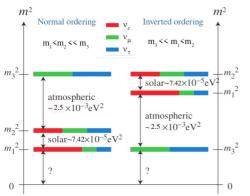
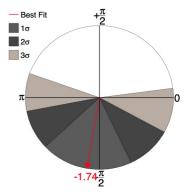


Lakshmi .S. Mohan[†]

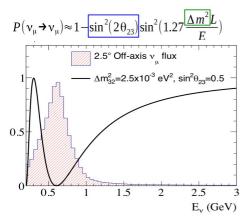
Interplay between Particle and Astroparticle physics


Vienna, 2022

[†]National Centre for Nuclear Research, Warsaw

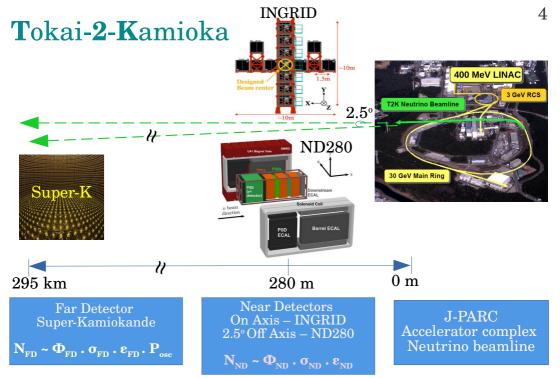

Current Open Questions in Neutrino Oscillations

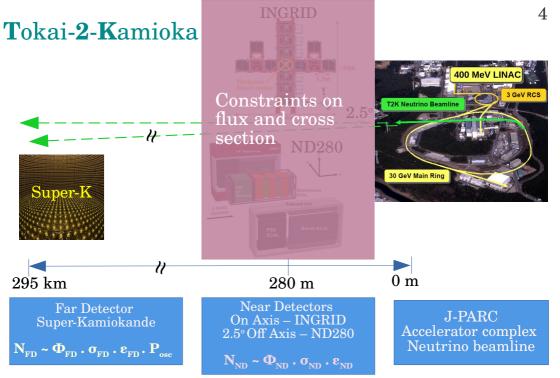
Neutrino mass ordering

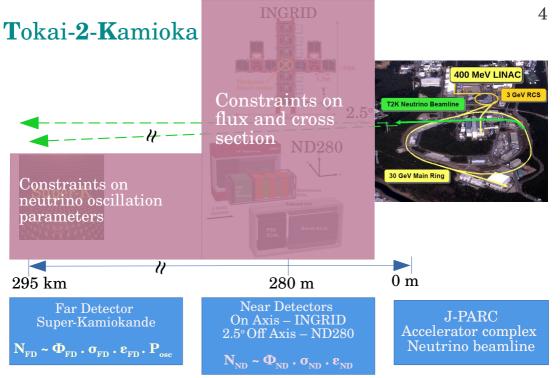


> Octant of the mixing angle θ_{23} $\theta_{23} < (>) 45^{\circ}$ Lower (upper) octant $\theta_{23} = 45^{\circ}$ Maximal mixing Lakshmi .S. Mohan Leptonic CP phase

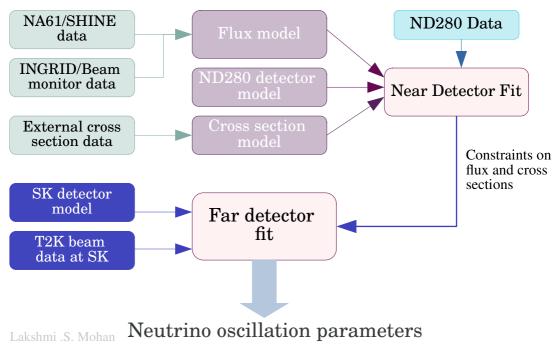
Nature 580, 339-344 (2020)

