

BACKGROUNDS TO MULTILEPTONS AT ATLAS

V. Erkcan Özcan

University College London

In collaboration with G. Ünel & S. Sultansoy & the ATLAS Collaboration

OUTLINE

- Multi-lepton final states are generally considered lowbackground / practically background-free.
 - However large x-section × minute detector effects can still bring non-negligible backgrounds.
- What is in this talk?
 - Ways to guess the size of such backgrounds without resorting to detector simulation.
 - Example L⁰L[±] analysis in 3 same-sign (SS) leptons.
 - On behalf of ATLAS Collaboration: Example full-simulation multi-lepton analysis & an introduction to how ATLAS plans to extract background estimates from actual data.
- Everything is @ 14TeV...

Disclaimer: Not an official ATLAS talk...

SOURCES

- Details on various aspects of what is in this presentation can be obtained from:
 - V. E. Özcan, S. Sultansoy, G. Ünel, A Possible Discovery Channel for New Charged Leptons at the LHC, J. Phys. G 36 (2009) 095002.
 - ATLAS Collaboration, Expected Performance of the ATLAS Experiment Detector, Trigger, Physics, CERN-OPEN-2008-020 [arXiv:0901.0512].
 - ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) 508003.

ATLAS DETECTOR

7000 tones

- Tracking and muon coverage: |η|<2.5
- Calorimeters with presamplers: |η|<1.8
- Forward calorimeters: 3.2<|η|<5.9

e/γ energy resolution

σ/E ≈ 10-15%/√E ⊕ ~1%

Central jet energy resolution

σ/E ≈ 60%/√E ⊕ 3%

Missing $E_{x,y}$ resolution

 $\sigma \approx 0.55 \text{GeV} \times \sqrt{(\Sigma E_T)}$

Track inverse-P_T resolution

 $\sigma_{\{1/PT\}} \approx 35 \text{TeV}^{-1} \times (1 \oplus 50/P_T)$

Muon system standalone momentum resolution (with no inner detector)

 $\sigma/P_T < 4-10\%$ up to 1 TeV

Backup slides: η dependence

CHARGED LEPTONS @ LHC

 Search for charged heavy leptons & Majorana neutrinos in final state with 3 SS leptons.

$$pp \rightarrow L^{\pm}L^{0} \rightarrow WL^{0}L^{0} \rightarrow W_{l\nu}W_{jj}\mu W_{jj}\mu$$

Reference scenario : $m_L^{\pm}=250~GeV$, $m_L^0=100~GeV$

BR(
$$L^{\pm} \rightarrow L^{0}W$$
)~100%
BR($L^{0} \rightarrow \mu W$)=68%

18 events/fb⁻¹ with 3 SS leptons $(2\mu+\mu/e)$ & 2 hadronic Ws for the reference scenario.

- Acceptance: $P_T^{e/\mu}>10$ GeV $|\eta^{e/\mu}|<2.5$
- For trigger: One lepton with $P_T^{e/\mu}>20$ GeV => 9 "backgroundless" events/fb⁻¹.

BACKGROUNDLESS???

- Diboson production can provide 3 leptons, one of which is measured with the wrong charge.
- Can get jets misidentified as leptons.
 - Difficult to get all 3 jets as such, but what if you have at least one isolated true lepton? (ex. W+jets)
- tt production has a huge x-section (≈830pb⁻¹ NLO).
 - Provides jets, leptons, b-jets... At moderately high momenta!
 - tt should be considered a potential background for almost all LHC analyses.
 - How to get 3 SS leptons from tt?
 - Leptonically decaying Ws + for lowish-PT leptons, b-jets are an abundant source.
- How to assess all these without going thru detector simulation?
 - Use expected performance of ATLAS from CERN-OPEN-2008-020.

3 LEPTONS IN SM

Fraction of reconstructed muons with magnitude of $\Delta P_T/P_T$ outside indicated ranges from **CERN-OPEN-2008-020**, for the combined muon algorithm with worse performance. The last tail curve ("charge"), shows charge mis-measurement fraction. In red dashed line, our parameterization.

 charge mis-measurement conservatively parameterized: ε_{mischarge} = 10^{-4+PT/200GeV}

- Generate 75k 3l+v events w/MGME.
 - SM 3-lepton x-sec: 195.7±0.6 fb
 - Applying the mischarge parameterization, we get eff. background x-sec = 0.04 fb

W+JETS

- Having all 3 leptons from fakes highly unlikely.
 - Why? Comparing W+jet vs. jet-jet backgrounds in the dilepton (Z') analysis in CERN-OPEN-2008-020.

