Multi-leptons in SUSY searches Pedro Quinaz Ribeiro, LIP-Lisbon "Workshop on multi-lepton final states in search of new Physics at the LHC" Lisbon, March 25th 2010 # **Outline** - The case for multi-leptons in SUSY searches - A template multi-lepton analysis - CDF search for anomalous multi-lepton production - Challenges for multi-lepton searches - Data driven estimates of backgrounds - Discrimination of new physics models - Conclusions ## The case for multi-leptons in SUSY searches "Early SUSY discovery at LHC without missing ET: the role of multi-leptons" H. Baer et all, Phys.Rev.D77:055017,2008 Isolated lepton multiplicity in events with ≥4 jets For n leptons ≥ 3, signal is well above background Fake leptons from jets are not simulated ## The case for multi-leptons in SUSY searches #### Even requiring only 2 leptons with OSSF there can be an evidence #### Characteristic invariant mass edge stands out against background Given large enough event samples, some SUSY masses can be measured # CDF search for anomalous production of multi-lepton events • Search in 3 or ≥4 lepton (e, μ) data samples Phys.Rev.Lett.98:131804,2007 ### Dominant backgrounds - Drell-Yan + additional leptons from - Photon conversions - Misidentified jets - Diboson (WZ,ZZ) production ### sqrt(s)=1.96 TeV L=346 pb⁻¹ ## •No missing E_{τ} or Jet cuts were applied \rightarrow sensitive to multiple models #### Event selection - All lepton tracks consistent with interaction point - Lepton isolation E_T lso/E_T lepton < 0.1 - Separation between leptons : ΔR≥0.4 - Rejection of OSSF lepton pairs with - Invariant mass between 76-106 GeV/c² - Invariant mass bellow 15 GeV/c² - 160°< Δφ <200° - Invariant mass of two highest ET leptons > 20 GeV/c² - To remove photon conversion and heavy flavour backgrounds # Validation of MC background estimates: control regions | Region | Criteria Failed | Predicted | Observed | | | |---|----------------------------|------------------|----------|--|--| | | | Background | Events | | | | Two-Lepton Con | Two-Lepton Control Samples | | | | | | ee | Z veto | 13948 ± 1536 | 14019 | | | | ee | | 2142 ± 230 | 2125 | | | | $\mu\mu$ | Z veto | 7474 ± 809 | 7499 | | | | $\mu\mu$ | | 1264 ± 141 | 1339 | | | | $e\mu$ | | 117.6 ± 12.9 | 112 | | | | μe | | 186.8 ± 22.9 | 203 | | | | Three-Lepton Control Samples | | | | | | | $ee\ell$ | Z veto | 8.8 ± 1.9 | 12 | | | | $\mu\mu\ell$ | Z veto | 5.1 ± 1.2 | 2 | | | | $e\mu\ell$ | Z veto | 0.55 ± 0.04 | 0 | | | | $\ell\ell\ell$ | Z veto | 14.4 ± 2.9 | 14 | | | | $ee\ell$ | $\Delta \phi$ only | 2.1 ± 0.3 | 2 | | | | $\mu\mu\ell$ | $\Delta \phi$ only | 1.2 ± 0.2 | 4 | | | | $e\mu\ell$ | $\Delta \phi$ only | 0.35 ± 0.04 | 0 | | | | $\ell\ell\ell$ | $\Delta \phi$ only | 3.7 ± 0.3 | 6 | | | | Four-or-More-Lepton Control Samples | | | | | | | $\ell\ell\ell\ell$ | Z veto | 0.15 ± 0.02 | 0 | | | | $\ell\ell\ell\ell$ | $\Delta \phi$ only | 0.006 ± 0.003 | 0 | | | | Three-Lepton Signal Samples | | | | | | | λ_{121} scenario | | 3.1 ± 0.8 | 5 | | | | λ_{122} scenario | | 1.9 ± 1.0 | 1 | | | | Four-or-More-Lepton Signal Sample | | | | | | | $\lambda_{121}, \lambda_{122} {\rm scenarios} \qquad \qquad 0.008 \pm 0.004$ | | | 0 | | | Phys.Rev.Lett.98:131804,2007 - Inversion of selection criteria in 3 and ≥4 lepton control samples - Agreement between MC predictions and