UNIVERSITY OF BERGEN

Introduction to charged particle therapy

Overview

- Introduction
- Physics of ion radiotherapy
- Biological aspects
- Accelerators and gantries
- Historical Background
- Conclusions

Introduction

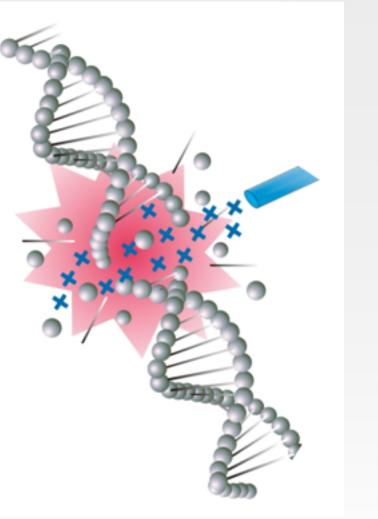
Cancer

Second leading cause of death

8.8 million deaths in 2015

Nearly 1 in 6 deaths is due to cancer The number of new cancer cases per year is expected to rise to 23.6 million by 2030

~50%

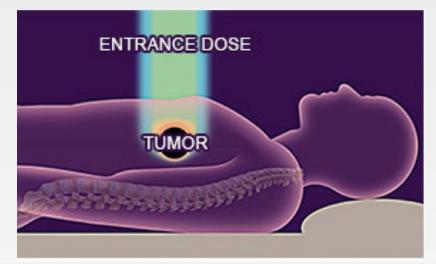

of patients suffering cancer treated with radiotherapy as a stand alone or in association with other therapies

UNIVERSITY OF BERGEN

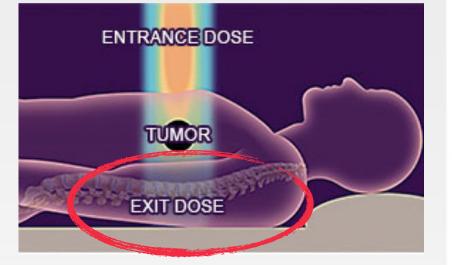
Radiotherapy

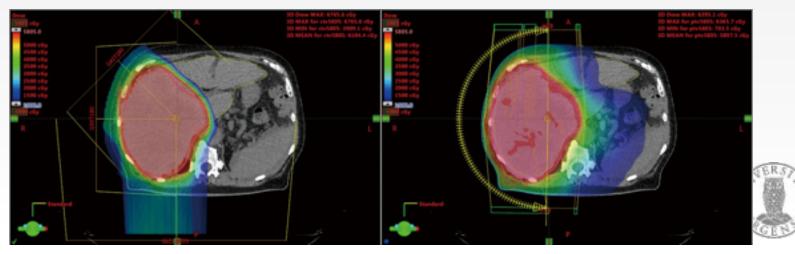
- Precisely targeted high-energy rays kill cancer cells by damaging cellular DNA
- Conventional RT performed using high energetic x-ray beams

00 %


of dose needed to kill the cancer cells deposited over the Planned Target Volume (PTV)

0% of dose received by surrounding Organs At Risk(OARs)


UNIVERSITY OF BERGEN

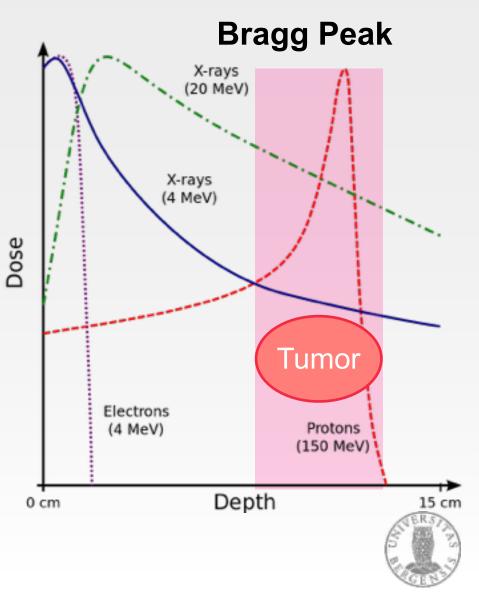

Why use ions for cancer treatments?

Charged particle therapy

Photon therapy

pierluigi.piersimoni@uib.no

Physics of ion radiotherapy


Pierluigi Piersimoni

9

UNIVERSITY OF BERGEN

- Energy deposition focused at a specific depth (particle range) depending on the initial energy
- High Ratio Peak/Plateau
- The beam stops in the tumor, no exit dose

UNIVERSITY OF BERGEN

Physical quantities

Fluence

$$\Phi = \frac{dN}{da} [m^{-2}]$$

Physical dose

$$D = \frac{d\epsilon}{dm} [1Gy = 1J/kg]$$

Water is used as tissue reference medium.

For a parallel beam with particle fluence Φ the dose deposited in a thin slice of an absorber material with mass density can be calculated as follows:

$$D[Gy] = 1.6 \times 10^{-9} \times \frac{dE}{dx} \left[\frac{\text{keV}}{\mu\text{m}}\right] \times \Phi[\text{cm}^{-2}] \times \frac{1}{\rho} \left[\frac{\text{cm}^3}{\text{g}}\right]$$

Stopping of high energy ions

$$\frac{dE}{dx} = \frac{4\pi e^2 Z_t Z_p^2}{m_e v^2} \left[ln \frac{2m_e v^2}{\langle I \rangle} - ln(1-\beta^2) - \beta^2 - \frac{C}{Z_t} - \frac{\delta}{2} \right]$$

 Z_p, Z_t : nuclear charges of projectile and target

 $m_e, e: {\rm electron\ mass}$ and charge

 $\langle I \rangle$: mean ionization energy

```
\frac{C}{Z_t} : \text{shell correction term}\frac{\delta}{2} : \text{density correction term}
```

Fig. 2. The dotted curve shows the relative dose due to a single 140 Mev proton. The full curve shows qualitatively the depth dose curve for a beam of 140 Mev protons in tissue.

10

DEPTH, CM.

