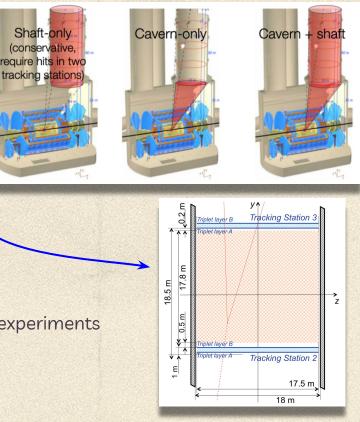
Timing resolution of ~0.54 ns (i.e. 9 cm RMS position resolution) well within MATHUSLA requirement. **Worst case light-yield was 29 PE**

- Finalising first design of detector layout, DAQ and trigger
- Conceptual Design Report to be published soon

12

AN Underground **B**elayed In-Shaft: i.e. instrumenting the ATLAS shaft with tracking detector for HL-LHC

- 4 stations of RPCs for tracking (2 triplet each)
- Timing to reject cosmic rays
- Can be combined with ATLAS information as veto and background estimation
- Assuming background similar to the LLP searches in ATLAS muon system (need 4-50 events for evidence)


Advantages

- Solid angle comparable to MATHUSLA
- $\circ~$ Up to 10^3 better sensitivity wrt current/approved future experiments for neutral LLPs with ct $\gtrsim 10^2$ m
- Moderate costs: O(10) MCHF

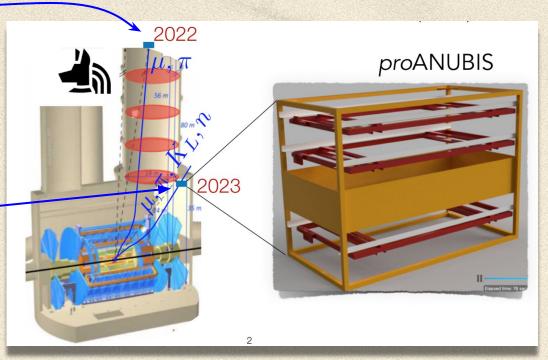
• Drawbacks

 Basically no shielding: need a very good understanding and modelling of background from the IP Very LLP @ IPA

Conceptually similar to MATHUSLA

ANUBIS - Status

More details in <u>here</u> and <u>here</u> (XI LLP workshop)


Currently building a 1.8 x 1 x 1 m³ prototype to measure the flux and correlated to ATLAS during Run 3

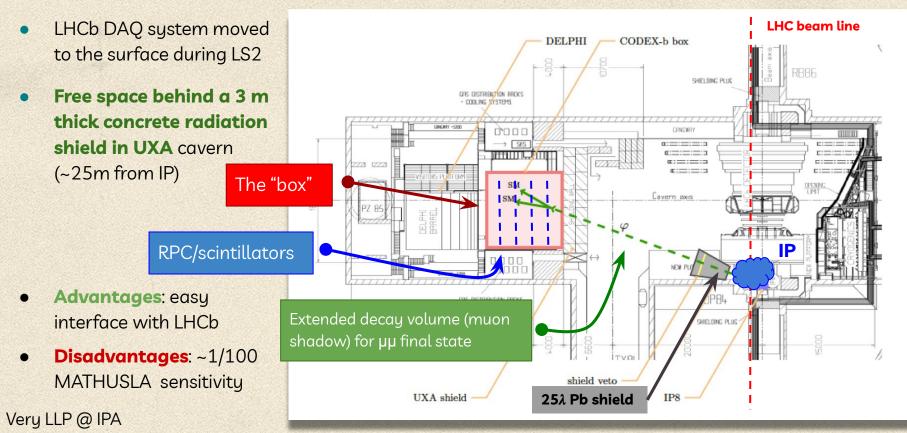
• 2022 target

- Commissioning, study tracking performance, synchronisation with ATLAS
- Rate of secondaries from hadrons interacting with concrete, probability to see hadrons from punch-through jets

2023 target

- Continue 2022 studies + measure rate of K_L, n in events with jets pointing towards proANUBIS
- Validation of Geant4 simulation