observations - · backgrounds are validated - 1. Examine signal samples - 2. Results are consistent with no signal hypothesis - 3. Set exclusion limits - ≥4 I final sample is virtually background free - "excellent technique for detecting new physics with more Luminosity" ## Limits on chargino mass Phys.Rev.Lett.98:131804,2007 ## R-parity violation MSUGRA, $M_0 = 205$ GeV/c, $\tan \beta = 5$, $A_0 = 0$ #### Systematical uncertainties on background predictions #### 3 leptons Jets misidentification (13%), lepton identification (6%), luminosity (6%), cross section (6%) 5 observed events: expected background 3.1 ± 0.7 (stat) ± 0.4 (syst) #### ≥4 leptons Jets misidentified as leptons (41%), Drell-Yan+ γ MC statistics (38%) 0 observed events : expected background 0.008 ± 0.003 (stat) ± 0.003 (syst) ## Challenges for multi-lepton searches Search for new physics in multi-leptons in a model independent way - 1. Focus on topological inclusive signatures - Multi-leptons signatures are rare searches - → Must quantify the sum of small backgrounds - → Deal with tails of lepton distributions - 2. Use data-driven methods to estimate the background Multiple approaches, as many cross checks as possible - Discoveries imply a 5 sigma significance - 3. Systematic uncertainties can limit the sensitivity - Many models lead to similar predictions, if evidence of new physics is found Which SUSY?: mSUGRA, MSSM, NMSSM? Other physics?: Universal Extra Dimensions, Little Higgs, fourth sequential generation of quarks, type III seesaw, - 4. Strategies for the "LHC inverse problem" ## Multi-lepton searches in SUSY - \bullet SUSY can produce signatures with high or low $\textbf{p}_{\scriptscriptstyle T}$ multi-leptons - Even within the same model A multi-lepton final state can be associated with multiple production mechanisms # Multi-lepton searches in Universal Extra Dimensions (UED) Appelquist, Cheng, Dobrescu Phys.Rev. D64 (2001) 035002 - \bullet UED produces signatures with low $\textbf{p}_{\scriptscriptstyle T}$ multileptons - All SM fields propagate along one compact flat extra ED with size ~ 1/TeV - Model parameters : 1/R, Λ (cutoff scale) and m_{Higgs} Golden Channel at LHC: - Pair production of coloured KK states - Cascade decay into 4 isolated leptons + jets + MET Distinguishing feature of UED mass spectrum is degenerated → low p₊ leptons highest lepton with $p_T < 50 \text{ GeV/c}$ lowest lepton with $p_T \sim 5 \text{ GeV/c}$ **UED** is a template for low p_T multilepton searches # CMS sensitivity to UED in 4 lepton final state CMS PAS SUS-08-003 ## **Exclusion limits** Can exclude at 1 fb⁻¹ 1/R<640 GeV combining all the channels At 7 TeV might need ~ 4 times more data $R^{-1}(GeV/c^2)$ # Additional challenges for low p₊ multi-lepton searches - Low lepton trigger efficiency - Currently working on a low p_T multi-lepton trigger for CMS - - Electrons are a particular challenge due to interactions with the tracker - Measurement of lepton efficiency, purity and energy resolution - Usual methods rely on on-shell Z boson as SM candle for higher p_T - Use J/Psi and Upsilon resonances or Drell-Yan production as candles? - Drell-Yan+Jets background become more important - ullet Processes with Heavy Flavours (b,c) dominate isolated lepton spectrum at small $\mathbf{p}_{_{\mathrm{T}}}$ - Need adequate data-driven