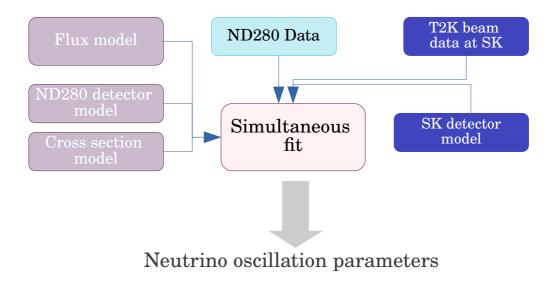

Neutrino oscillation probabilities at T2K



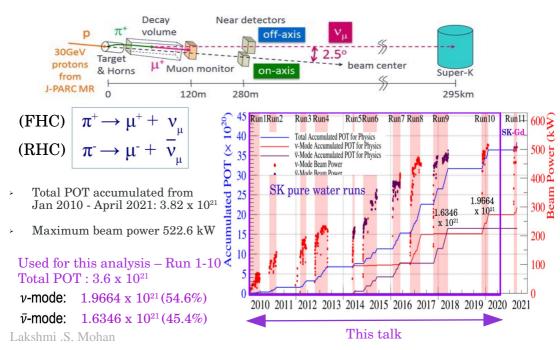

> Sensitivity to $\sin^2(2\theta_{_{23}})$, $|\Delta m^2_{_{_{32}}}|$

 $P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) \approx \sin^{2}(\theta_{23}) \sin^{2}(2 \theta_{13}) \sin^{2}(1.27 \frac{\Delta m^{2} L}{L})$ 2.5° Off-axis v flux - δ_{co}=0°, NH, ν 0.08 - δ_{cp}=270°, NH, ν ---- δ_{cp}=0°, NH, ν 0.06 ---- δ_{cp}=270°, NH, ν 0.04 0.02 0.5 1.5 2.5 2 E_v (GeV)

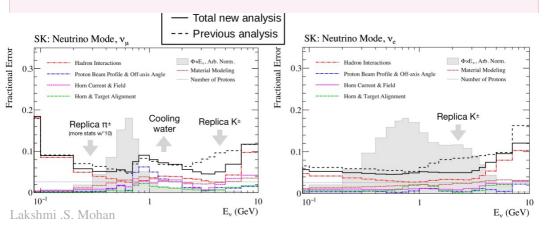

- > Sensitivity to $\sin^2(2\theta_{13})$, $\sin^2\theta_{23}(\theta_{23})$ octant)
- Sensitive to CP phase $\delta_{_{\rm CP}}$
- → L = 295 km "not very long" → δ_{CP} effect dominates compared to that of mass ordering(~<27% vs ~10%)



<u>T2K analysis 1: Consecutive ND+FD fit and Frequentist Approach</u> 5



6


Inputs to the fit

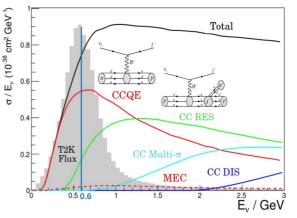
T2K beam

Flux predictions and uncertainties

- > Simulation with FLUKA/GEANT3/GCALOR.
- Flux tuning based on NA61/SHINE hadron production measurements using 2010 T2K replica target data, EPJ C 79, 100 (2019).
 - → Has more statistics for π^{\pm} production
 - \rightarrow Added K[±] and proton data

Updated neutrino interaction model

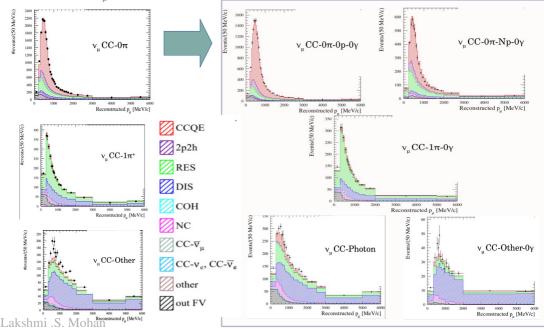
1) <u>CCQE model based on Spectral Function</u>


a) New uncertainties on nuclear shell structure, nuclear potential and Pauli Blocking

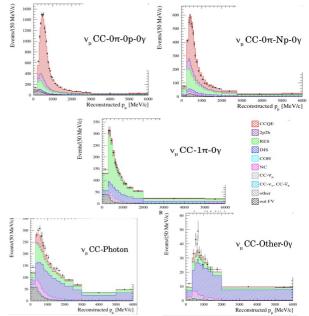
b) Nucleon removal energy has a parameterized dependence on momentum transfer

2) <u>CC RES: Based on Rein–Sehgal (RS)</u> model with RFG nuclear model

a) New bubble chamber tune of RS parameters


- b) New resonance decay uncertainties
- c) Effective inclusion of binding energy
- d) New uncertainty in π^{\pm} vs π^{0} production

- 3) Better description of 2p2h (MEC) contribution from pn/nn pairs
- 4) Improvements to multi-pion production and final state interaction model

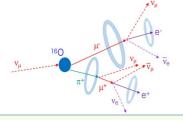

ND280 samples for this analysis \rightarrow 22 samples

New FHC v_{μ} samples in FGD1 and FGD2 split using proton and photon tagging

ND280 samples for this analysis \rightarrow 22 samples

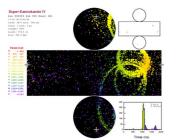
- New FHC v_{μ} samples in FGD1 and FGD2 split using proton and photon tagging
- Improves the predictions of CCQE & 2p2h interactions.
- Test of whether cross-section modelling improvements are sufficient to describe the near detector data.
- $\succ CC-Photon sample -> primarily DIS and resonant interactions with <math>\pi^0$ in the final state. Allows near detector constraint of the multi-ring signal events in the far detector.
- Photon tag also improves the purity of the other samples such that constraints on CCQE and CC RES 1π⁺ can also be improved.