PROTON BEAL

12

14

16

The maximum energy-loss rate, corresponding to the Bragg peak, is reached at a projectile velocity of:

1200

000E

600

400

200

0

2

4

6

DEPTH 008

PERCENTAGE

$$v_p \approx = \frac{Z_p^{2/3}}{v_0}$$
 $v_0 = \frac{e^2}{\hbar}$: Bohr velocity corresponding to
 $\beta = \frac{e^2}{\hbar c} = \frac{1}{137}$

Wilson, 1946

SINGLE PROTON

18

Range

The total path length of the particle's trajectory in the absorber

$$R(E) = \int_0^E \left(\frac{dE'}{dx}\right)^{-1} dE'$$

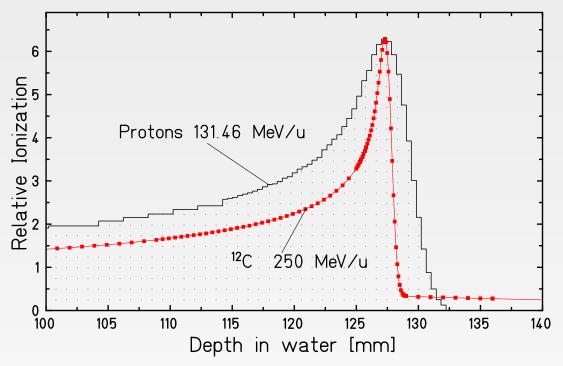
Statistical fluctuations of the energy loss in the large number of collisions of the slowing-down process result in a broadening of the Bragg peak for an ion beam consisting of many particles (*Vavilov, 1957*).

The distribution of these fluctuations in the limit of many collisions becomes a Gaussian

$$f(\Delta E) = \frac{1}{\sqrt{2\pi\sigma_E}} \exp\frac{(\Delta E - \overline{\Delta E})^2}{2\sigma_E^2} \qquad \sigma_E = 4\pi Z_p Z_t e^4 N \Delta x \left[\frac{1 - \beta^2/2}{1 - \beta^2}\right]$$

The variance of the range staging is dependent from the variance of the energy straggling

$$\sigma_R^2 = \int_0^E \left(\frac{d\sigma_E}{dx}\right) \left(\frac{dE}{dx}\right)^{-3} dE$$

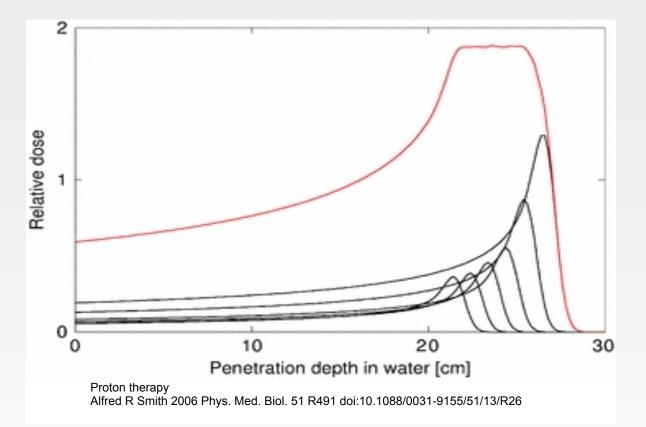

The ratio of the straggling width and mean range is nearly constant and can be described by

 $\frac{\sigma_R}{R} = \frac{1}{\sqrt{M}} f\left(\frac{E}{Mc^2}\right) \frac{f}{E} \text{ and } M$ particle energy and mass

UNIVERSITY OF BERGEN

Straggling comparison for p and heavier ions

The relative straggling it is smaller for heavier ions than for protons, e.g., a factor of 3.5 for ¹²C ions.


The profile of the Bragg peaks is broader, mainly due to the density inhomogeneities of the penetrated tissue

Characteristic dose tail behind the Bragg peak, which is caused by secondary **fragments** produced in nuclear reactions along the stopping path of the ions

Spread out Breagg peak (SOBP)

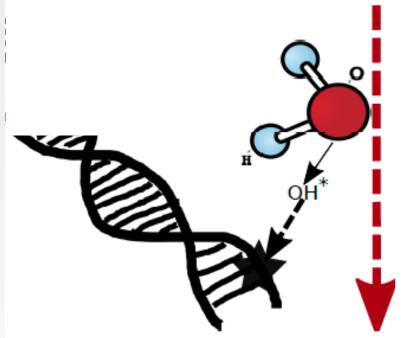
It is advantageous to widen the sharp Bragg peaks by passive systems or by overlapping beam with decreasing energies, in order to reduce the treatment time

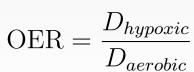
Biological aspects

pierluigi.piersimoni@uib.no

• X-rays

X-rays produce a homogenous ionization producing large distances between neighboring damage sites


Free radicals are responsible for DNA damage

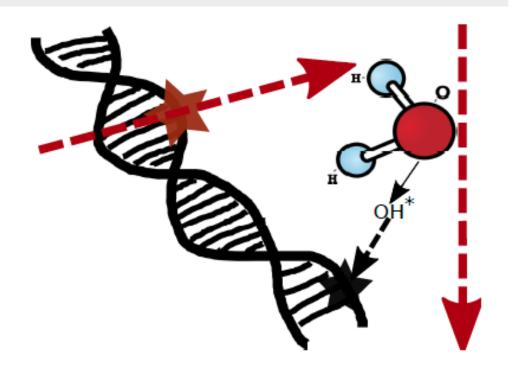

To make DNA damage

permanent, the presence of oxygen is required to prevent the DNA repairing itself

> Oxygen Enhancement Ratio (OER)

Hypoxic condition makes tumor radio resistant

Biological effect

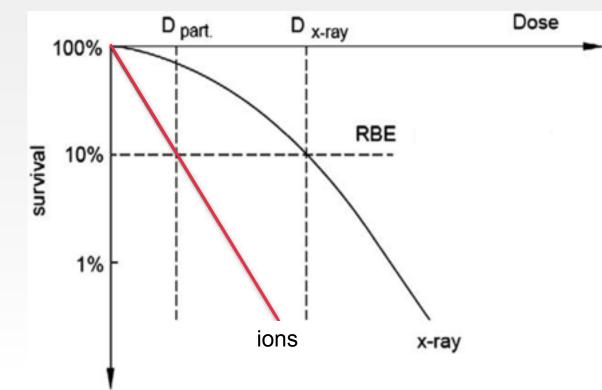

lons

The typical extension of the track center with the highest "local" dose is on the order of nanometers

large probability of correlated nearby DNA damages like single or <u>double strand breaks</u> or <u>base damages.</u>

Severe damages directly occur on the DNA

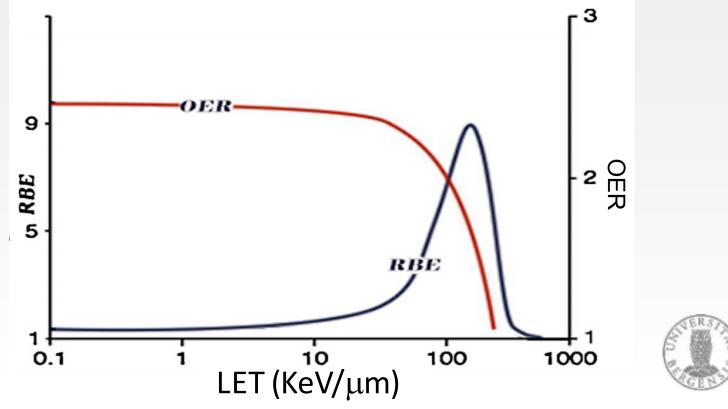
The OER for ions is much lower than for photons