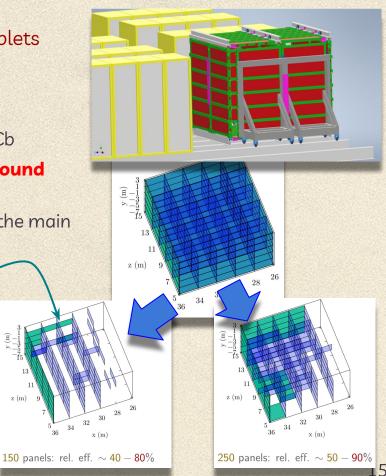
• Some sensitivity to NP? I.e. charged massive particles with $\beta \approx 1$ (not small enough to be seen by ATLAS) Very LLP @ IPA 13


CODEX-b

<u>arXiv:1911.00481</u> (proposal) <u>arXiv:2203.07316</u> (Snowmass22)

Conceptually similar to MATHUSLA

COmpact Detector for EXotics at LHCb (theoretically well-motivated ≤O(10 GeV) LLP)

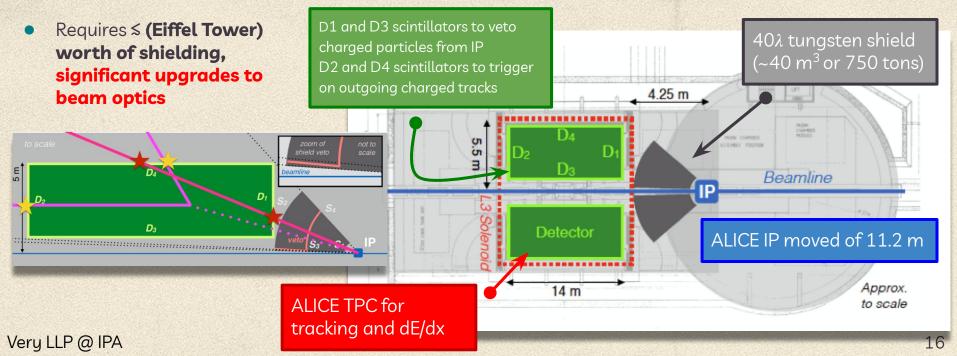

CODEX-b - Status

A small demonstrator detector 2 x 2 x 2 m^3 made or RPC triplets will be installed in the old LHCb HLT server room

• Main goals

- Test tracking technology and integration with LHCb
- Demonstrate the **ability to reconstruct SM background** inside the detector
- Prove the mechanical structure and its scalability to the main detector
- Optimise the detector shape and tracking layout
 - Considering also possible different geometry/orientation/position
- The tracking layer surface area is the main driver of costs and installation time
- Module production should start by the end of this year

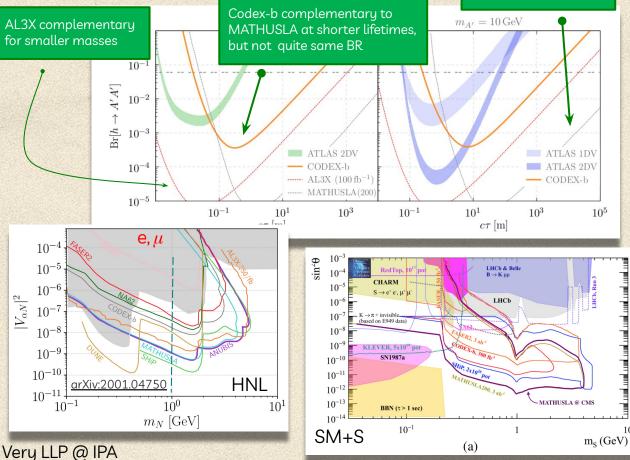
More details in this talk (XI LLP Workshop)