<u>6 Far detector samples at SK</u>


Interaction	Visible Topology	Mode
$\nu_l, \bar{\nu}_l \text{ CCQE}, l = \mu, e$ $\nu_l \qquad \qquad$	 1 ring µ–like 1 ring e–like 	$ u$ and $\overline{\nu}$
$\nu_l \text{ CC RES } 1\pi^+, l = e, \mu$	 1 ring e–like + 1 decay electron (π⁺ is below the Cherenkov threshold) 	u only
$(p) \xrightarrow{u}_{u} (p) \xrightarrow{u}_{u} (p) \xrightarrow{u}_{u} (p)$	> Multi-ring $1\mu^- + 1\pi^+ + 1 \text{ or } 2$ decay electrons $1\mu^- + 2 \text{ decay electrons}$	

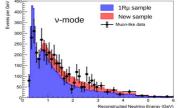
<u>6 Far detector samples at SK</u>

Interaction	Visible Topology	Mode
$\nu_l, \bar{\nu}_l \text{ CCQE}, l = \mu, e$ $v_l \qquad \qquad$	 > 1 ring µ–like > 1 ring e–like 	ν and $\bar{\nu}$
$\nu_l \text{ CC RES } 1\pi^+, \ l = e, \mu$	 1 ring e–like + 1 decay electron (π⁺ is below the Cherenkov threshold) 	u only
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	> Multi-ring $1\mu^- + 1\pi^+ + 1 \text{ or } 2$ decay electrons $1\mu^- + 2 \text{ decay electrons}$	


Multi-ring v_{μ} charged current $1\pi^{+}$ events in SK

⊳

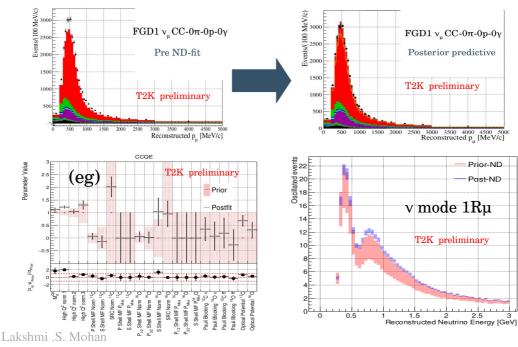
- > NEW! Included for the first time in T2K oscillation analysis.
- > Parent E_v ~1.2 GeV → oscillation effect is still present. $\frac{12}{12} \cap \frac{1}{12}$


 $1\mu^{\scriptscriptstyle -}$ + $1\pi^{\scriptscriptstyle +}$ + 1 or 2~ decay electrons $1\mu^{\scriptscriptstyle -}$ + 2~ decay electrons

Event display for a MR MC event with 2 decay e

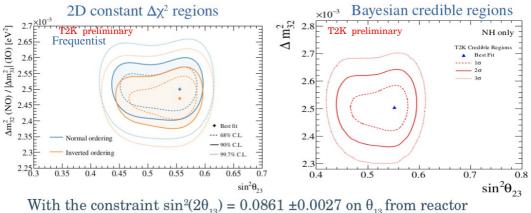
Lakshmi .S. Mohan

~30% increase in v_{μ} -like events: Sensitive to θ_{23} & $|\Delta m^2_{32}|$.



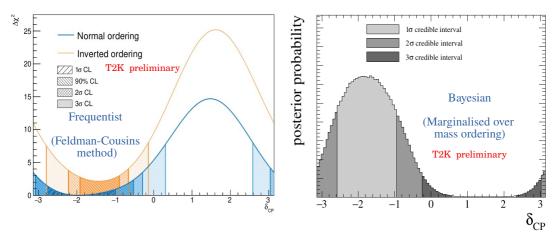
Unoscillated

5 6 Reconstructed Energy (GeV


Results from the fits

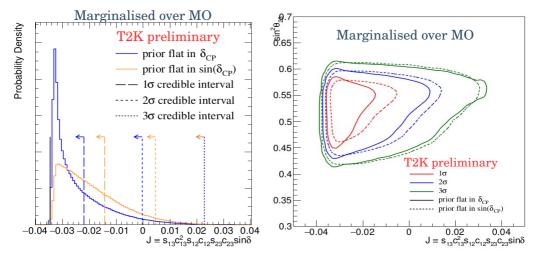
After ND fit - Smaller uncertainties on flux and cross section parameters

15


Oscillation parameters from T2K fits $-\theta_{23}$, $\Delta m^2_{32}(|\Delta m^2_{31}|)^{16}$

anti-neutrino experiments.