Biological effect

RBE : Relative biological effectiveness

$$RBE = \frac{D_{ref}}{D_{ion}}$$


The ratio of the dose of a reference radiation (x-rays) to the dose of the radiation in question (e.g., ions) to produce an identical biological effect isoeffect (cell survival)

Biological effect

LET: Energy that is transferred by an ionizing particle to the medium along its path

For High-LET particles, in the Bragg peak area, the RBE increases notably while the OER is reduced almost to 1

Accelerators and gantries

Cyclotrons

- Easy to operate
- Highly reliable
- Compact machines
- Extremely stable and regulable beam intensities
- No energy variation The energy can be changed only by means of passive degraders in the beam line

Protons

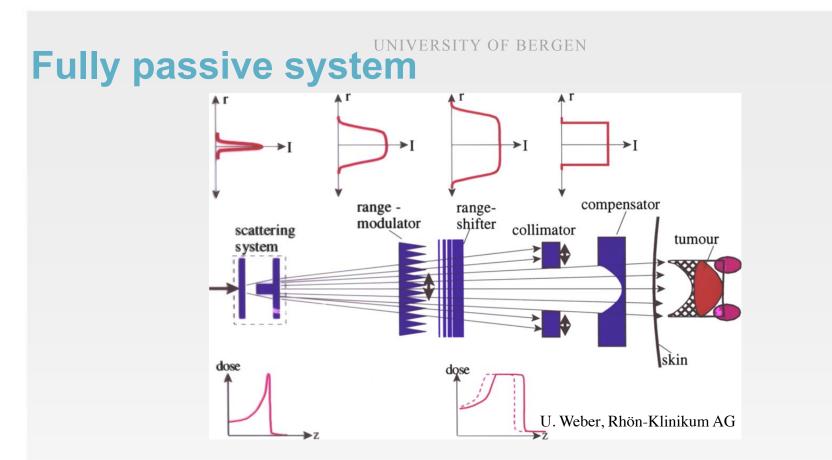
Synchrotrons

- Fast energy variation from pulse to pulse
- Possibility to accelerate also heavy ions with high magnetic rigidity
- Injector needed
- Delicate extraction system
- More complex in operation

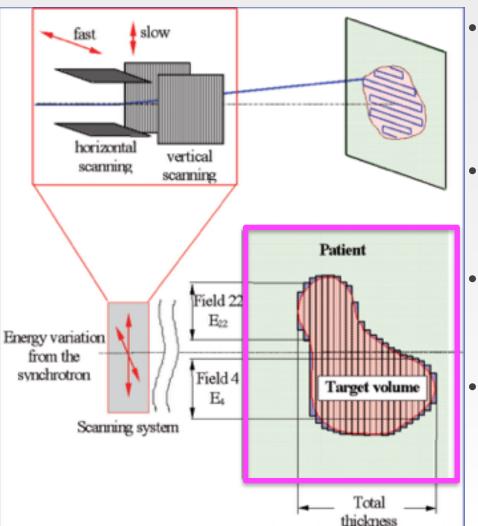
Beam delivery systems

- Transport of particle beams to the treatment area
- Distribution of the beam over the planned target volume (PTV) accurately and homogeneously with the desired dose distribution

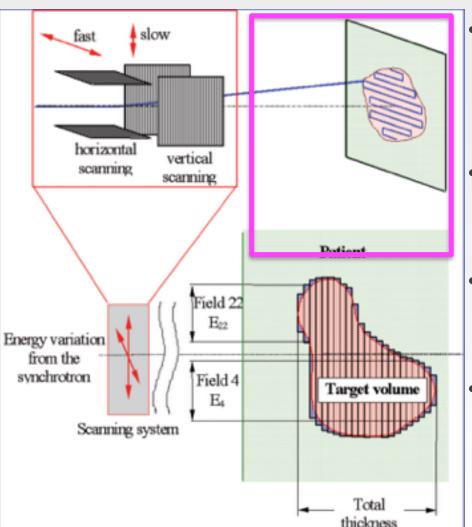
Fully passive systems


fixed beam modulation particle beam is adapted in three dimensions to the target volume only by passive non variable field shaping elements

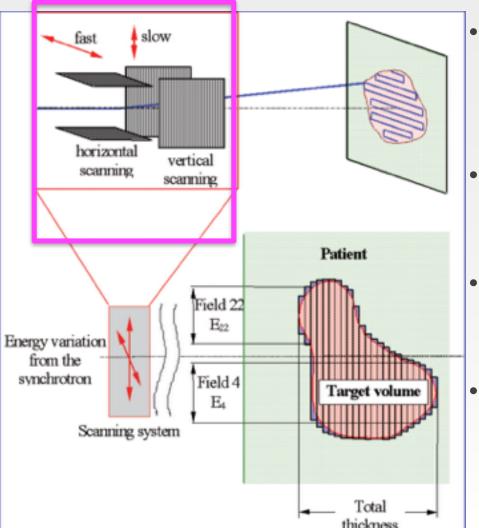
Fully active beam scanning

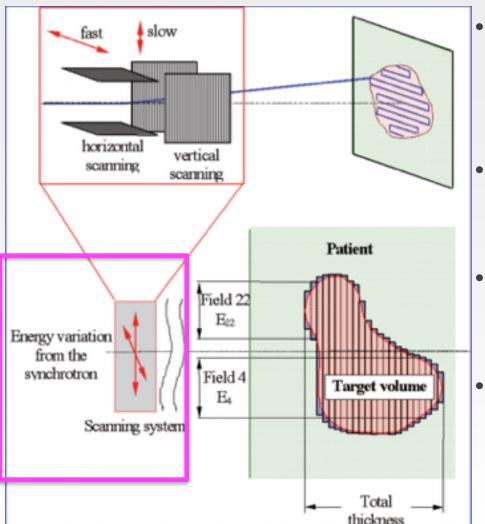

the target volume is dissected in small volume elements voxels and a fine pencil beam is used to fill the voxels with the appropriate dose, ideally without any material in the beam path.