- A true e/μ from a W & two fakes from jets.
- Electrons more prone to jet fakes than µs.
 - CERN-OPEN-2008-020, maxlikelihood based electron ID: For 77% electron ID efficiency, jet rejection factor = 3.77 × 10⁴.
- Generate 10k $W_{e/\mu\nu}$ +jets with Pythia, with e/μ satisfying acceptance.
 - $x-sec = 19.9 \pm 0.2 \text{ nb}$
- Run k_T jet algo & extract multiplicity of clusters within acceptance.
 - Compute expected effective background x-sect = 0.01 fb.

tt BACKGROUND

- To get 3 relatively-low PT SS leptons from tt background:
 - 1 lepton from a W and 2 from b-jets.
 - Rejection by lepton isolation.
 - Calo-based isolation difficult to do at generator level.
 - Track based isolation => Need to parameterize tracking inefficiency.
 - CERN-OPEN-2008-020
 has tracking eff. for pions
 in jets in tt events!

Track reconstruction efficiency and fake rates for charged pions in jets in tt events as a function of $|\eta|$, from **CERN-OPEN-2008-020**. In red, our conservative parameterization.

tt BACKGROUND - LEPTON ISOLATION

 ΔR_{iso} = minimum ΔR between lepton and any non-lepton track of P_T >1GeV, taking into account expected efficiency of tracking for pions in b-jets parameterized as ϵ_{trk} =(88–13· $|\eta^{track}|/2.5$)%.

Require:

- all 3 leptons: $\Delta R_{iso} > 0.05$
- $\Delta R_{iso}>0.2$ for 2 out of 3 leptons

Why?

- Applying the tighter cut on signal events has low eff., due to jets from 2 hadronic Ws falling close to leptons.
- Getting 2 well-isolated leptons in tt is much more difficult.

tt BACKGROUND

MTD ≡ maximum transverse distance between the production vertices of any of pair of leptons in the event

- Leptons from b-jets produced away from each other. Require 3 leptons consistent with one vertex.
 - Cannot do vertexing without full simulation & reco.
 - Instead, reject if MTD>400μm. (The secondary vertex radial position resolution in ATLAS is below 170μm for J/ψ→μμ.)
- After these requirements & taking into account also the jet fakes and charge mis-id discussed earlier: 1 event out of 5M Pythia events.
 - Effective tt background x-section = 0.17 fb.

See backup slides for vtx. pos. resolution

SIGNAL SIGNIFICANCE

- After the cuts, for 1 fb⁻¹ of data at 14 TeV:
 - 7 signal events
 - Rudimentary background estimate = 0.22 events
 - Some other potential backgrounds, not considered:
 - Zb, with charge mis-id: Without charge mis-id, shown to be a source of multileptons comparable to tt in SUSY OSSF studies in CERN-OPEN-2008-020. If found to be large, can be suppressed with an m_{II} veto or a loose E_T^{miss} cut.
 - ZZ, where one lepton is lost & another's charge mis-id'ed. Cannot be more than 31+v.
 - ...
 - Even if background larger by $\times 10$, significance over 3.5σ

MULTI-LEPTONS AT ATLAS

- Many multi-lepton exotic final states are studied are studied at ATLAS. Some examples:
 - Leptonic decay of pairs of heavy gauginos through real or virtual W/Z or sleptons to leptons and a pair of LSPs.
 - Exotic di-lepton resonances, like Z'.
 - Pair production of heavy particles, like neutrinos, quarks, leptoquarks, etc.
 - Production of heavy particles in association of a lepton.
 Ex: leptoquarks, neutrinos...
 - Vector boson scattering with both bosons decaying leptonically.

MAJORANA NEUTRINOS

- Left-Right Symmetric Models (LRSMs) address non-zero masses of neutrinos and baryogenesis.
 - Introduce 3 new heavy right-handed Majorana neutrinos, new bosons W_R & Z',...
 - Direct searches:
 m(W_R)≥750GeV.
 - W_R can be produced via the Drell-Yan process and decay to heavy neutrinos.