- Best fit in the upper octant
- > Lower octant still allowed within 68% CL


CP phase – With the constraint $\sin^2(2\theta_{_{13}}) = 0.0861 \pm 0.0027$ from reactor anti-neutrino experiments

- > CP-conserving values of $\delta=0$ and $\delta=\pi$ are outside of 90% CL intervals
- Effect of alternative interaction model tested → did not find biases that would change this conclusion.

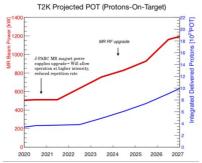
Jarlskog invariant $J \equiv s_{13}c_{13}^2s_{12}c_{12}s_{23}c_{23}\sin\delta$ $s_{ij} = \sin\theta_{ij}, c_{ij} = \cos\theta_{ij}, \qquad 18$

Constraint $\sin^2(2\theta_{13}) = 0.0861 \pm 0.0027$ on θ_{13} from reactor anti-neutrino experiments

 $\succ\,$ Can search for potential CP violation by looking at the posterior probability and credible intervals for J $_{_{\rm CP}}$

> Results depend on the metric in which we assume the prior for δ to be uniform. Lakshmi .S. Mohan

$\boldsymbol{\theta}_{_{23}} \, octant$ and mass ordering preferences

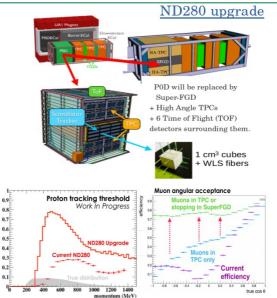

Posterior probabilities					
T2K only	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum		
NH $(\Delta m_{32}^2 > 0)$	0.24	0.39	0.63		
IH $(\Delta m_{32}^2 < 0)$	0.15	101109.22	0.37		
Sum	0.15 0.39 124	0.61	1.000		
T2K + reactor θ_{13}	$\sin^2\theta_{23} < 0.5$	$\sin^2\theta_{23} > 0.5$	Sum		
NH $(\Delta m_{32}^2 > 0)$	0.20	0.54	0.74		
IH $(\Delta m_{32}^2 < 0)$	0.05	0.21	0.26		
Sum	0.25	0.75	1.000		

Mild (slightly stronger) preference for normal ordering and upper octant, without (with) reactor constraint on $\theta_{13} \rightarrow$ limited significance. Lakshmi .S. Mohan

Future plans

- > Ongoing joint analyses with SK atmospheric and NovA - Access to different $L_{v}/E_{v} \rightarrow$ can break degeneracies
 - Upgrade of beam, ND280 & SK-Gd \rightarrow 3 σ sensitivity on δ_{CP}

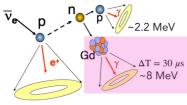
<u>Beam upgrade</u>

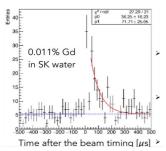

۶

Upgrade of:

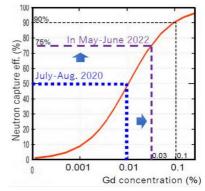
- Neutrino beamline to handle higher intensity beam
- Horn power supplies → will allow their operation at ~320 kA

Expected to be ready for operation in early 2023.


Lakshmi .S. Mohan


20

Upgrade of far detector: SK-Gd


Neutron tagging by addition of Gd

 $\bar{\nu}_e$ identification possible by delayed coincidence

Neutron capture efficiency increases with Gd concentraion

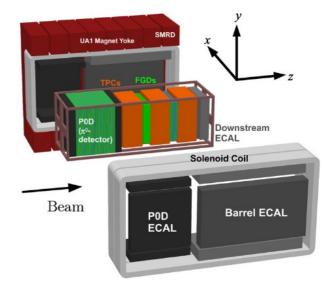
- Exponential curve indicates the presence of neutrons in T2K data
- Run 11 data taken with SK-Gd in 2021 (not used for analysis yet)

Prospect of $\nu/\bar{\nu}$ separation in T2K beam data

Summary

- > Sensitivity studies to oscillation parameters are done with existing data:
 - with significant improvements in flux and interaction models
 - addition of proton and photon tagged samples in near detector &
 - a new $\nu_{\!_{\rm u}} {\rm CC}$ multi-ring sample at the far detector
- δ_{CP} from T2K → still favours near-maximal CP violation, ~- $\pi/2$. CP conservation continues to be excluded at 90% CL.
- > Slight preference normal mass ordering (NO) and for upper octant of θ_{23} , but consistent with lower octant and maximal values.
- > Ongoing T2K+NOvA and T2K+SK atmospheric joint analyses
 → can address degeneracies.
- Beam, near detector, and far detector all are being upgraded to enable enhanced sensitivity to cross sections and oscillation parameters.

Thank you!