methods to estimate these backgrounds ## CMS SUSY search with trimuons CMS PAS SUS-09-003 - Search in trimuon sample - Dominant backgrounds Drell-Yan + Jets ZW and ZZ production (irreducible) ttbar production - 3 prompt and clean muons - Discrimination between "signal" and "background" muons - Relative isolation in tracker and calorimeter < 0.15 - Significance of transverse impact parameter < 4 - One OS lepton pair - Low mass OS pair with invariant mass between 20-86 GeV/c² - Rejection of Z, heavy resonances Y , J/Psi - For sqrt(s) = 7 TeV, sensitivity to SUSY is increased with missing E_{τ} and Jet cuts ## Data driven background estimation: ABCD method **CMS PAS SUS-09-003** •Used to estimate backgrounds with non-prompt and fake muons Drell-Yan+Jets and ttbar $N_{\chi} = N$ background events in control region X Region A = signal region Regions B,C,D contain background only - Goal : estimate N_A - If x and y variables are uncorrelated Count N_B,N_C,N_D and estimate N_A using $$N_A/N_B = N_C/N_D$$ Trimuon search: Extrapolate the number of trimuons events with 2 "tight" muons and 1 "non-accepted" muon towards the signal region with 3 "tight" muons Variables: <u>muon isolation (iso)</u> and <u>significance of transverse impact parameter</u> (Sdxy) Region A: all muons with iso < 0.15 and Sdxy < 4 (signal region) Region B: third muon with iso < 0.15 but Sdxy > 4 Region C: third muon with iso > 0.15 but Sdxy < 4 Region D: third muon with iso > 0.15 and Sdxy > 4 (populated by fakes) ## Data driven background estimation: Z candle method Used to estimate ZW and ZZ backgrounds **CMS PAS SUS-09-003** - Diboson have similar topology as the signal - Observation of Z-peak in trimuon events can be used to calibrate selection efficiency - Extrapolate Diboson contribution to signal region from Z region Signal region $$\rightarrow$$ 20< M_{uu} <86 GeV/ c^2 Control region \rightarrow 86<M_{µµ}<96 GeV/c² Estimate background in signal region as $$N_{sig} = N_{M[86,96]}.R$$ where R is a MC correction factor $$R=1.72\pm0.14$$ (stat) ±0.03 (sys) Contamination from SUSY and other backgrounds | | incl. SUSY | no SUSY | |---------------|----------------|---------------| | NBkg Z candle | 4.0 ± 2.7 | 3.8 ± 2.6 | | NBkg ABCD | 6.8 ± 2.6 | 5.8 ± 2.4 | | NBkgDD total | 10.8 ± 3.7 | 9.6 ± 3.5 | Validity of data driven estimations | | low mass OS muons M[20,86]GeV | |--------------|---| | NSignal(LM0) | $15.3 \pm 3.9 ({ m stat}) \pm 1.2 ({ m sys})$ | | NBkgMCTruth | $9.3 \pm 3.0 ({ m stat}) \pm 0.8 ({ m sys})$ | | NBkgDD total | $10.8 \pm 3.7 ({ m stat}) \pm 0.9 ({ m sys})$ | ## CMS sensitivity to MSUGRA in trimuon at 7 TeV ## **Preliminary** ## Data driven estimation of Fake leptons background Estimate background from fake leptons - CDF search, Phys. Rev. D79:052004, 2009 - For muons, pions or kaons that penetrate the calorimeters or decay in flight to muons - For electrons, jets (light flavours) misidentified as electrons - Use multi-jet datasets to measure the fake rate, i.e .the probability that object is misidentified as lepton, parametrized as function of E_{τ} and η of the object - To estimate background from real muon pair + fake lepton Require two good leptons and model the third lepton by applying the fake rate to jets (or isolated tracks) - •In this search the fake leptons background is determined