Many other solutions in between these two extremes are possible (Chu et al. 1993)



- Beam is broadened by a scattering system and adapted to the target volume by various passive beam shaping devices
- Adaption of the dose field to the distal contour of the target volume is achieved by a compensator
- Unwanted normal-tissue dose in the proximal part indicated by the doubly hatched area.


- Target volume sliced along its depth, each slice corresponds to a different penetration depth
- Irradiation of each slice by means of two orthogonal scanning magnets
- Energy changed by the synchrotron to irradiate each slice
- Possibility of intensity modulated proton therapy (IMPT)


- Target volume sliced along its depth, each slice corresponds to a different penetration depth
- Irradiation of each slice by means of two orthogonal scanning magnets
- Energy changed by the synchrotron to irradiate each slice
- Possibility of intensity modulated proton therapy (IMPT)

- Target volume sliced along its depth, each slice corresponds to a different penetration depth
- Irradiation of each slice by means of two orthogonal scanning magnets
- Energy changed by the synchrotron to irradiate each slice
- Possibility of intensity modulated proton therapy (IMPT)

- Target volume sliced along its depth, each slice corresponds to a different penetration depth
- Irradiation of each slice by means of two orthogonal scanning magnets
- Energy changed by the synchrotron to irradiate each slice
- Possibility of intensity modulated proton therapy (IMPT)

Gantries

- In conventional radiotherapy patients are treated in supine position,
 i.e., in the same position as used for imaging
- The electron linac is mounted on a rotational support structure, gantry, which in combination with the rotatable patient couch allows to select the beam directions and angles (0°-360°) for the patient treatment
- On non-medical accelerators the beam was delivered horizontally and patients were treated in either supine or sitting position
- The first gantry systems for protons started operation in 1990 at the Loma Linda University Medical Center USA, the first dedicated clinical proton therapy facility *(Slater et al., 1988)*

Gantries

- For heavy ions a high bending power is required and leads to correspondingly large dimensions for a gantry. The magnetic rigidity of 380 MeV/u carbon ions with a range of 25 cm in water is about three times higher than for 200 MeV protons with the same range.
- The first rotating isocentric gantry system for heavy ions was constructed at the HIT center Germany
- The rotating structure built by MT Mechatronics GmbH Mainz, Gemany is about 20 m long with a diameter of 13 m and a total weight of 670 tons

Gantries

UNIVERSITY OF BERGEN

Sectional view of the heavy-ion gantry at HIT Heidelberg. MT Mechatronics GmbH Mainz, Germany

pierluigi.piersimoni@uib.no

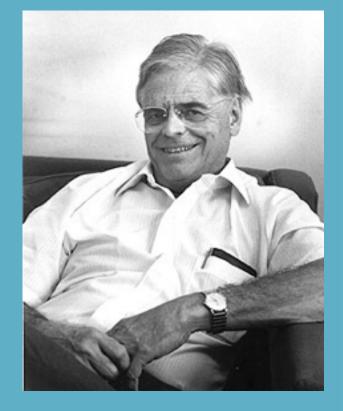
Historical background

Ernest O. Lawrence developed the cyclotron at the University of California Lawrence Berkeley Laboratory (LBL) in 1930 and won the Nobel Prize for this work in 1939

UNIVERSITY OF BERGEN

184-inch Cyclotron: ~100MeV

The end, 1986



pierluigi.piersimoni@uib.no

$\mathbf{A} \mathbf{\nabla} \mathbf{O}$

"These properties make it possible to irradiate intensely a strictly localized region within the body, with <u>but little skin dose</u>. It will be easy to produce well collimated narrow beams of fast protons, and since the range of the beam is easily controllable, precision exposure of well defined small volumes within the body will soon be feasible."

> Dose Localization Lower entrance dose No or low exit dose

Robert R. Wilson, 1946

UNIVERSITY OF BERGEN The Beginning of Particle Beam Therapy: Berkeley (LBL)

- 1948: Biology experiments using protons
- 1952: Human exposure to accelerated proton, deuteron and helium ion beams
- Pituitary gland treated with beams passing entirely through the brain in a path that intersected the pituitary gland (Tobias et al. 1958)
- **1956-1986**: Clinical Trials– 1500
 patients treated with p and ⁴He

Prof. Cornelius A. Tobias

UNIVERSITY OF BERGEN

The Svedberg Laboratory in Uppsala (former Gustaf Werner Institute)

- 1949: Built the synchrocyclotron at the Gustav Werner Institute (Uppsala)
- 1950s: Pre-therapeutic physical experiments with high energy protons (*Larsson et al. 1958*)
- **1957:** First patient treated with proton beam
- 1994: The cyclotron was upgraded at Theodor Svedberg Laboratory

Prof. Börje Larsson (1931-1998)

Börje Larsson and Theodor Svedberg

UNIVERSITY OF BERGEN Harvard Cyclotron Laboratory, Cambridge (HCL)

- 1938: First Harvard Cyclotron completed (Bainbridge, Street and Hickman)
- 1943: Moved the cyclotron to Los Alamos (RR Wilson)
- 1949: Second Harvard Cyclotron completed (Norman F. Ramsey): 95-110 MeV protons
- 1955: Second Harvard Cyclotron: 165 MeV protons
- 1962: Proton radiotherapy first steps (Kelleberg et al. 1962)
- 1972: Clinical trials with protons (Suit, Koehler, Goitein, Richard Wilson)

UNIVERSITY OF BERGEN

Around the world

Russia

- **1968**: Joint Institute for Nuclear Research in Dubna
- 1969: the Moscow Institute for Theoretical and Experimental Physics in 1969
- **1975**: St Petersburg in 1975.

Japan

- 1979: first treatments at the National Institute for Radiological Sciences in Chiba, Japan
- **1980**: development of a spot scanning system for proton treatment delivery

More

- 1989: Clatterbridge, England
- 1991: Nice and Orsay, France
- 1993: iThemba Labs in Cape Town, South Africa
- 1996: PSI at Villigen, Switzerland
- 1998: HMI in Berlin, Germany
- 1998 NCC in Kashiwa, Japan
- **1999**: Dubna, Russia (1999)