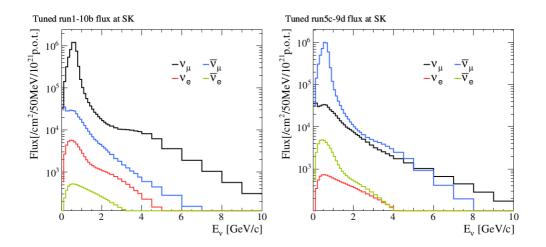

Backup

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ &+ 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$

$$\Phi_{ji} = \Delta m_{ji}^{2}L/4E_{\nu} \\ a \equiv 2\sqrt{2}G_{F}n_{e}E_{\nu} \\ &= 7.56 \times 10^{-5}[eV^{2}](\frac{\rho}{[g/cm^{3}]})(\frac{E_{\nu}}{[GeV]} \end{split}$$

ND280 detector

- VA1 magnet
- > SMRD
- > P0D
- > FGDs
- > TPCs
- > ECAL


26

- > <u>UA1 magnet</u>: To measure momenta & determine the sign of charged particles produced by neutrino interactions.
- <u>Side muon range detector (SMRD)</u>: records muons escaping with high angles w.r.to the beam direction and measures their momenta.
- > (<u>PØD</u>): to measure NC process $v_u + N \rightarrow v_u + N + \pi^0 + X$ on H_2O target.
- Fine grained detector (FGD): Two FGDs provide target mass for neutrino interactions as well as tracking of charged particles coming from the interaction vertex.

FGD1 – scintillator FGD2 – water + scintillator

- <u>Time Projection Chambers (TPCs)</u>
 - Has good tracking resolution.
 - To determine the number and orientations of charged particles traversing the detectors \rightarrow helps selecting high purity samples of different v interactions.
 - Measure momenta of charged particles produced by v interactions elsewhere in the detector. \rightarrow Helps to determine the event rate as a function of E_v for the neutrino beam, before oscillations.
 - PID using ionization left by each particle + momentum \rightarrow Helps to determine the relative abundance of v_e in the beam.
- > <u>Electromagnetic calorimeter (ECAL)</u>
 - Detection of photons and measurement of their energy & direction.
 - Detection of charged particles and the extraction of information (e/ μ/π separation); reconstruction of π^0 s.

Fluxes at the far detector

List of the 22 ND280 samples

Sample

FGD1 FHC CC0 π -0p-0 γ FGD1 FHC CC0 π -Np-0 γ FGD1 FHC CC1 π -0 γ FGD1 FHC CC-0ther-0 γ FGD1 FHC CC-Photon

FGD1 RHC CC0 π FGD1 RHC CC1 π FGD1 RHC CC-Other FGD2 RHC CC0 π FGD2 RHC CC1 π FGD2 RHC CC1 π FGD2 RHC CC-Other FGD2 FHC CC0 π -0p-0 γ FGD2 FHC CC0 π -Np-0 γ FGD2 FHC CC1 π -0 γ FGD2 FHC CC-Other-0 γ FGD2 FHC CC-Other-0 γ FGD2 FHC CC-Photon

FGD1 RHC BKG $CC0\pi$ FGD1 RHC BKG $CC1\pi$ FGD1 RHC BKG CC-Other FGD2 RHC BKG $CC0\pi$ FGD2 RHC BKG $CC1\pi$ FGD2 RHC BKG CC-Other

Uncertainty on the number of events in each SK sample broken by an error source **before** BANFF fit.

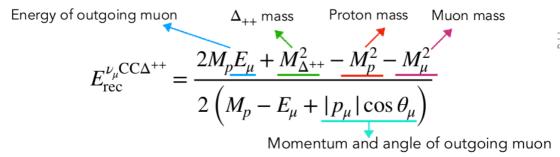
Error source (units: %)		R RHC	${\rm MR} \\ {\rm FHC} \ {\rm CC1} \pi^+$	FHC	RHC	$\frac{1 \mathrm{R} e}{\mathrm{FHC} \ \mathrm{CC1} \pi^+}$	FHC/RHC
Flux Cross-section (all) SK+SI+PN	5.0 15.8 2.6	$4.6 \\ 13.6 \\ 2.2$	$5.2 \\ 10.6 \\ 4.0$	4.9 16.3 3.1	$4.6 \\ 13.1 \\ 3.9$	$5.1 \\ 14.7 \\ 13.6$	$4.5 \\ 10.5 \\ 1.3$
Total All	16.7	14.6	12.5	17.3	14.4	20.9	11.6

Uncertainty on the number of events in each SK sample broken by error source **after** the BANFF fit.