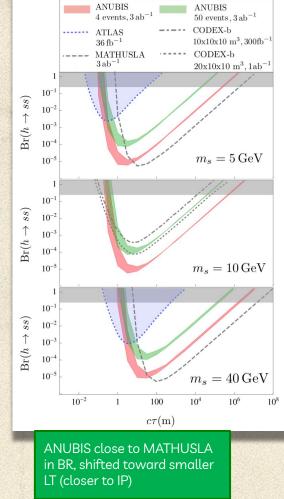


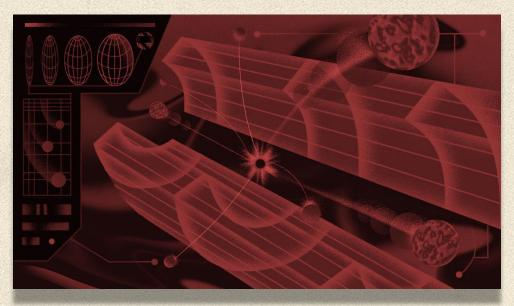
AL₃X

Conceptually similar to MATHUSLA

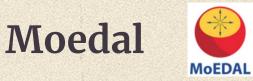
A Laboratory for Long-Lived eXotics

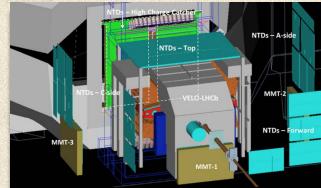

- Reconfigure ALICE detector and its collision point at HL-LHC for dedicated LLP search
- 1/10 MATHUSLA sensitivity at long lifetimes, MUCH BETTER at short lifetimes

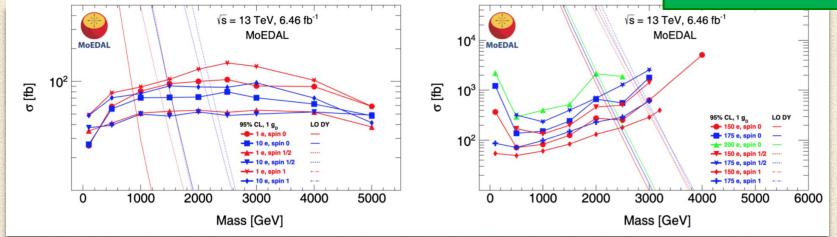



(Some) Sensitivities

MATHUSLA has good sensitivity for masses >5 GeV and long LT


10

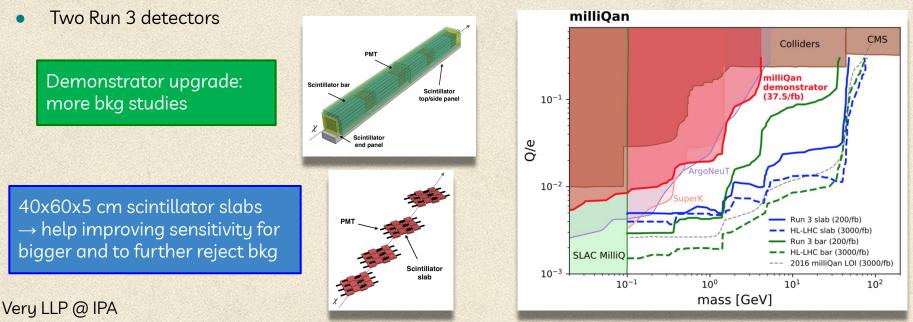

Transverse Charged LLP detectors

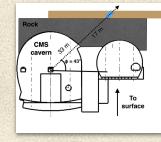

Moedal (PhysRevLett.126.071801, PhysRevLett.123.021802)

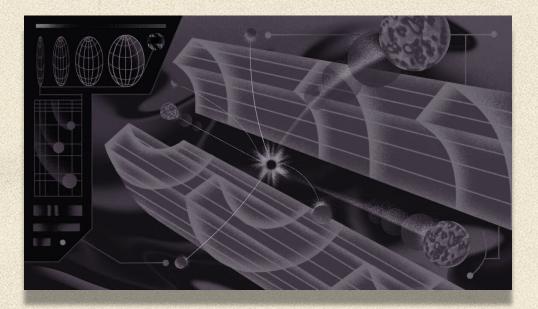
Experiment located in the LHCb cavern looking for highly ionizing particles, magnetic monopoles, pseudo-stable charged particles