UNIVERSITY OF BERGEN

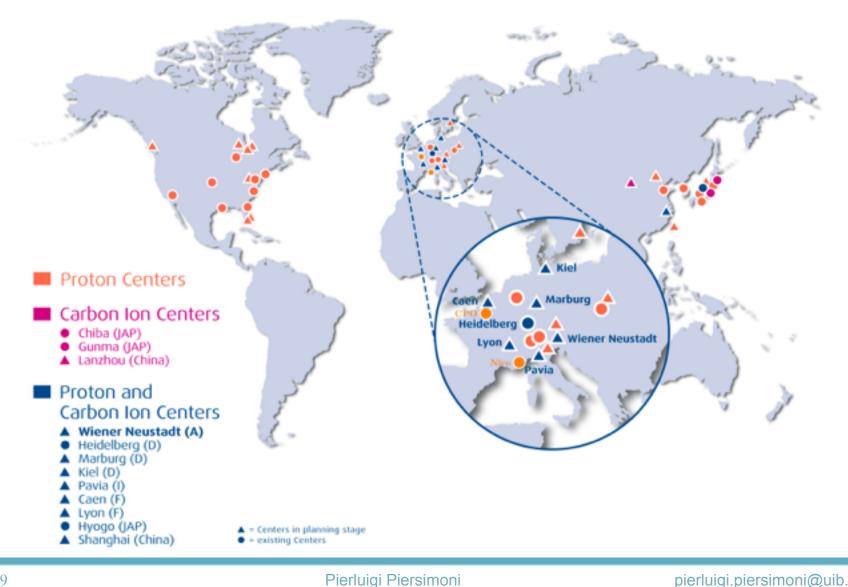
BEVALAC accelerator, LBL Berkeley

- 1971: Heavy ions accelerated at BEVALAC synchrotron
- 1975: Physicians and medical physicists from the University of California at San Francisco provided the medical expertise for the first heavy ion treatments (Lyman et al. 1979)
- **1992:** End of the hadrontherapy project

Harry Heckman, Ed McMillan, Cornelius Tobias, Tom Budinger, Ed Lofgren, Walt Hartsough (l. to r.)

First medical accelerator, Loma Linda, CA

- **1990**: first patient treatments at the Loma Linda University Medical Center (LLUMC) (*Slater et al* 1991)
- The facility was the result of the vision and work of Dr James Slater who was the Chairman of the Department of Radiation Medicine.
- 250 MeV synchrotron and three isocentric gantries designed and built at Fermi National Laboratory.
- A very efficient proton treatment planning program was developed, enabling the LLUMC group to treat the largest number of patients (about 10500) of any proton treatment facility (*Miller 1995, Chu et al 1993*)



Proton beam accelerator at Loma Linda University Medical Center

Pierluigi Piersimoni

Hadron therapy centers in 2011 100

Hadron therapy centers in September 2019

COUNTRY	WHO, WHERE	PARTICLE	S/C/SC*	BEAM DIRECTIONS	START
Italy	CNAO, Pavia	C-ion	S 480/u	3 horiz., 1 vertical, fixed beams	2012
USA, NJ.	ProCure Proton Therapy Center, Somerset	p	C 230	4 gantries***	2012
Germany	WPE, Essen	р	C 230	4 gantries***, 1 fixed beam	2013
Japan	Nagoya PTC, Nagoya City, Aichi	p	S 250	2 gantries***, 1 fixed beam	2013
Japan	SAGA-HIMAT, Tosu	C-ion	S 400/u	3 horiz., vertical, 45 deg., fixed beams	2013
USA, WA.	SCCA ProCure Proton Therapy Center, Seattle	a	C 230	4 gantries***	2013
USA, MO.	S. Lee Kling PTC, Barnes Jewish Hospital, St. Louis	р	SC 250	1 gantry	2013
China	SPHIC, Shanghai	p	S 250	3 fixed beams**	2014
China	SPHIC, Shanghai	C-ion	S 430/u	3 fixed beams**	2014
Germany	UPTD, Dresden	p	C 230	1 gantry***	2014
Italy	APSS, Trento	p	C 230	2 gantries**, 1 fixed beams	2014
Japan	Hokkaido Univ. Hospital PBTC, Hokkaido	D	S 220	1 gantry	2014
Japan	Aizawa Hospital PTC, Nagano	р	C 235	1 gantry	2014
USA, TN.	ProVision Cancer Cares Proton Therapy Center, Knoxville	p	C 230	3 gantries**	2014
USA, CA.	California Protons Cancer Therapy Center, San Diego	p	C 250	3 gantries**, 2 horiz. fixed beams**	2014
USA, LA.	Willis Knighton Proton Therapy Cancer Center, Shreveport	p	C 230	1 gantry**	2014
Germany	MIT, Marburg	p	S 250	3 horiz., 1 45deg. fixed beams**	2015
Germany	MIT, Marburg	C-ion	S 430/u	3 horiz., 1 45deg. fixed beams**	2015
Japan	i-Rock Kanagawa Cancer Center, Yokohama	C-ion	S 430/u	4 horiz., 2 vertical, fixed beams	2015
South Korea	Samsung PTC, Seoul	D D	C 230	2 gantries	2015
Sweden	The Skandion Clinic, Uppsala	p	C 230	2 gantries**	2015
Taiwan	Chang Gung Memorial Hospital, Taipei	p	C 230	4 gantries**, 1 fixed beam exp.	2015
USA, FL.	Ackerman Cancer Center, Jacksonville	p	SC 250	1 gantry	2015
USA, MN.	Mayo Clinic Proton Beam Therapy Center, Rochester	p D	S 220	4 gantries**	2015
USA, NJ.	Wood Johnson Univ. Hospital, New Brunswick	p	SC 250	1 gantry	2015
USA, TX.	Texas Center for Proton Therapy, Irving	p p	C 230	2 gantries**, 1 horiz. fixed beam	2015
USA, TN.	St. Jude Red Frog Events Proton Therapy Center, Memphis	F	S 220	2 gantries**, 1 horiz. fixed beam	2015
Austria	MedAustron, Wiener Neustadt	p n	S 253	2 horiz., 1 vertical fixed beam**,	2015
Japan	Tsuyama Chuo Hospital, Okayama	p	S 235	1 gantry	2010
Russia	MRRC, Obninsk	p D	S 250	1 fixed beam	2010
USA, AZ.	Mayo Clinic Proton Therapy Center, Phoenix	p	S 220	4 gantries**	2016
USA, MD.	Maryland Proton Treatment Center, Baltimore	p D	C 250	4 gantries**, 1 horiz. fixed beam**	2010
USA, FL.	Orlando Health PTC, Orlando	p	SC 250	1 gantry	2010
USA, OH.	UH Sideman CC, Cleveland	p	SC 250	1 gantry	2010
USA, OH.	Cincinnati Children's Proton Therapy Center, Cincinnati		C 250	3 gantries**	2010
Japan	Hakuhokai Group Osaka PT Clinic, Osaka	p p	S 235	1 gantry	2010
Japan	Kobe Proton Center, Kobe	p	S 235	1 gantry	2017
USA, MI.	Beaumont Health Proton Therapy Center, Detroit	p	C 230	1 gantry**	2017
USA, FL.	Baptist Hospital's Cancer Institute PTC, Miami		C 230	3 gantries**	2017
England	Proton Partner's Rutherford CC, Newport	p p	C 230	1 gantry**	2017
		P	C 250		2018
England France	The Christie Proton Therapy Center, Manchester CYCLHAD, Caen	p p	C 230	3 gantries** 1 gantry**	2018
Japan	Narita Memorial Proton Center, Toyohgashi	•	C 230	1 gantry**	2018
Japan	Osaka Heavy Ion Therapy Center, Osaka	p C-ion	S 430/u	3 fixed beams, 6 ports**	2018
Russia	MIBS, Saint-Petersburg		C 250	2 gantries**	2018
	UMC PTC, Groningen	p	C 230	2 gantries***	2018
		p		-	2018
	HollandPTC, Delft	p	C 250	2 gantries**, 1 horiz. fixed beam**	2018
USA, DC.	MedStar Georgetown University Hospital PTC, Washington		SC 250	1 gantry**	2018
USA, TN. USA, GA.	Provision CARES Proton Therrapy Center, Nashville	p	C 230 C 250	2 gantries**	2018
	Emory Proton Therapy Center, Atlanta	p C ion		3 gantries**, 2 horiz. fixed beams** 2 horiz. and 1 verticalfixed beam**	2018
Austria China	MedAustron, Wiener Neustadt	C-ion	S 403/u	4 fixed beams**	2019
	Heavy Ion Cancer Treatment Center, Wuwei, Gansu	C-ion	S 400/u		2019
Denmark	Dansk Center for Partikelterapi, Aarhus	p	C 250	3 gantries**, 1 horiz. fixed beam**	
India The Netherlands	Apollo Hospitals PTC, Chennai	р	C 230	2 gantries, 1 fixed beam**	2019
	ZON PTC, Maastricht	p	SC 250	1 gantry**	2019
USA, OK.	Stephensen Cancer Center, Oklahoma	р	SC 250	1 gantry**	2019
USA, MI.	McLaren PTC, Flint	p	S 250/330	3 gantries**	2019
USA, NY.	The New York Proton Center, East Harlem, New York	р	C 250	3 gantries**	2019