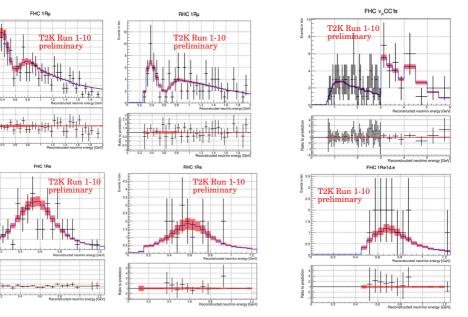
Error source (units: %)	1 FHC	R BHC	$\frac{MR}{FHC CC1\pi^+}$	FHC	BHC	$\frac{1 \text{R}e}{\text{FHC CC1}\pi^+}$	FHC/RHC
Error source (units: 70)	FIIC	nne	1110 001%		nino	1110 001#	Pile/fille
Flux	2.8	2.9	2.8	2.8	3.0	2.8	2.2
Xsec (ND constr)	3.7	3.5	3.0	3.8	3.5	4.1	2.4
Flux+Xsec (ND constr)	2.7	2.6	2.2	2.8	2.7	3.4	2.3
Xsec (ND unconstr)	0.7	2.4	1.4	2.9	3.3	2.8	3.7
SK+SI+PN	2.0	1.7	4.1	3.1	3.8	13.6	1.2
Total All	3.4	3.9	4.9	5.2	5.8	14.3	4.5

Process	CC	NC
QE	$\nu_l \ n \to l^- \ p$	$\nu_l p \rightarrow \nu_l p$; $\nu_l n \rightarrow \nu_l n$
	$\bar{\nu}_l \ p \to l^+ \ n$	$\bar{\nu}_l \ p \to \bar{\nu}_l \ p$; $\bar{\nu}_l \ n \to \bar{\nu}_l \ n$
	$\nu_l p \rightarrow l^- p \pi^+$; $\bar{\nu}_l p \rightarrow l^+ p \pi^-$	$\nu_l p \rightarrow \nu_l n \pi^+$; $\bar{\nu}_l p \rightarrow \bar{\nu}_l n \pi^+$
RES	$\nu_l n \rightarrow l^- n \pi^+$; $\bar{\nu}_l n \rightarrow l^+ n \pi^-$	$\nu_l n \rightarrow \nu_l p \pi^-$; $\bar{\nu}_l n \rightarrow \bar{\nu}_l p \pi^-$
	$\nu_l \ n \rightarrow l^- \ p \ \pi^0$; $\bar{\nu}_l \ p \rightarrow l^+ \ n \ \pi^0$	$\nu_l \ p \to \nu_l \ p \ \pi^0$; $\bar{\nu}_l \ p \to \bar{\nu}_l \ p \ \pi^0$
		$\nu_l \ n \to \nu_l \ n \ \pi^0$; $\bar{\nu}_l \ n \to \bar{\nu}_l \ n \ \pi^0$
DIS	$\nu_l \ N \to l^- \ X$; $\bar{\nu}_l \ N \to l^+ \ X$	$\nu_l \ N \to \nu_l \ X ; \ \bar{\nu}_l \ N \to \bar{\nu}_l \ X$

MC true momentum threshold for counting visible particles

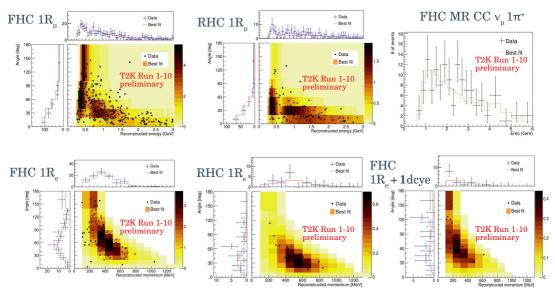

Particle	Momentum $[MeV/c]$
e^{\pm}	10
γ	20
$\mu^{\pm} _{\pi^+}$	120.495
	159.169
π^0	0
Proton	1070.03
Other charged particles	Cherenkov threshold

For other particles $p_{Cherenkov Threshold} = m_0/0.882925$


Energy reconstruction

$$E_{rec}^{\nu \text{CCQE-like}} = \frac{2E_l(M_n - E_b) - M_l^2 + 2M_n E_b - E_b^2 + M_p^2 - M_n^2}{2(M_n - E_b - E_l + P_l \cos \theta_l)}$$

 $E_b = 27$ MeV binding energy



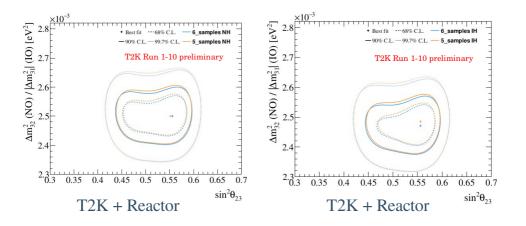
SK samples - MaCh3

Lakshmi .S. Mohan

SK samples - ptheta

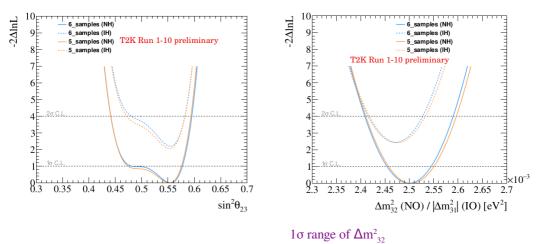
Event rates at SK using best fit oscillation parameters from the simultaneous ND + FD fit using Bayesian framework with reactor constraint on θ_{13} . SK-MC is scaled to POT with flux tune, BANFF/NIWG post-fit re-weight also applied to compare to the number of events.