SIGNAL AND BACKGROUNDS

CERN-OPEN-2008-020

Sample (l=e,µ)	Generator	x-section (pb)			
		no cuts	basic cuts, e-channel	basic cuts, µ-channel	
pp-> W_RX , W_R -> $IIJJ$ m(W_R , $N_{e,\mu}$)=1800,300 GeV	pythia	LO 0.25	0.088	0.145	
pp-> W_RX , W_R -> $IIjj$ m(W_R , $N_{e,\mu}$)=1500,500 GeV	pythia	LO 0.47	0.220	0.328	
pp-> $Z_{II}X$, mll>60GeV P _T I>10GeV, $ \eta^{I} $ <2.7	pythia, herwig	NLO 1808	49.8	80.0	
pp->tt, at least one e,μ with P _T l>1GeV	mc@nlo	NLO+NLL 450	3.23	4.17	
pp->VV, V=Z,W, $m_{Z/Y}$ *>20GeV, P_T^l >10GeV, $ \eta^l $ <2.8	herwig	NLO 60.9	0.610	0.876	
multi-jet	pythia	108	20.5	0.0	

• Basic cuts: 2e or 2μ well-identified, 2jets with cone0.4, $\Delta R(\text{jet,any e})>0.1$, $P_T^{l,j}>20$ GeV, $|\eta^l|<2.5$, $|\eta^j|<4.5$, $m_{ll}>70$ GeV

EVENT SELECTION

CERN-OPEN-2008-020

- Reconstruct from 2 highest-P_T jets and leptons
- $S_T>700\,GeV$ (scalar ΣP_T of 2 jets and leptons), $m_{II}>300\,GeV$

ATLAS Full Simulation

Final signal region: m_{ljj}>100GeV, m_{lljj}>1000GeV

Muon channel

RECONSTRUCTED WR & V

CERN-OPEN-2008-020

- After all cuts, backgrounds are about an order of magnitude smaller.
- 9-45 signal events @ 100pb⁻¹
- Multi-jet background not shown.
 - Can be important for e-channel.

RESULTS

CERN-OPEN-2008-020

- Trigger efficiency (single e or µ triggers) ≥ 95%
- Systematics on the background estimation ≈ 40-45%
 - Largest contributors: Integrated luminosity measurement, jet energy scale and resolution, limited MC statistics.
 - Pileup effect & multi-jet background in e-channel not considered!

 5σ discovery expected at $150pb^{-1}$ and $40pb^{-1}$ for m $(W_R,N_{e,\mu})=1800,300$ and 1500,500 scenarios respectively.

Effect of systematics is channel dependent.

DILEPTON RESONANCES

CERN-OPEN-2008-020

Differential x-section obtained from Pythia for various backgrounds to the e+e- channel. Requirements on electron candidates: $|\eta|$ < 2.5 and at least one with P_T >65GeV. Assumed rejection factors are: $R_{e\text{-jet}}$ =4×10³ and $R_{e\text{-}\gamma}$ =10.

See backup slides for uncut x-sections.

- For the search of dilepton resonances the largest background contribution is from Drell-Yan production.
 - Second largest is QCD di-jets, contributing less than 1/4th of DY.
 - tt contributes ≈10% of DY for dilepton masses above 500 GeV.

BACKGROUND CONTROL SAMPLES

SUSY analyses in CERN-OPEN-2008-020

- To estimate the size (and shape of)
 backgrounds, the simplest thing to do: Look at
 cut-out regions.
 - Signals mostly at high M_T: $M_T^2(\mathbf{p}_T^{\alpha}, \mathbf{p}_T^{\text{miss}}, m_{\alpha}, m_{\chi}) \equiv m_{\alpha}^2 + m_{\chi}^2 + 2\left(E_T^{\alpha}E_T^{\text{miss}} \mathbf{p}_T^{\alpha} \cdot \mathbf{p}_T^{\text{miss}}\right)$
 - Revert cut, for control region: MT<100GeV
 - tt and W+jet backgrounds enhanced
- Alternatively, invent new variables which have low correlation with the cut variables.
 - Ex: HT2, a ΣP_T variable without the highest PT jet, to reduce correlation with E_T^{miss} .
 - Control region: HT2<300GeV HT2 $\equiv \sum_{i=2}^{4} p_T^{\text{jet }i} + p_T^{\text{lepton}}$
- Issues with control regions: The composition of various background components can/will be different in signal and control samples. Signal contamination.

SUBSTITUTION STUDIES

SUSY analyses in CERN-OPEN-2008-020

- Identify samples that represent your background in other decay modes & redecay them.
- Ex: Create a clean fully-leptonic tt
 control sample by taking 2 OS leptons,
 3+ jets, and using kinematic constraints.
 - Selectively kill a lepton or replace it with tau's generated with TAUOLA.
 - Or take out decay products of tops, including E_T^{miss} contribution and redecay the tops in whatever way you like.
- These techniques allow access to unusual parts of parameter space => one seed event can be used for generating thousands of events.