- It uses magnetic monopole traps and nuclear track detectors
- Future plans
 - **MAPP** (in Run 3) to detect millicharged particle (0.001 e)
 - MALL to detect charged very LLP

First search for Dyons!


orward region

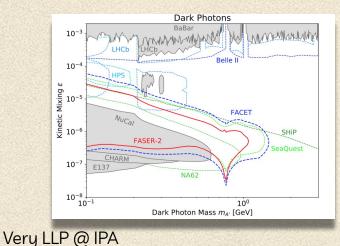

Milliqan

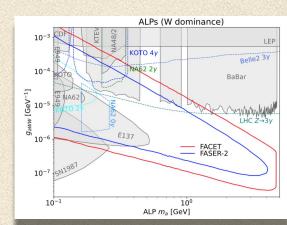

Milliqan (Lol, <u>arXiv:1607.04669</u>, Run 3 updates <u>arXiv:2104.07151</u>) Experiment to detect "<u>milli-charged</u>" particles (0.3-0.001e) with O(GeV) masses produced by pp collisions at CMS

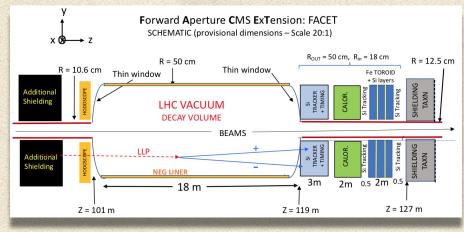
- 17 m rock shielding, 1x1x3 m³ plastic scintillator array + high-gain PMTs with long axis pointing to CMS IP
- Small prototype (~1% size) took data in 2018 (and confirmed background expectation)

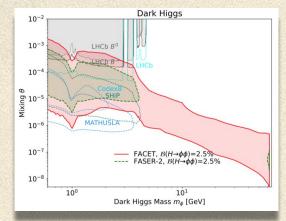
20

 $()/_{L}$

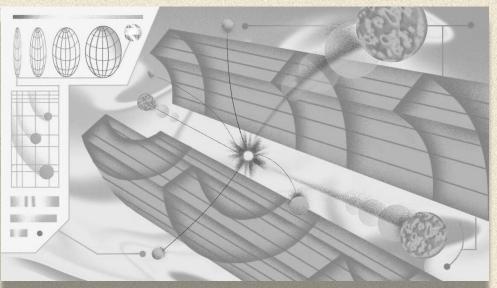

FASER: see Monica's talk

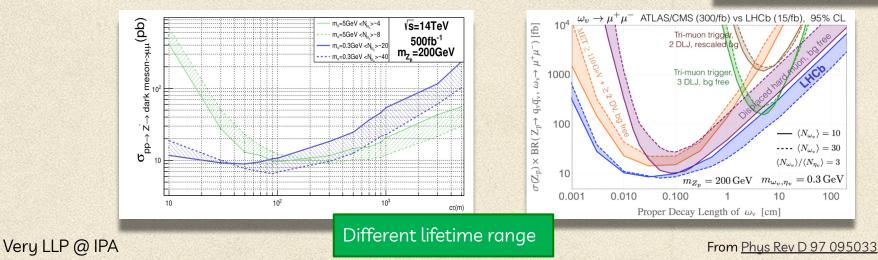

arXiv:2201.00019 (proposal)


FACET


Forward- Aperture CMS ExTension

- Replace 18 m long section of the LHC beam pipe on one side of the interaction region with a circular pipe of 50 cm radius
 - **1.** Additional shielding placed upstream of the first detector hodoscope (made of radiation-hard quartz pads)
 - 2. Silicon trackers + timing and calorimeters (as CMS Phase-2 upgrade) to measure the LLP decay products
 - **3.** Iron toroid (1.75 T) with additional silicon trackings




22

Some Other New Ideas

LHC Detector Array for LLP

- Use the ATLAS detector (biggest muon system) to detect di- μ LLP decays from other detectors
- Main backgrounds from
 - Cosmic muons / bkg from collisions (removed using directional information)
 - Radioactive environment (removed: muon pt > 1 GeV)
 - High energy muons from LHCb/ALICE, neutrino conversion (expected to be negligible)

JHEP02 (2022) 069

LLP in Cosmic Rays

LLP with masses ~GeV can be produced in hadron decays

- Possibly produced in a cosmic ray showers even without TeV-scale mediator
- LLP flux need to be quantified for every model
- Cosmic ray from all directions can contribute
- In principle no detector necessary and dedicated searches can already be sensitive (?)