	$\delta_{\rm CP} = -\pi/2$	$\delta_{\rm CP} = 0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\rm CP}=\pi$	$\delta_{\rm CP} = -2.18$	Data
FHC $1R\mu$	373.617	372.977	373.576	374.339	374.023	318
RHC 1R μ	143.227	142.891	143.229	143.593	143.433 99.163 ^{relimin}	ar\$37
FHC 1Re	101.809	85.601	70.123	86.324	99.103 rellu	94
RHC 1Re	17.171	19.509	21.610	19:273 Ru	17.503	16
FHC $1Re1de$	9.970	8.664	7.045	8.451	9.618	14
FHC ν_{μ} CC1 π^+	115.383	114.884	115.357	115.864	115.662	134


Best fit

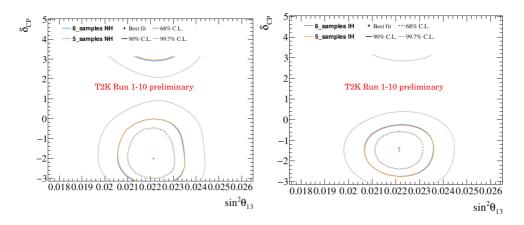
Event rates at SK using best fit oscillation parameters from consecutive fitter framework with reactor constraint on θ_{13} . SK-MC is scaled to POT with flux tune, BANFF/NIWG post-fit re-weight also applied to compare to the number of events.

	$\delta_{\rm CP} = -\pi/2$	$\delta_{\rm CP}=0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\rm CP} = \pi$	$\delta_{\rm CP} = -2.18$	Data
FHC $1R\mu$	376.863	376.164	376.822	377.644	377.303	318
RHC $1R\mu$	144.292	143.945	144.294	144.668	144.503	137
FHC 1Re	102.279	86.2003	70.7227	86.8013	99.6123 inary	94
RHC 1Re	17.286	19.6316	21.7309	19.3853	1 0 70 69 53	16
FHC 1R $\nu_e \text{ CC1}\pi^+$	10.0223	8.72417	7.1075	8.4057	9.669	14
FHC MR ν_{μ} CC1 π^+	115.994	115.489	115.968	12116.482	116.278	134
					_	


Best fit

Effect of the new MR $\nu_{\!_{\mu}} CC1\pi^{\scriptscriptstyle +} \, sample$ on oscillation parameters 39

Lakshmi .S. Mohan


T2K + Reactor

- > 5 samples : $[2.454, 2.544] \times 10^{-3} \text{eV}^2$
- > 6 samples : $[2.455, 2.550] \times 10^{-3} \text{ eV}^2$

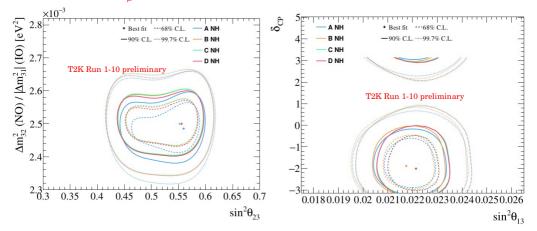
~5% improvement in the 1 σ error of Δm_{32}^2

T2K + Reactor

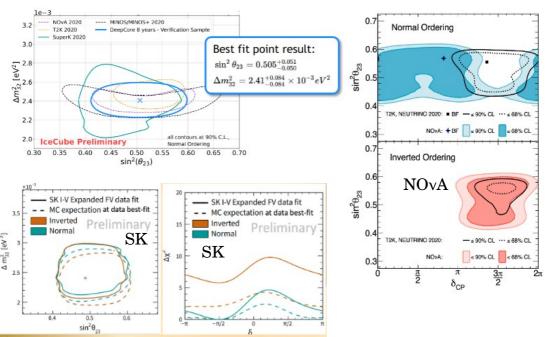
New MR sample is sensitive to $v_{_{\mu}}$ disappearance. \rightarrow Not much effect on appearance parameters.