https://www.ptcog.ch/index.php/ facilities-in-operation

100

Pierluigi Piersimoni

Hadron therapy centers under construction

Particle therapy facilities under construction (update September 2019)

COUNTRY	WHO, WHERE	PARTICLE(S)	MAX. ENERGY (MeV) ACCELERATOR TYPE (VENDOR)*	BEAM DIRECTIONS	NO. OF TREATMENT ROOMS	START OF TREATMENT PLANNED
Belgium	ParticLe, Leuven	P	230 SC cyclotron (IBA)	1 gantry (PBS). 1 horiz. beamline (research)	2	2019
China	HITTFIL at IMP, Lanzhou, Gansu	C-ion	400/u synchrotron (7)	4 horiz, vertical, oblique, fixed beams	4	2019
China	Ruijin Hospital, Jiao Tong University, Shanghai	P	250 synchrotron (Apactron)	1 gantry; 2 horiz: fixed beams	э	2020
China	Zhuszhou Proton Therapy Center, Baoding, Hebei	P	230 cyclotron (IBA)	4 gantries, 1 hortz. fixed beam	5	2019
China	Guangdong Henglan Medical Technologies Co., Guangzhou	P	230 cycletron (IBA)	3 gantries	3	2020
China	Gingdao Zhong Jia Lian He Healthcare, Shandong	P	230 cyclotron (IBA)	4 gantries, 1 fixed beam	5	2019
China	Beijing Proton Center, Beijing	P	230 cyclatron (7)	3 gantries, 1 horiz, fixed beam	4	20207
China	HIMC Center, Hefei, Anhui	P	250 SC cyclotron (Varian)	3 gantries, 1 horiz, fixed beam	4	20207
China	Guangzhou Concord Cancer Center, GCCC, Guangdong	P	250 SC cyclotron (Varian)	4 garbies	4	2021
Emirate of Abu Dhabi	Proton Partners InL, Abu Dhabi	p	230 cyclotron (IBA)	1 gantry; 1 horiz, fixed beam	1	2019
France	ARCHADE, Caen	C-ion	400/u cyclotron (IBA)	1 fixed beam (r&d)	1	2023
India	Tata Memorial Centre, Mumbai	p	230 cyclotron (IBA)	3 gantries	3	2019
India	Health Care Global	p	250 SC cyclotron (Varian)	1 gantry	1	2020
Japan	Social Medical Corporation Kouseikai Takai Hospital, Tenri Citx, Nara Pref	p	230 cyclotron (Sumitomo)	1 gantry	1	2018

https://www.ptcog.ch/index.php/ facilities-in-operation

100

Hadron therapy centers under construction

BEAM DIRECTIONS

NO. OF

OC A TRACK

START OF

Particle therapy facilities under construction (update September 2019)

WHO, WHERE

PARTICLE(S)

MAX. ENERGY

https://www.ptcog.ch/index.php/ facilities-in-operation

100

		_	(MeV) ACCELERATOR TYPE		ROOMS	PLANNED		cs-m-opera			
Belgium	ParTICLe, Leuven	Particle therapy facilities under construction (update September 2019)									
China	HETFE at IMP; Lanzhou, Gansu	Japan	Teishinkai Hospital, Sapporo, Hokkaido	P	235 cyclotron (Sumitome)	1 gantry	1	2018			
China	Ruijin Hospital, Jiao Tong University,	Japan	Hokkaido Ohno Memorial Hospital, Sapporo	P	230 cyclotron (IBA)	1 gantry	1	20187			
China	Shanghai Zhuozhou Proton Therapy Center, Baoding, Hebei	Japan	Nagamori Memorial Center of Innovative Cancer Therapy, Kyoto Univ. of Medicine	р	220 synchrotron (Hitachi)	2 gantries	2	2019			
China	Guangdong Henglian Medical Technologies Co., Guangzhou	Japan	Yamagata University Hospital, Yamagata	C-ion	430/u synchrotron (Toshibe)	1 SC gantry, 1 horiz: & vertical fixed beam	2	2020			
China	Gingdao Zhong Jia Lian He Healthcare, Shandong	Japan	Shonan Kamakura Advanced Medical Center	P	220 synchrotron (Hitachi)	1 gantry	1	2020			
China	Beijing Proton Center, Beijing	Russia	PMHPTC, Proteino	P	250 synchrotron	1 horiz. fixed beam	1	7			
China	HIMC Center, Hefel, Anhui	Russia	Federal HighTech Center of FMBA,	p	(7) 230 cyclotron	4 gantries	4	2019			
China	Guangzhou Concord Cancer Center, GCCC, Guangdong	Saudi Arabia	Dimitrovgrad King Fahad Medical	р		3 gantries, 2 fixed beams	5	2019			
Emirate of Abu Dhabi	Proton Partners Int., Abu Dhabi		City PTC, Riyahdt		SC cyclotron (Varian)						
France	ARCHADE, Caen	Singapore	National Cancer Center Singapore (NCCS)	p	250 synchrotron (Hitachi)	4 gantries, 1 horiz. fixed beam	5	2021			
India	Tata Memorial Centre, Mumbai	Singapore	Singapore Institute of Advanced Medicine Pte.	р	250 SC cyclatron	1 gantry	1	2020			
India	Health Care Global				(Varian)						
	Social Medical Corporation Kouseikai	Slovak Rep	CMHPTC, Ruzomberok	P	250 synchrotron (7)	1 horiz. fixed beam	1	7			
	Takai Hospital, Tenri Citu Nara Pref.	South Korea	KIRAMS, Busan	C-lon, p	430/a, 230 synchrotron (?)	2 vertical and horiz. fixed beams, 1 horiz. fixed beam	э	20217			
		Spain	Quindmaalud Hospital, Madrid	p	230 cyclotron (IBA)	1 gantry	1	2019			