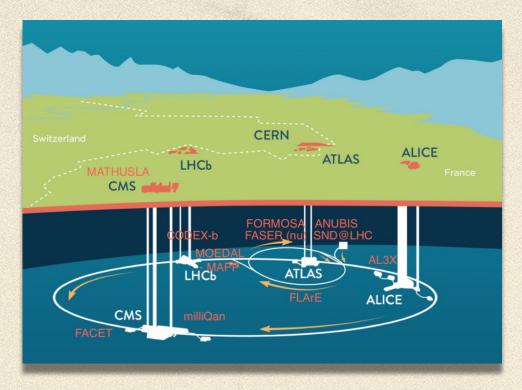
Many theoretical discussions arXiv:1906.09064 arXiv:1910.12839 arXiv:1806.03063

Observation of an Unusual Upward-going Cosmic-ray-like Event in the Third Flight of ANITA

P. W. Gorham,¹ B. Rotter,¹ P. Allison,² O. Banerjee,² L. Batten,³ J. J. Beatty,² K. Bechtol,⁴ K. Belov,⁵ D. Z. Besson,^{6,7} W. R. Binns,⁸ V. Bugaev,⁸ P. Cao,⁹ C. C. Chen,¹⁰ C. H. Chen,¹⁰ P. Chen,¹⁰ J. M. Clem,⁹ A. Connolly,² L. Cremonesi,³ B. Dailey,² C. Deaconu,⁴ P. F. Dowkont,⁸ B. D. Fox,¹ J. W. H. Gordon,² C. Hast,¹¹ B. Hill,¹ K. Hughes,² J. J. Huang,¹⁰ R. Hupe,² M. H. Israel,⁸ A. Javaid,⁹ J. Lam,¹² K. M. Liewer,⁵ S. Y. Lin,¹⁰ T.C. Liu,¹⁰ A. Ludwig,⁴ L. Macchiarulo,¹ S. Matsuno,¹ C. Miki,¹ K. Mulrey,⁹ J. Nam,¹⁰ C. J. Naudet,⁵ R. J. Nichol,³ A. Novikov,⁶ E. Oberla,⁴ M. Olmedo,¹ R. Prechelt,¹ S. Prohira,⁶ B. F. Rauch,⁸ J. M. Roberts,¹ A. Romero-Wolf,⁵ J. W. Russell,¹ D. Saltzberg,¹² D. Seckel,⁹ H. Schoorlemmer,¹ J. Shiao,¹⁰ S. Stafford,² J. Stockham,⁶ M. Stockham,⁶ B. Strutt,¹² G. S. Varner,¹ A. G. Vieregg,⁴ S. H. Wang,¹⁰ and S. A. Wissel¹³

¹Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822.
²Dept. of Physics, Center for Cosmology and AstroParticle Physics, Ohio State Univ., Columbus, OH 43210.
³Dept. of Physics and Astronomy, University College London, London, United Kingdom.
⁴Dept. of Physics and Astronomy, University College London, London, United Kingdom.
⁵Jet Propulsion Laboratory, Pasadena, CA 91109.
⁶Dept. of Physics and Astronomy, University, Rasadena, CA 91109.
⁶Dept. of Physics and Astronomy, University, Taiper, Kansas, Lawrence, KS 66045.
⁷National Research Nuclear Univ., Moscow Engineering Physics Inst., Moscow, Russia.
⁸Dept of Physics, Grad. Inst. of Astrophys., & Leung Center for Cosmology and Particle Astrophysics, National Taivan University, Taipei, Taiwan.
¹¹SLAC National Accelerator Laboratory, Mento Park, CA, 94025.
¹²Dept. of Physics and Astronomy, Univ. of Kousis, Substitution, Candon State Univ.