Lakshmi .S. Mohan

Effect of changes from 2020 results to 2022 results


42

A = OA2020


B = A + new interaction model and new samples in ND fit

C = B + PDG 2021 constraint on $\sin^2 2\theta_{13}$

 $D = C + MR v_{\mu}CC1\pi^{+}$ sample

Results from other experiments – from NuFACT 2022 slides

<u>T2K + NovA joint analysis</u>

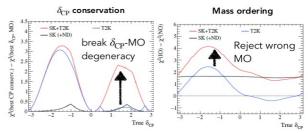
- Two LBL experiments with different L, E_y and detectors
 - Complementary to study oscillations
 - Can break the MO $\delta_{_{\rm CP}}$

degeneracy

Specification of the experiment	T2K	NOvA
Proton beam energy	$30 { m ~GeV}$	$120 { m ~GeV}$
Baseline	295 km	810 km
Peak neutrino energy	0.6 GeV	$2~{ m GeV}$
Detection technology	Water Cherenkov	Segmented liquid scintillator bars
CP effect*	~30%	22%
Matter effect	9%	29%

* Minimum difference of sin($\delta_{\rm CP}$)=0 and ±1, v & anti-v

Lakshmi .S. Mohan


<u>T2K beam + SK atmospheric</u> 44 joint analysis

Atmospheric (anti-)neutrinos \rightarrow Broader L/E_v

- More matter effect due to mantle/core resonance
- $\succ \quad Sensitivity \ to \ mass \ ordering \rightarrow can \ be \ improved \\ by \ constraining \ \theta_{_{23}} \ and \ \delta_{_{CP}} \ using \ T2K \ data$
 - $\delta_{_{\rm CP}}$ independent MO sensitivity from atmospheric samples breaks $\delta_{_{\rm CP}}\text{-}$ MO degeneracy
 - $\delta_{_{\rm CP}}$ sensitivity increases if $\delta^{_{\rm true}}_{_{\rm CP}} < 0$ in NO

۶

Common detector (SK) between the two experiments → need to check effect of correlations between systematics

T2K upgrade: of beam, ND280 and SK 3\sigma sensitivity on $\delta_{_{\rm CP}}$

Beam upgrade

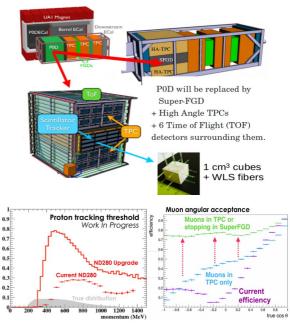
Upgrade of:

- J-PARC main ring magnet power supplies → Will allow operation at higher intensity, reduced repetition rate
- Neutrino beamline to handle higher intensity beam
- Horn power supplies → will allow their operation at ~320 kA
- > ~10% increase in v flux @SK

T2K Projected POT (Protons-On-Target)

MB Beam Power [kw] 1000 1000 Protons [10²¹POT MR RF unarade Integrated Delivered R Power Supply 800 600 400 200 2020 2021 2022 2023 2025 2026 2027 2024

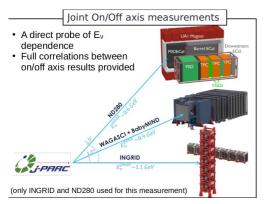
Expected to be ready for operation in early 2023

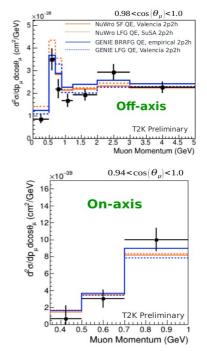

Current ND280

- Limited acceptance for high angle tracks
- Low reconstruction efficiency for the hadronic part of interactions

Upgraded ND280

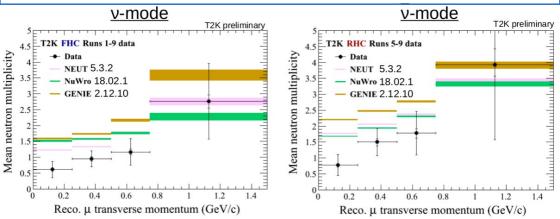
- > Super-FGD → Highly segmented; will improve the reconstruction of hadronic part and low momentum leptons
- > 2 new High Angle-TPCs → to improve the reconstruction of high angle leptons
- > 6 ToF planes → reduce background from outside of Super-FGD


ND280 upgrade



 $CC0\pi$ selection efficiency

Cross section measurements in near detectors at T2K 47


- > Focus on "joint" measurements (e.g. C/O, v_{μ} /anti- v_{μ} , on/off axis)
- Direct probes of physics most relevant for oscillation analyses
- Also perform challenging low rate measurements (eg) (CC coherent on C)

Neutron multiplicities at Super-K

- > Use of neutron tagging $\rm H_2O$ Cerenkov detectors \Rightarrow to separate v/anti-v, CC/NC v interaction & to reject backgrounds
- > Use in analysis requires good ability to predict neutron productions in neutrino interactions, taking into account FSI and SI.
- No:of neutrons observed in µ-like samples for old (Runs 1-9, Neutrino 2018) oscillation analysis is compared to predictions, using a neural network based tagging algorithm.
- > All considered generators were found to over-predict neutron production.