COUNTRY

Hadron therapy centers under construction

COUNTRY	WHO, WHERE	PARTICLE(S)	MAX.ENERGY B (MeV) ACCELERATOR TYPE	LAM DIRECTIONS	TREATMENT T	START OF REATMENT PLANNED	https://www.ptcog.ch/index.php/ facilities-in-operation			
Belgium	ParTICLe, Leuven	Particle th	erapy facilities und	er constructio	n (update Septe	mber 2019)				
Dhina	HETFE at IMP, Lanzhou, Gansu	Japan	Teishinkai Hospital, Sappore, Hokkaido	Particle thera	py facilities un	der construc	tion (update Se	ptember 2019)		
Dina	Ruijin Hospital, Jiao Tong University, Shanghai	Japan	Hokkaido Ohno Memorial Hospital, Sapporo Nagamori Memorial	Spain	CUN, Madrid	Р	220 synchrotron	1 gantry	1	2020
Xina	Zhuszhou Proton Therapy Center, Baoding, Hebei		Center of Innovative Cancer Therapy, Kyol Univ. of Medicine	Tailand	Her Royal Highness	P	(Htachi) 250	1 gantry		20207
Dhina	Guangdong Henglian Medical Technologies Co., Guangzhou	Japan	Yamagata University Hospital, Yamagata		Princess Chakri Sirindhom PTC, Bangkok		SC cyclotron (Varian)			
Dhina	Gingdao Zhong Jia Lian He Healthcare, Shandong	Japan	Shonan Kamakura Advanced Medical Center	Taiwan	National Talwan University CC, Taipe	P	250 SC cyclotron (Varian)	2 gantries, 1 experimental room	з	2019
Zhina	Beijing Proton Center, Beijing	Russia	PMHPTC, Proteino	Talwan	Kachslung Chang Gung Memorial Hospital, Kachslung	P	230 cyclotron (Sumitomo)	3 gantries	3	2019
Dhina	HIMC Center, Hefei, Anhui	Russia	Federal HighTech Center of FMBA,	Talwan	Taipei Veterans General Hospital, Taipei	C-ion	430/u synchrotron (Hitachi)	2 vertical and 2 horizontal fixed beams	2	2021/2022
China	Guangzhou Concord Cancer Center,	Saudi Arabia	Dimitrovgrad	United Kingdom	PTC UCLH, London	p	250 SC cyclotron (Varian)	3 gantries	3	2019
Iminate of Abu Dhabi	Proton Partners Int., Abu Dhabi		King Fahad Medical City PTC, Riyahdt	United Kingdom	Proton Partners Int. Northumbria	P	230 cyclotron (IBA)	1 gantry	1	2019
france	ARCHADE, Caen	Singapore	National Cancer Center Singapore (NCCS)	United Kingdom	Proton Partners Int. Reading	P	230 cyclotron (IBA)	1 gantry	1	2019
ndia	Tata Memorial Centre, Mumbai	Singapore	Singapore Institute of Advanced Medicine	United Kingdom	Proton Partners Int. Imperial-West, Lond		230 cyclotron (IBA)	1 gantry	1	2019
ndia	Health Care Global		Pla.	USA	MGH, Boston, MA	P	330 synchrotron (ProTom)	1 gantry	1	2019
apan	Social Medical Corporation Kouseikai	Slovak Rep	CMHPTC, Ruzomberok	USA	UFHPTI, Jacksonvil FL	le, p	230 cyclotron (IBA)	1 gantry	1	2019
Tai	Takai Hospital, Tenri City: Nara Pref.	South Korea	uth Korea KIRAMS, Busan	USA	Sibley Memorial Hospital, Washingto D.C.	n P	250 synchrotron (Hitachi)	3 gantries, 1 horiz: fixed beam	4	2019
		Spain	Quirdnsalud Hospital, Madrid	USA	Ineva Sohar Cancer Institute, Capital Beitway, Washingto D.C.		230 cyclotron (IBA)	2 gantries	2	2019
				USA	University of Alabam PTC, Birmingham	na p	250 SC cyclotron (Varian)	1 gantry	1	2020
				UBA	UM Sylvester Comprehensive	р	250 SC cyclotron	1 gantry	1	2020

