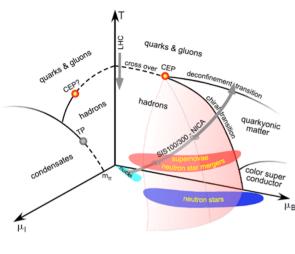


Anisotropic Flow in Heavy Ion Collisions

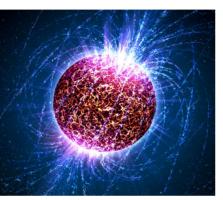
Viktor Klochkov

Arbeitstreffen Kernphysik 2020 Schleching, 28.02

Dense Baryonic Matter



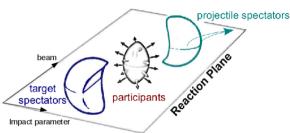
Neutron stars



Neutron star merger

at intermediate energies

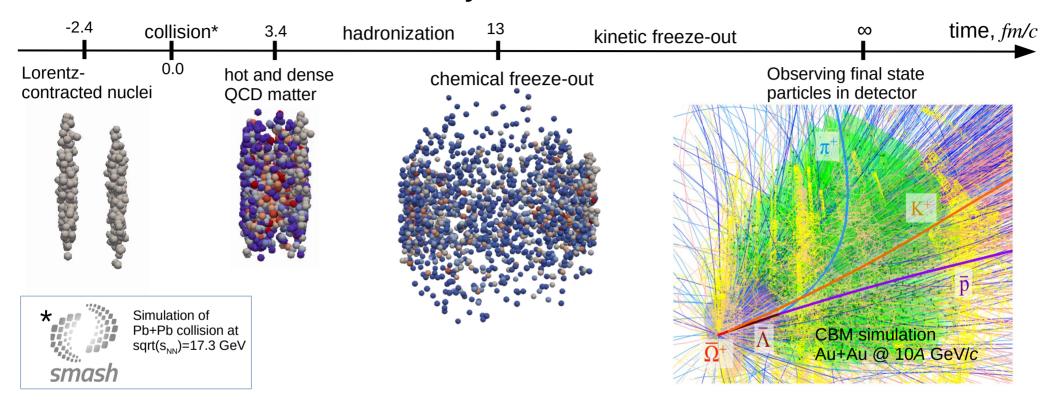
Heavy-ion collisions



NUPECC Long Range Plan 2017

GW170817

Relativistic heavy-ion collision evolution

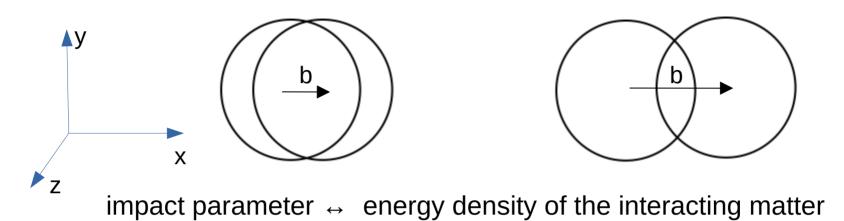


Experimental challenge at intermediate collision energies:

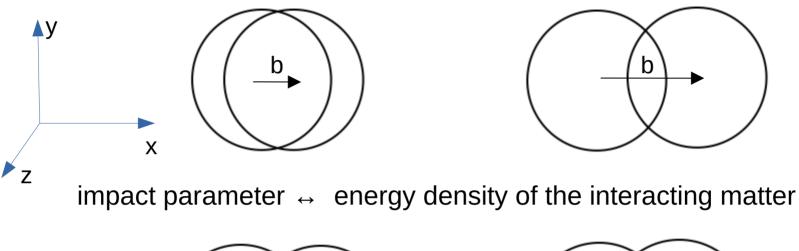
reconstruct hot and dense QCD matter properties by measuring only final state particles

- Collision geometry and initial state fluctuations
- Interaction with "spectators"
- Medium evolution (equation of state)
- Hadronization and freeze-out