We report on an upward traveling, radio-detected cosmic-ray-like impulsive event with characteristics closely matching an extensive air shower. This event, observed in the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload, is consistent with a similar event reported in a prev


Maybe can explain ANITA excess?

Adding a layer of RPC/scintillator on top of ATLAS roof and use to create a decay volume between surface-ATLAS?

Conclusions

- Impressive number of complementary detectors
- Can make the LHC LLP search program more comprehensive
- Can have the potential to significantly enhance and extend the new physics reach and capabilities of the current LHC detectors
- More ideas may come soon...

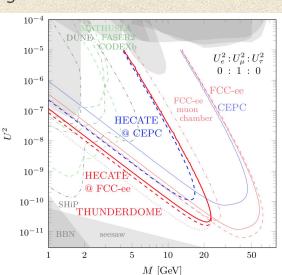
Backup

Comparison of Detector Design - Neutral LLP

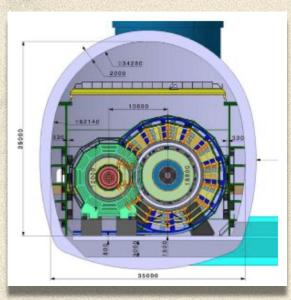
	Collision point	Distance from IP	Fiducial volume	Use main experiment?	Shielding cosmics	Shielding collision	Technology
MATHUSLA	CMS	~90 m	25m x 100m x 100m	Under study	NO	YES	Scintillators (+ 1 RPC)
ANUBIS	ATLAS	~25 m	~56m x (9m)²	YES	Partial	NO	RPC (scintillators to be explored)
CODEX-b	LHCb	~35 m	10m x 10m x 10m	Under study	YES	YES	RPC
AL3X	ALICE	~4.25 m	~12m x (2.5m) ²	NO	YES	YES	Gas TPC

• For a given decay volume,

- More solid angle if closer to the IP
- Number of decays higher if closer to the IP
- LHC collision backgrounds more important if closer to the IP (depending on shielding)


Credits: Emma Torró

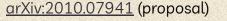
LLP @ FCC-hh and FCC-ee


HErmetic CAvern TrackER

- FCC-hh / FCC-ee main detectors will be relatively smaller than the cavern
- Cover detector cavern walls with scintillator plates or RPCs
 - Use FCC detector as active veto
 - \circ >= 2 layers of 1 m² separated by a sizeable distance
 - \circ >= 4 layers for good tracking

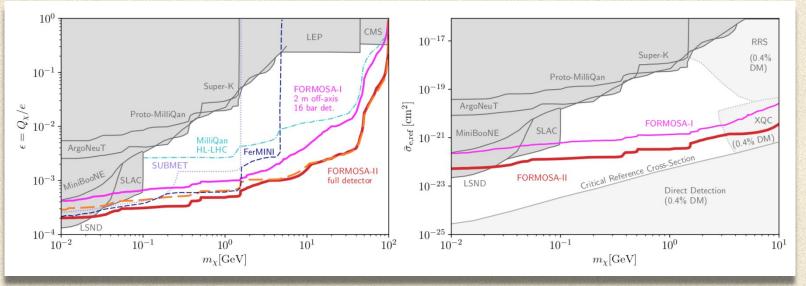
THUNDERDOME = Totally Hyper-UNrealistic DEtectoR in a huge DOME

arXiv:2011.01005 (proposal)