to be (50 ± 25) % in both the total inclusive dataset and the signal region ## Data driven estimation of Heavy Flavour background - •Heavy Flavours backgrounds particular relevant for low p₊ leptons - •Construct an enriched Heavy Flavour (HFR) dataset by reversing muon impact parameter cut and requiring $M_{\rm ml}$ < 35 GeV/c². - Fit the observed dimuon mass distribution with absolute fake dimuon + absolute Drell-Yan (from MC simulation) + shape of HFR only free parameter is the normalization of the Heavy Flavour background CDF search, Phys. Rev. D79:052004, 2009 - Trilepton HF backg. is estimated by requiring that the normalized HFR sample has a third lepton If no statistics, extrapolate from neighbouring dimuon or trimuon control regions - Systematic uncertainty of the method is ~ 5 %. ## Background control regions CDF search, Phys. Rev. D79:052004, 2009 •Define control regions with dimuon mass and missing $\mathsf{E}_{\scriptscriptstyle T}$ observables Region Z: Luminosity, trigger efficiencies and muon identification scale factors Region A: Heavy Flavour and Fake Leptons Region B: Background prediction in low-event yield region Region C: High population of Heavy Flavour Region D: sensitive to ttbar background ## Background control regions # Signal multilepton+missing E_T control regions # Agreement between background predictions and observed data ### Critical control region Dimuon events with all signal-region cuts, but before the requirement of a third lepton Trilepton signal is a subset of this region ## Discrimination of new physics models at LHC Bhattacherjee, B., "Multijet Discriminators for New Physics in Leptonic Signals at the LHC" Goal: Find simple and robust discriminators for models with ≥3 leptons + n Jets $g_1 \rightarrow q + q_1 \qquad \qquad \downarrow \psi_{\ell} + \psi_{\ell}$ Constrained Universal ED **cMSSM UED(5) MSSM** (4+1) $g_1 \rightarrow q + q_1 \qquad \qquad \downarrow q_1 + Z_1^0 + \ell_1^{\uparrow} + B_1$ $\widetilde{g} \rightarrow Q + \widetilde{q} + \widetilde{\chi}_{1}^{0} + \widetilde{\ell}^{+} + \widetilde{\ell}^{+}$ $\downarrow \rightarrow Q + \widetilde{\chi}_{2}^{0} + \widetilde{\chi}_{1}^{0} + Z^{0}$ $q_{T} \rightarrow Q' + W_{T}^{\pm}$ $\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$ Generation with SM(4) LH(T) Little Higgs with Theavy b₄ quarks $q_T \rightarrow Q + Z_T^0$ parity conservation ## Multi-jet discriminators Bhattacherjee, B., "Multijet Discriminators for New Physics in Leptonic Signals at the LHC" #### Strategy: Use ratios of lepton and jet multiplicities | Variable | Definition | |-------------------------|---| | $N_2^{(n)}$ | number of events with n hard leptons and ≤ 2 identifiable jets | | $N_{3}^{(n)}$ | number of events with n hard leptons and ≥ 3 identifiable jets | | $\widetilde{N}_0^{(n)}$ | number of events with n leptons and no hard jet | | $\widetilde{N}_1^{(n)}$ | number of events with n leptons and ≥ 1 hard jet | | $\widetilde{ u}$ | number of events with ≥ 1 hard leptons and no hard jets | | $\widetilde{ u}_0$ | number of events with no hard lepton and no hard jets | | $\widetilde{ u}'$ | number of events with ≥ 1 hard lepton and ≥ 1 hard jet | | $\widetilde{ u}_0'$ | number of events with ≥ 1 lepton and ≥ 1 hard jet | $$D_n = \frac{N_3^{(n)}}{N_2^{(n)}} \qquad \widetilde{D}_n = \frac{\widetilde{N}_1^{(n)}}{\widetilde{N}_0^{(n)}} \qquad \Delta_\ell = \frac{\widetilde{\nu}}{\widetilde{\nu}_0}$$ $$\widetilde{D}_n = \frac{\widetilde{N}_1^{(n)}}{\widetilde{N}_0^{(n)}}$$ $$\Delta_{\ell} = \frac{\widetilde{\nu}}{\widetilde{\nu}_0}$$ $$\Delta'_{\ell} = \frac{\widetilde{\nu}'}{\widetilde{\nu}'_{0}}$$ (n) leptons = 3,4 - a lepton is "hard" if p_→≥ 50 GeV - a jet is "hard" if p_→≥150 GeV Choices driven by the mass degeneracy of UED(5) for the large part of parameter space ## Multi-jet discriminators - Make correlation plots of the ratios - See where the data point is w.r.t. to model prediction - Clear discrimination between models - For all plots data point should map to same model - Necessary but not sufficient condition to identify model Even for inclusive multi-lepton analysis, experimental reliability of jet multiplicity distribution is important to identify the physics model ## Multichannel approach Dube, S., "Addressing the Multi-Channel Inverse Problem at High Energy Colliders" ## Organizing principles - Report experimental sensitivity as σB - Identify relevant multi-channels $$egin{array}{ll} 0 \ au & 1 \ au & ilde{\chi}_1^\pm ightarrow au u ilde{\chi}_1^0 & au au ilde{\chi}_1^0 \ 2 \ au & ilde{\chi}_2^0 ightarrow au au ilde{\chi}_1^0 \ 3 \ au & ext{(Both)} \end{array}$$ - Identify universal parameters - M (mass of lowest state) - △M1 (mass difference between lowest state and intermediate state) - △M2 (mass difference between lowest and highest state ## Multi-channel approach Dube, S., "Addressing the Multi-Channel Inverse Problem at High Energy Colliders" - {σB}_i: measured experimental sensitivity for channel with i taus, assuming B=1 - Parametrize $\{\sigma B\}_{i}$ as function of general mass parameters M , $\Delta M1$, $\Delta M2$ $$\{\sigma B\}_i^{-1} = f_i(M) \times h_i(\Delta M_1, \Delta M_2)$$ $f(M) = 1 + a_1(M) + a_2(M)^2$ $$h(\Delta M_1, \Delta M_2) = c_0 + c_1(\Delta M_2) + d_1(\Delta M_1) + c_2(\Delta M_2)^2 + d_2(\Delta M_1)^2 + e_2(\Delta M_1 \times \Delta M_2).$$ Coefficients are determined from experimental data and detailed simulation of experimental acceptance as function of mass parameters $$\frac{1}{\sigma_{XM}} = \sum_{i=0}^{3} \frac{B_i}{\{\sigma B\}_i}$$ The model provides $\mathbf{B}_{_{\mathrm{i}}}$ and the mass spectrum $\frac{1}{\sigma_{XM}} = \sum_{i=0}^{3} \frac{B_i}{\{\sigma B\}_i} \; \sigma_{_{\rm XM}} \ {\rm is \ the \ measured \ multichannel \ cross \ section \ for \ the \ model}$ $\sigma_{_{\text{XM}}}$ experimental sensitivity should be compared with model total σ Already being used in Tevatron analysis ## Conclusions - HEP experiments have been performing multi-lepton inclusive analysis - For LHC early running, might need to focus on SUSY searches with jet and missing E_T cuts - Multiple data-driven methods to estimate the backgrounds have been proposed and tested - ▶ More ideas are welcome, especially to control backgrounds to low p_⊤ leptons - Theoretical and experimental systematics uncertainties can be important - example : Interplay between hadronization and UE models and measured isolated lepton multiplicity - Strategies for the LHC inverse problem have been proposed : On-Shell Effective theories, multi-jet discriminators, multi-channel $\sigma_{_{\rm XM}}$ - Promising results, but not extensively tested in realistic conditions