Collision geometry

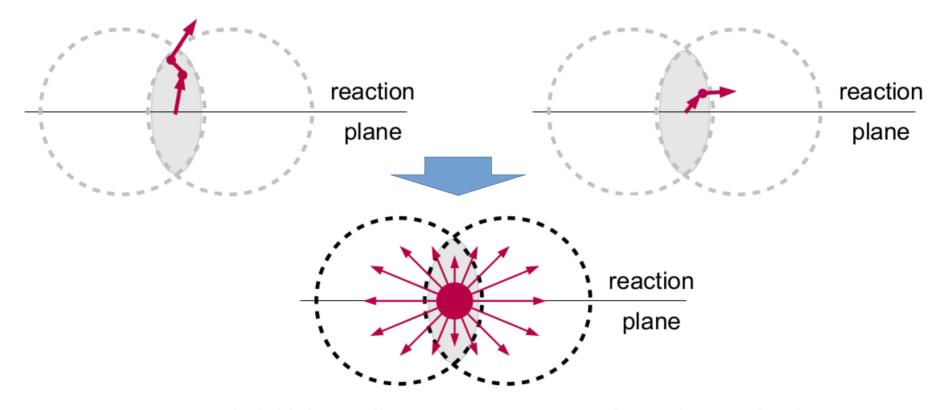


Collision geometry



spatial asymmetry of the overlap region ↔ asymmetry of energy distribution

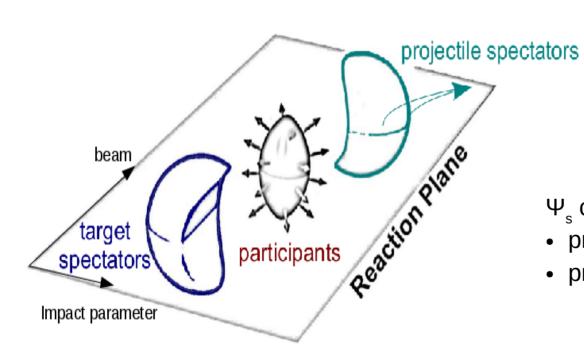
Anisotropic transverse flow



Asymmetry in initial coordinate space converts due to interaction into final momentum asymmetry with respect to the symmetry plane

Anisotropic transverse flow

Final state asymmetry is sensitive to the collision evolution and QCD matter properties



$$\rho(\varphi) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\varphi - \Psi_s)) \right]$$
$$v_n = \langle \cos(n[\varphi - \Psi_s]) \rangle$$

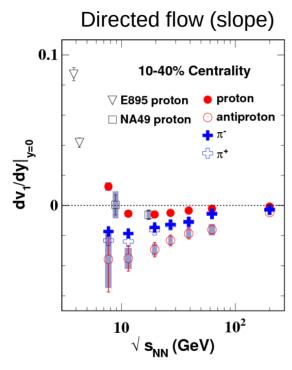
 Ψ_{s} can be estimated from

- produced particles (Ψ_{pp})
- projectile (target) spectators $\Psi_{\text{proj}}(\Psi_{\text{targ}})$

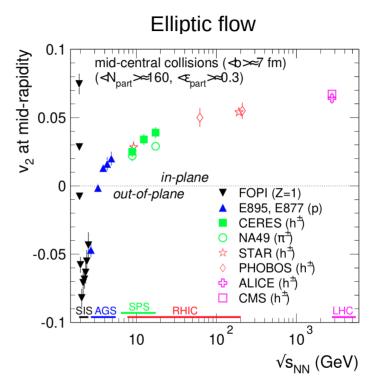
Important to measure flow coefficient relative both to spectators and produced particles symmetry planes

Collective flow measurements

STAR Collaboration PRL 112 (2014) 162301



Non-trivial behavior of directed flow associated with the change of EoS



Elliptic flow changes sign (sensitive to collision dynamics)

More results are coming soon at high μ_B region from BES-II@RHIC, NA61/SHINE@SPS and in future from CBM@FAIR MPD@NICA, ...

Flow vectors and event plane angle

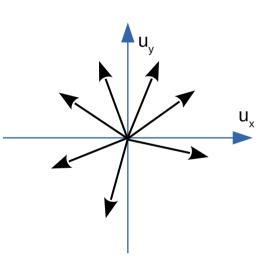
u and Q-vectors:

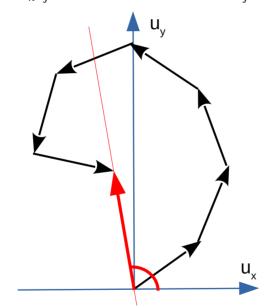
scalar product:

$$\vec{u}_n = \begin{pmatrix} \cos n \, \varphi \\ \sin n \, \varphi \end{pmatrix}$$

$$\overrightarrow{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \leq M} w_j \overrightarrow{u}_n^{j}$$

$$\vec{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \le M} w_j \vec{u}_n^j$$
 $\vec{Q}_n = \frac{1}{M} \sum_{j=1}^{j \le M} w_j \vec{u}_n^j$





