

t-channel dark matter models at the NLO accuracy in QCD

Benjamin Fuks (LPTHE / Sorbonne Université)

[with Chiara Arina & Luca Mantani]

LHC DM WG public meeting

CERN, 30 September 2019

t-channel dark matter models at the NLO accuracy in QCD

Benjamin Fuks - 30.09.2019 - 1

Outline

A comprehensive approach to new physics calculations

[Christensen, de Aquino, Degrande, Duhr, BF, Herquet, Maltoni & Schumann (EPJC`II)]

A generic implementation for t-channel DM

A generic t-channel DM modelling ✤2 spins: J_X, J_Y X (DM) SM I3 masses: ★ I DM mass: m_X \star 12 mediator masses (SM = Q_L, u_R, d_R) Y (med.) ✤9 couplings \star 3 vectors in flavour space SM \star SM = Q_L, u_R, d_R X (DM) Many free parameters / spin combination Spin options X (DM)Self-conj. Y (med.) Spin Spin Missing (for now): S0 1/2 ψ_Q, ψ_u, ψ_d ves \star Complex scalar/vector DM \rightarrow trivial to add $\tilde{\chi}$ 1/2yes 0 $\varphi_Q, \varphi_u, \varphi_d$ \star Vector mediators 1/2 χ no

 ψ_Q, ψ_u, ψ_d

1/2

 \rightarrow coloured vector @ NLO?

1

ves

 V_{μ}

Lagrangian and restrictions

The model	X (DM)	Spin	Self-conj.	Y (med.)	Spin	
Fields:	S	0	yes	ψ_Q, ψ_u, ψ_d	1/2	\rightarrow
	$ ilde{\chi}$	1/2	yes	$arphi_Q, arphi_u, arphi_d$	0	\rightarrow
	χ	1/2	no		0	→ S
	V_{μ}	1	yes	ψ_Q, ψ_u, ψ_d	1/2	→ F
😵 lagrangian						

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm kin} + \left[\lambda_{\mathbf{Q}} \left[(\bar{\chi} + \bar{\chi}) Q_L \right] \varphi_Q^{\dagger} + \lambda_{\mathbf{u}} \left[(\bar{\chi} + \bar{\chi}) u_R \right] \varphi_u^{\dagger} + \lambda_{\mathbf{d}} \left[(\bar{\chi} + \bar{\chi}) d_R \right] \varphi_d^{\dagger} + \text{h.c.} \right] \\ + \left[\hat{\lambda}_{\mathbf{Q}} \left([\bar{\psi}_Q Q_L] S + [\bar{\psi}_Q V Q_L] \right) + \hat{\lambda}_{\mathbf{u}} \left([\bar{\psi}_u u_R] S + [\bar{\psi}_u V u_R] \right) + \hat{\lambda}_{\mathbf{d}} \left([\bar{\psi}_d d_R] S + [\bar{\psi}_d V d_R] \right) + \text{h.c.} \right]$$

12 sets of restrictions

Selection of one spin combination: S3D, S3M, F3S, F3V

*2 masses: m_Y, m_X; I coupling parameter λ

Coupling texture:

★ Universal couplings: 12 degenerate mediators

- \star 3rd generation couplings: 3 degenerate mediators
- \star Coupling to u_R: I mediator

import model DMSimp_t-S3D_uni --modelname

Relic density in the S3M_uR model

The S3M_uR model: coupling to the right-handed up-quark only

X (DM)	Spin	Self-conj.	Y (med.)	Spin	$\int -\int_{au} +\int_{u} +\int_{u} \frac{1}{\tilde{y}} + hc$	
Ĩ	1/2	yes	$arphi_Q, arphi_u, arphi_d$	0	$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \begin{bmatrix} \lambda_{\mathbf{u}} \ \chi a_{R} \ \varphi_{u} + \mathbf{n.c.} \end{bmatrix}$	••••]

Relic density matching Planck data
 λ: MICROMEGAS gives Ω_{CDM} = 0.12
 MADDM vs. MICROMEGAS (Δ)

 \star 10% difference for the same benchmark

 \rightarrow being investigated

Direct detection in the S3M_uR model

Indirect detection in the S3M_uR model

DM production at colliders: the S3D_uni case

NLO computations are not trivial

Resonance subtraction

Different subtraction procedures

$$\left|\mathcal{A}\right|^{2} = \left|\mathcal{A}^{(\text{non-res.})}\right|^{2} + 2\Re\left(\mathcal{A}^{(\text{non-res.})}\mathcal{A}^{(\text{res.})^{\dagger}}\right) + \left|\mathcal{A}^{(\text{res.})}\right|^{2}$$

DR: the resonant diagrams are removed

DR+I: diagram removal while keeping the interferences

DS: subtraction of the purely resonant part from the last term

$$\left|\mathcal{A}^{(\text{res.})}\right|^2 \mathrm{d}\Phi \quad \Rightarrow \quad \left|\mathcal{A}^{(\text{res.})}\right|^2 \mathrm{d}\Phi - f(m_{\text{res.}}^2) \, \mathbb{P}\left(\left|\mathcal{A}^{(\text{res.})}\right|^2 \mathrm{d}\Phi\right)$$

★ Different options (momenta projections)

 \bigstar The projection $\,\propto\,$ 2-to-2 Born

MG5 AMC

Jets + MET @ NLO (I)

Jets + MET @ NLO (2)

Benchmark: m_X = 150 GeV, m_Y = 500 GeV, λ=1 Y_iY_i production (QCD; i=1,2,3): qq and gg channels (squark pair production) Y_iY_j production (DM *t*-channel; i,j=1,2,3) Interferences between the QCD and DM channels Mixed orders: interferences @ LO + K-factor rescaling monojet/multijet: excluded at 100% CL

Summary- outlook

A first version of the Über UFO is available

Some spin configurations still missing
 LO calculations straightforward (collider + cosmo)
 NLO @ colliders → not so straightforward

Validation is on-going

- Comparison with the literature
- Encouraging first results (cosmo)
- Issues to be understood
- Colliders: need to be started