CONCLUSION

- Multi-lepton final states will play an important part even in the ATLAS studies targeting first hundreds of pb⁻¹ of data.
- Backgrounds are not as small as mostly expected, particularly due to detector effects.
 - While they are mostly left to the interested experimentalist as homework, they can be roughly estimated without (full)detector simulation is possible.
 - Extraction of backgrounds from data, either by fits, or by uses of control regions are essential. Theory colleagues are encouraged to be innovative here as well...

BACKUPS

Figure 10.71: Fractional energy resolution for calibrated cone-tower jets reconstructed with

 $\Delta R = 0.7$ and $\Delta R = 0.7$ and $\Delta R = 0.7$ and as a

Figure 10.50: Expected relative energy resolution as a function of energy for electrons at $|\eta| = 0.3$, 1.1, and 2.0. The curves represent fits to the points at the same $|\eta|$ by a function containing a stochastic term, a constant term and a noise term.

Figure 10.51: Expected relative energy resolution as a function of energy for photons at $|\eta| = 0.3$, 1.1, and 2.0. The curves represent fits to the points at the same η by a function containing a stochastic term, a constant term and a noise term.

Figure 10.35: Expected stand-alone and combined fractional momentum resolution as a function of p_T for single muons with $|\eta| < 1.1$.

Figure 10.36: Expected stand-alone and combined fractional momentum resolution as a function of p_T for single muons with $|\eta| > 1.7$.

Track parameter	$0.25 < \eta < 0.50$		$1.50 < \eta < 1.75$	
	$\sigma_X(\infty)$	p_X (GeV)	$\sigma_X(\infty)$	p_X (GeV)
Inverse transverse momentum (q/p_T)	0.34 TeV ⁻¹	44	0.41 TeV^{-1}	80
Azimuthal angle (ϕ)	70 μrad	39	92 μrad	49
Polar angle $(\cot \theta)$	0.7×10^{-3}	5.0	1.2×10^{-3}	10
Transverse impact parameter (d_0)	10 μm	14	12 μm	20
Longitudinal impact parameter $(z_0 \times \sin \theta)$	91 μm	2.3	71 µm	3.7

Table 3: Expected track-parameter resolutions (RMS) at infinite transverse momentum, $\sigma_X(\infty)$, and transverse momentum, p_X , at which the multiple-scattering contribution equals that from the detector resolution (see Eq. (1)). The momentum and angular resolutions are shown for muons, whereas the impact-parameter resolutions are shown for pions (see text). The values are shown for two η -regions, one in the barrel inner detector where the amount of material is close to its minimum and one in the end-cap where the amount of material is close to its maximum. Isolated, single particles are used with perfect alignment and calibration in order to indicate the optimal performance.

 $\sigma_X(p_T) = \sigma_X(\infty)(1 \oplus p_X/p_T)$

STU ON L±L°

Black solid circles represent m_h going from 150 to 900 GeV in steps of 50 GeV, while the best value of m_{u4} goes slowly up to 390 GeV.

Is the reference scenario viable?

 Viable for E6GUTs, but how about as members of a 4th SM generation?

OPUCEM: Implemention exact one-loop calculations from:

- B.A.Kniehl & H.G.Khors,
 PRD48(1993)225.
- H.J.He, N.Polonsky & S.F.Su, PRD64(2001)053004.
- => Reference scenario can easily be accommodated for light or heavy Higgs alike.

Further details in: V. E. Özcan, S. Sultansoy, G. Ünel, A Possible Discovery Channel for New Charged Leptons at the LHC, J. Phys. G 36 (2009) 095002.

2ND VERTEX POSITION RESOLUTION

Resolution for the reconstruction of the radial position of the secondary vertex for $J/\psi \rightarrow \mu\mu$ decays in events containing *B*-hadron decays for tracks with $|\eta|$ around 0, from **CERN-OPEN-2008-020**.

As part of the tt background discussion

Resolution for the reconstruction of the radial position of the secondary vertex for $J/\psi \rightarrow \mu\mu$ decays in events containing *B*-hadron decays as a function of $|\eta_{J/\psi}|$, from **CERN-OPEN-2008-020**.

BACKGROUNDS TO DILEPTON RESONANCES

CERN-OPEN-2008-020

- Differential xsections from
 Pythia, for the
 background
 processes that can
 contribute to the
 e+e- invariant
 mass spectrum.
- W & Zs contribute true isolated leptons.
- No cuts and no lepton misidentification rejection applied.