Flow vectors and event plane angle

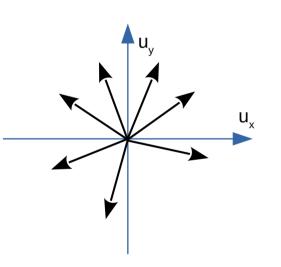
u and Q-vectors:

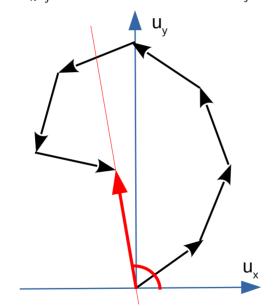
scalar product:

$$\overrightarrow{u_n} = \begin{pmatrix} \cos n \, \varphi \\ \sin n \, \varphi \end{pmatrix}$$

$$\overrightarrow{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \le M} w_j \overrightarrow{u}_n^j$$

$$\overrightarrow{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \le M} w_j \overrightarrow{u}_n^j \qquad \overrightarrow{Q}_n = \frac{1}{M} \sum_{j=1}^{j \le M} w_j \overrightarrow{u}_n^j$$





Participants event plane:

- measured with tracks
- $W_i = 1, p_T$

Spectators event plane

- · usually is measured with forward calorimeters
- w_i = energy deposition in a module

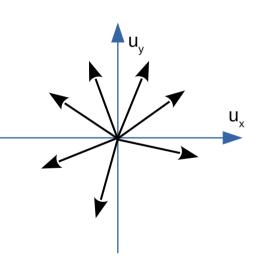
Flow vectors and event plane angle

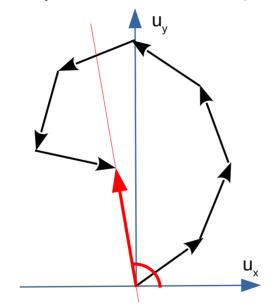
u and Q-vectors:

$$\vec{u_n} = \begin{pmatrix} \cos n \, \varphi \\ \sin n \, \varphi \end{pmatrix}$$

$$\overrightarrow{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \le M} w_j \overrightarrow{u}_n^{j}$$

$$\overrightarrow{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \le M} w_j \overrightarrow{u}_n^j \qquad \overrightarrow{Q}_n = \frac{1}{M} \sum_{j=1}^{j \le M} w_j \overrightarrow{u}_n^j$$





$$v_n = \langle \cos(n[\varphi - \Psi_s]) \rangle$$

Directed flow:

$$v_1 \propto \langle 2u_{1,i}Q_{1,i} \rangle$$

Elliptic flow:

$$v_{2} \propto \langle 2u_{2,i}Q_{2,i}\rangle \approx \langle 4u_{2,i}Q_{1,j}^{A}Q_{1,k}^{B}\rangle$$
$$(i,j,k=[x,y])$$

Resolution correction

$$v_{n} = \langle \cos(n[\varphi - \Psi_{s}]) \rangle = \frac{1}{R_{n,i}} \langle 2u_{n,i}Q_{i,n} \rangle \qquad R_{n,i} = \langle \cos[n(\Psi_{RP} - \Psi_{EP})] \rangle$$

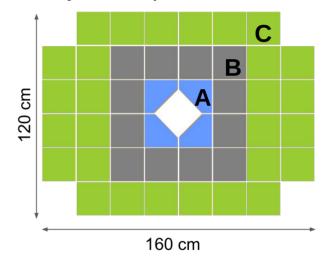
Correction factor (resolution) $R_{1,i}^{A}$ is calculated via correlations \rightarrow 3-subevent method:

$$R_{1,i}^{A}[B,C] = \sqrt{2 \frac{\langle Q_{1,i}^{A} Q_{1,i}^{B} \rangle \langle Q_{1,i}^{A} Q_{1,i}^{C} \rangle}{\langle Q_{1,i}^{B} Q_{1,i}^{C} \rangle}}$$

mixed harmonics:

$$R_{1,i}^{\mathbf{A}}[B,C,D] \propto \sqrt{\frac{\langle Q_{1,i}^{\mathbf{A}}Q_{1,i}^{B}\rangle\langle Q_{1,i}^{\mathbf{A}}Q_{1,i}^{C}Q_{2,i}^{D}\rangle}{\langle Q_{1,i}^{B}Q_{1,i}^{C}Q_{2,i}^{D}\rangle}}$$