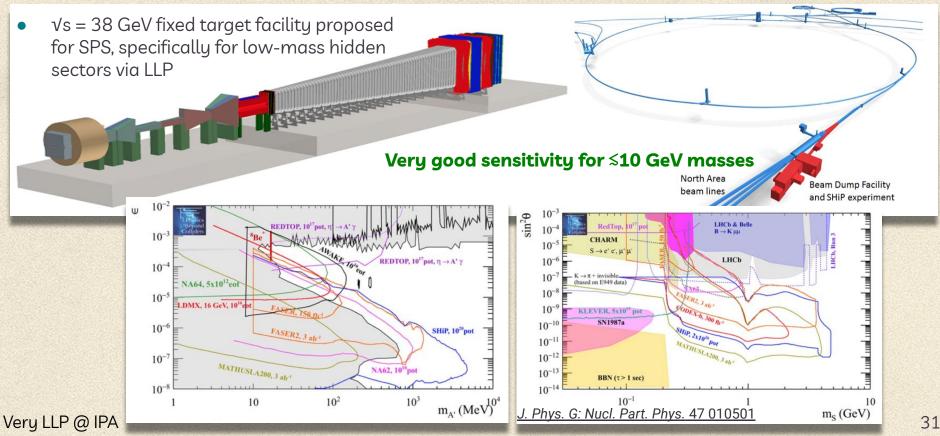


Cavern size: r~15 m and z~50 m Main detector size = 10m


Formosa

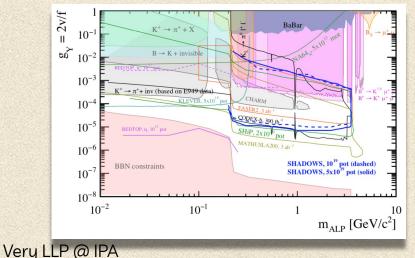

FOrward MicrOcharge SeArch

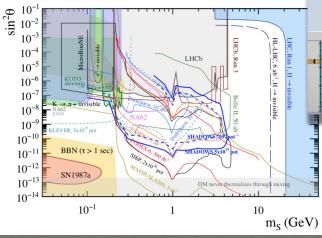
- Looking for millicharge particles in the 10 MeV -100 GeV region in a large and unexplored parameter space and study strongly interacting DM
- Scintillator based experiment (similar to Milliqan)

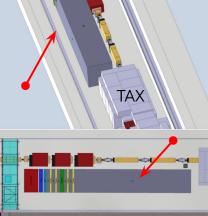

World's most sensitive location

North Area Experiments - SHiP

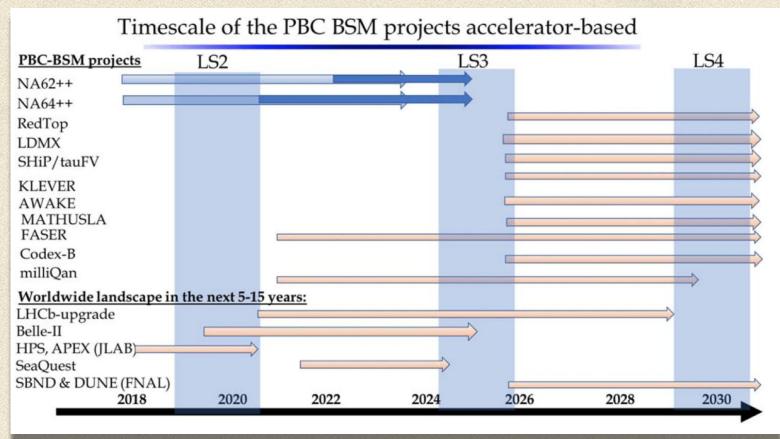
Search for Hidden Particles



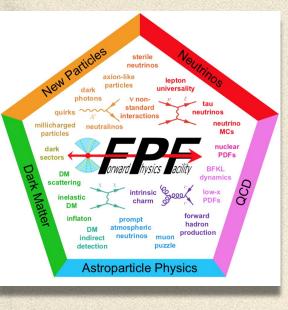

North Area Experiments - SHADOW


VV (expression of interest) https://cds.cern.ch/record/2799412

Search for Hidden Particles


- Proposal for a beam dump experiment to complement NA62 beam dump facility
- "Low cost" detector installed slightly off axis of the TAX shield zone
 - Less affected by μ/ν bkg from beam interaction with dump
 - Series of decay volumes + muon spectrometers
- ~10⁹ protons/year on target to study a large variety of FIPs in the mass range MeV-GeV
 - Strongest bounds exist up to K mass; above bounds weaken significantly




Some Rough Timeline

HL-LHC Forward Facility

Proposal to build dedicated forward physics facility for HL-LHC