Pierluigi Piersimoni

Hadron therapy centers in planning stage

Particle therapy facilities in a planning stage

COUNTRY	WHO, WHERE	PARTICLE	MAX. ENERGY (MAV), ACCELERATOR TYPE, (VENDOR)	BEAM DIRECTIONS	NO. OF TREATMENT ROOMS	SUNIT OF TREATMENT PLANNED
Activalia	Australian Bragg Canter for Proton Thenapy and Research (SAHSHC), Adelards	,	ZNO. Byrechnythean, (7)	2 pantries, 1 fixed beam	,	2021
Argentina	Instituto de Oncologia Angel Ruffo Hospital, Buenca Aires	1	230. cyclotron, (KBA)	2 gantries		2010/0021
Belgium	University Hospitale Walkonia, Charlensi		230. cyclotron, (IBA)	1 parity	1	2001
Otea	Hang Kang Sanatorium and Hangital IPTC, Shaw Kai Man, Hang Kang		220, synchrotron, (Hitech)	2 gantiles	1	2021
China	Tangin Talahan Cancar Haspital, Simo-US protein Insatment & research center, TAEA, Tangin		ZND. cyclathon, (7)	2 ganties	,	2021
Ohia	Boas Currynnia International Hospital, Boas Lecheng, Hainen	1	aprictication, (Phillips)	2 gardies, 1 fixed beam	3	2024
China	Janpi Canoer Hospital, Janpel Province	1	290. BC synchro- carcletron, (Mervion)	1 garity	1	26207
China	Himed Cancer Hospital, Xushou Dity, Jampsu Province	p, C-ken	250, 430/u synchroitun, (Hilauhi)	1 gantry (p), 3 fixed beams (C-lon)	*	26217
China	Sheruhen Tumor Hospital, Sheruhen, Quangtong Province		230. cyclotron, (BA)	4 partner,1 fixed beam		2002
Egypt	Children's Cancer Hospital Foundation, Calms		230, cyclotron, (IBA)	1 parity	- 1	2020
India	Tata Memorial Centre, Proton Therapy, Mumbal		230. cyclotron, (BA)	3 gantries	,	26207
naty	European Institute of Oncology, Milan		230, cyclotron, (KEA)	1 party		2020
Notway	Noneegian Radium Hospital, Oslo		250, SIC-cyclotron, (Vienen)	3 gartries, 1 faad beam for clinical reasonth	3	2023
Normaly	Haukeland University Hospital, Bergen		290. BC-cyclotron, (Variam)	1 gantry. 1 additional gantry as an option	1(0)	2029-2029
-	Moscow		episterio,			20221
Degapore	Mount Elizabeth Novene Hospital. Singapore	P	(Hauto) 230. cycketon, (IBA)	1 ganty	1	2021
South Kones	Yonesi Univ. Heapital Secul	C-lan	430%, synchrotron, ()	2 gartities	2	28227
Bellostand	PTC Zürshobersen, Galgenen	'	230. cyclatron, (Sumitama)	4 gantries	4	7
Daritmentand	CHUY, Lausanna		200, SC synchro- cyclatron, (Mevion)	t ganty	. 4	2024
UBA	Adamtic Health Bystem, New Jersey, NY		330. Specificação (7)	27 gantries	27	36207
USA	Huritaman Canor Institute, University of Utah	1	200, SC synchro- cyclatron, (Mevice)	1 garity		26247
USA	Perri Medicine, Philadelphia, PA.	1	290, BC-system, (Varian)	1 parity	1	2020
UEA	Mercy Hospital, St. Louis, MO.	1	280, SC synchro- cyclatron, (Mevion)	t ganty	1	26247
USA	University of Kansas		298.	1 garity	1	2021

") 'Vendor delivering the technology, 7 = open

https://www.ptcog.ch/index.php/ facilities-in-planning-stage

100

Hadron therapy centers in planning stage

Particle therapy facilities in a planning stage

https://www.ptcog.ch/index.php/ COUNTRY PARTICLE MAX ENERGY START OF MIND, WHERE BEAM DIRECTIONS NO.0F ACCELERATOR facilities-in-planning-stage PLANNED. TYPE, (VENDOR) Australian Bragg Cantre for Proton 2 partnes, 1 fixed beam Australia 230. 3021 . . sumphraphies, (7) Therapy and Pensee (SAHBPI), Adelaide inatifuto de Onco 230. cyclotron, (NIA) 2010/0021 Argentina . 2 gardnes Angel Ruffs Hospit Buence Alres Despus University Hospitals 230. 1 party . 3001 . Natoria, Charlerol cyclotron, (IBA) 235, synchrotron (Hitech) Hang Kang Sanatorium and Heapital (PTC, Shaw Kai Nan, Hang Kang China 3021 3 gard/a Tanjin Tashan Canor Hospital, Simo-US proton treatment & research center, TAEA, China ZND. cyclubrom, (7) 2021 3-partities Tanja Boas Everynnie Isternational Hospital, Boas Locheng China 200, synchrotron, (Profiler) 2 gambles, 1 familian 2021 China Jangsi Cancer Hospital, Jangsi Province . 290. BC synchro-cyclotron, (Mervion) 1 games 20207 Himed Cancer Hospitel, Xushou-Dity a. 6-iau 258, 430/u 1 gantry (p), 3 feed beams (C-lori) 20217 **China** (Hault) Jangeu Province Brenchen Tumor Kospital, Shenchen, Duangstong Provinci 230. 3002 China 4 partners, 1 feed beam cyclotron, (IBA) Children's Cancer Egypt 230. . cycletron, (KLA) Haspital Foundation 1 parity . 2020 Calify India Tata Memorial Centre, Proton Therapy, Mumbal 230. 3-partnes 20207 cyclotron, (IBA) Raly. Norwegian Radium 3 2023 One Norway 250, 3 gantries, p Hospital, Oslo SC cyclotron, 1 fixed beam for clinical research Nonway Non (Varan) Heat Manager Hau Norway Haukeland 250, 1(2) 2023-2025 1 gantry, P University Hospital, SC cyclotron, 1 additonal gantry as an option Berg Most Bergen (Varian) 2021 Despapers Mount Excelled 2780 1 party cyclotron, (IBA) Novena mospital. Singapore C-lan South Koney Yoneei Lihiki. 430% **3** gambries 2012/27 synchrotron, () Hospital Secul PTC Zinchoberses 230. Baltzerland 4 gambries Calgeners cyclubros. (Sumiture) Delinetand CHLN: Lausanne 2005 1 party 3024 SC androcycletron, (Mevion) LRA Allantic Health Dystem, New Jansey 335. 27 gambries 27 26207 sumption (7) USA Hunteman Carnor 255 1 paney 20247 SC syndro institute. University of Liber olatron, (Mexicon) LINA 3020 Perce Medicine, Philadelphia, PA 296 1 parity . BC cycluthown, (Varian) UEA 200. 20217 Mercy Hospital, St. Louis, MO. 1 parity SC synchro cycletron, (Mevion) LISA **Iniversity of Kansas** 298. 1 parey 2021 Health, Ransas City cyclotron (IBA)

") Vendor delivering the technology, 7 = open

pierluigi.piersimoni@uib.no

Conclusions

- Proton therapy remains controversial, mainly because of its high cost relative to x-ray facilities
- The evident physics benefits expected in general have not been quantified and proven in large random trials, so a cost-benefit analysis is difficult
- The x-ray field is more more advanced, so a comparison with 'old fashioned' proton treatment, would be unfair, especially with modern IMRT irradiation modalities
- The modern IMPT modality not only allows proton therapy to be applied to tumors that could not be accessed before and allows better control of the dose distribution
- Randomized trials are now getting underway to make direct comparisons between IMRT and IMPT (*Frank S J, 2016*)
- The main problem is the so-called 'range problem'

To be continued ...