CBM Projectile Spectators Detector (PSD)



subevent A = 4 central modules

Resolution reflects the sensitivity of subevent A to initial symmetry plane

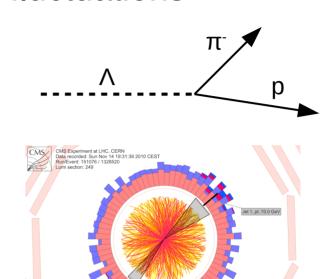
Non-flow and flow fluctuations

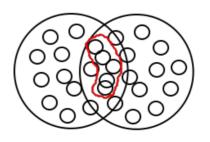
- Resonance decays
 - → for example, correlation between proton and pion from the lambda decay

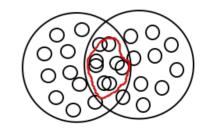
Jets (at high enough energies)

Global momentum conservation

- Flow fluctuations
 - different initial state shapes for the same impact parameter value





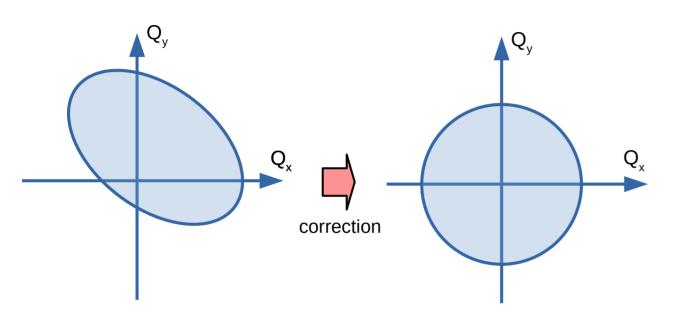


Detector biases

Anisotropic detector acceptance and/or efficiency CBM simulation, Au+Au @ 10A GeV/c Magnetic field Tracking artefacts (track splitting etc) X magnetic 120 cm field collision Ζ neutrons protons

Detector anisotropy introduce biases into measured azimuthal distribution

Correction for detector non-uniformity

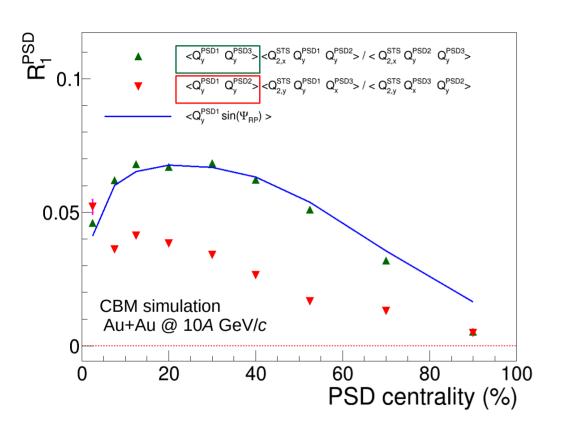


Data driven corrections for azimuthal acceptance non-uniformity
I. Selyuzhenkov and S. Voloshin [PRC77 034904 (2008)]

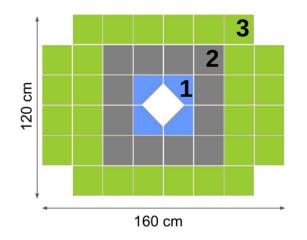
- Gain equalization
- Recentering
- Twist
- Rescaling

Correction procedure for Q-vectors is needed to recover isotropic distribution in azimuthal angle

PSD resolution correction factor

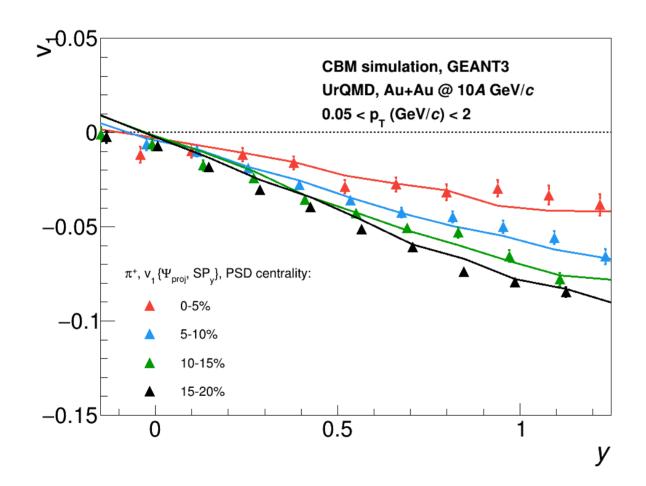


Neighboring PSD subevents correlation are distorted due to autocorrelations → mixed harmonics



After corrections we are able to reconstruct MC-true resolution correction factor

PSD performance for directed flow measurents

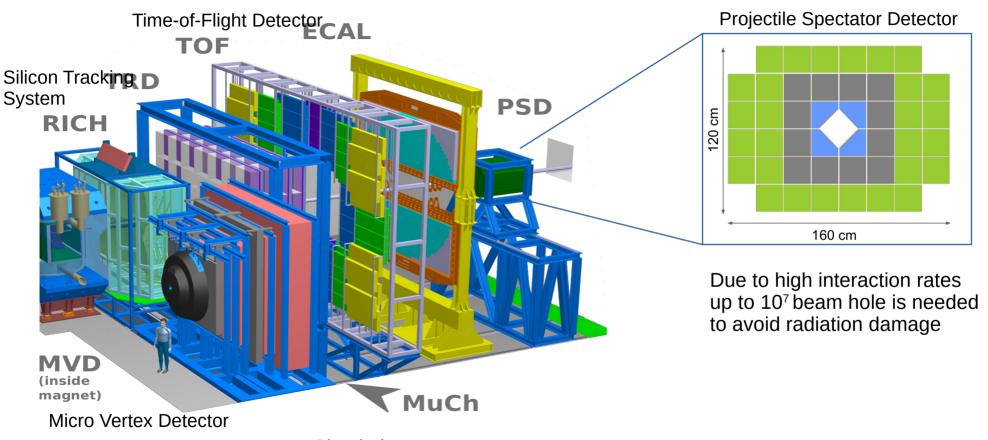


- Directed flow of positively charged pions relative to spectators plane
- Centrality is defined using energy of the projectile spectators
- Reconstructed and simulated results are consistent in all centrality bins

Summary

- Anisotropic transverse flow allows to study evolution of heavy-ion collisions and properties of QCD matter
- It is important to measure flow coefficient relative to both participants and spectators symmetry plane
- Flow measurement techniques allow for precise extraction of flow coefficients with a complicated (non-uniform) detector setup
- More results are coming soon at high $\mu_{\scriptscriptstyle B}$ region from BES-II@RHIC, NA61/SHINE@SPS and in future from CBM@FAIR MPD@NICA, ...

CBM experiment @ FAIR



Simulation setup: UrQMD/DCM-QGSM-SMM models, Au+Au @ 10A GeV/c

Resolution correction

$$v_{n} = \langle \cos(n[\varphi - \Psi_{s}]) \rangle = \frac{1}{R_{n,i}} \langle 2u_{n,i}Q_{i,n} \rangle \qquad R_{n,i} = \langle \cos[n(\Psi_{RP} - \Psi_{EP})] \rangle$$

Observables:

Directed flow:

$$v_1 = \frac{\langle 2u_{1,i}Q_{1,i}\rangle}{R_{1,i}}$$

Elliptic flow:

$$v_{2} = \frac{4 \langle u_{2,i} Q_{1,j}^{A} Q_{1,k}^{B} \rangle}{R_{1,j}^{A} R_{1,k}^{B}}$$

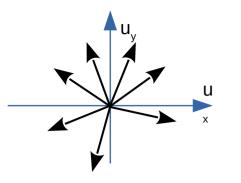
$$i, j, k = [x, y]$$

Correction factor (resolution) $R_{1,i}^{A}$ is calculated via correlations \rightarrow 3-subevent method:

$$R_{1,i}^{A}[B,C] = \sqrt{2 \frac{\langle Q_{1,i}^{A} Q_{1,i}^{B} \rangle \langle Q_{1,i}^{A} Q_{1,i}^{C} \rangle}{\langle Q_{1,i}^{B} Q_{1,i}^{C} \rangle}}$$

mixed harmonics: $R_{1,i}^{A}[B,C,D] \propto \sqrt{\frac{\langle Q_{1,i}^{A}Q_{1,i}^{B}\rangle\langle Q_{1,i}^{A}Q_{1,i}^{C}Q_{2,i}^{D}\rangle}{\langle Q_{1,i}^{B}Q_{1,i}^{C}Q_{2,i}^{D}\rangle}}$

Resolution shows the sensitivity of subevent A to initial symmetry plane



Multiparticles azimuthal correlations

$$v_n = \langle \cos n(\varphi - \psi) \rangle$$

Estimating flow harmonics with 2-particle correlation:

event average
$$\left\langle \left\langle e^{in(\phi_1-\phi_2)} \right\rangle \right\rangle = \left\langle \left\langle e^{in(\phi_1-\Psi_n-(\phi_2-\Psi_n))} \right\rangle \right\rangle$$
particle average $= \left\langle \left\langle e^{in(\phi_1-\Psi_n)} \right\rangle \left\langle e^{-in(\phi_2-\Psi_n)} \right\rangle \right\rangle$
 $= v_n^2$

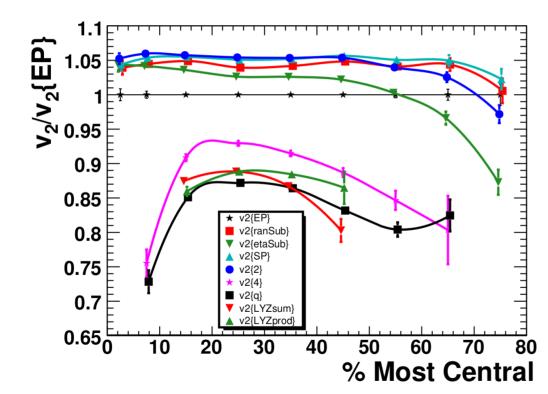
The 'trick' works for any number of particles in the correlator

Methods comparison

$$\vec{Q}_n = \frac{1}{Q_n} \sum_{j=1}^{j \le M} \vec{u}_n^j$$

$$\overrightarrow{Q}_n = \frac{1}{M} \sum_{j=1}^{j \le M} \overrightarrow{u}_n^j$$

different sensitivity to non-flow



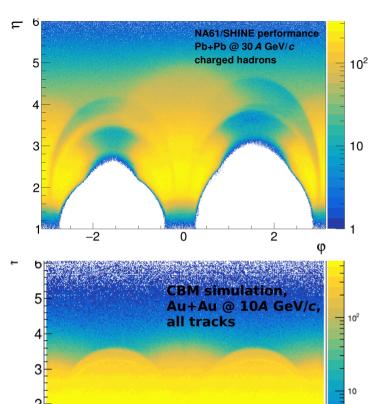
Upper band → two-particle correlation

 averages along the participant plane with nonflow and fluctuation contributions

Lower band → multi-particle correlation

 averages along the reaction plane mostly free of nonflow and fluctuation contributions

Framework for detector azimuthal non-uniformity corrections and analysis



QnVector Corrections Framework

- Data driven corrections for azimuthal acceptance non-uniformity

 I. Selyuzhenkov and S. Voloshin [PRC77 034904 (2008)]
- QnVector Corrections Framework (used by ALICE)
 J. Onderwaater, V. Gonzalez, I. Selyuzhenkov
 https://github.com/jonderwaater/FlowVectorCorrections

 Recentering, twist, and rescaling corrections applied time dependent (run-by-run) and as a function of centrality

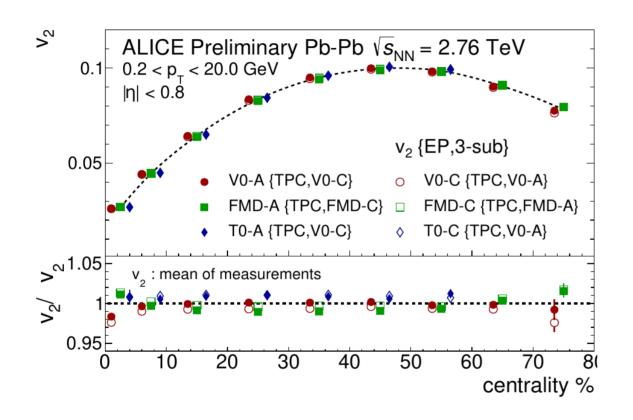
Flow Analysis Framework

- Extended Q_n-vector corrections for p_T/y-differential
- Multi-dimensional correlations of u and Q-vectors

 L. Kreis (GSI / Heidelberg) and I. Selyuzhenkov (GSI / MEPhl)

Interfaced to CBM and NA61/SHINE analysis environment

Framework for detector azimuthal non-uniformity corrections



 After corrections, the elliptic flow measurements with different event plane estimators are fully consistent with each other

QnVector Corrections Framework (ALICE)
J. Onderwaater, V. Gonzalez, I. Selyuzhenkov