

Tevatron

 Direct measurements are the most precise and can only be done at hadron colliders: Tevatron now, LHC in the future

- p-pbar at 1.96 TeV since 2001
- Record luminosity: 3.6x10³²cm⁻²s⁻¹
- Expected to run until 2011
- Integrated luminosity up to 12 fb⁻¹

Detectors

- Accurate tracking system with silicon detectors
- Good calorimetry to measure EM/Had energy
- Efficient b-tagging capabilities

excellent tracking system

excellent muon coverage

Particle detection

• Electrons:

- -matching between track and EM calo
- -shower compatibility (reject π^0 s)
- isolation (reject showers from quarks)

• Muons:

- -matching track to muon chambers
- -isolated tracks

• Taus:

- $-\tau$ +leptons through e, μ
- $-\tau$ \rightarrow hadrons through jets

Leptons

- "simple", robust ID, small fake rate
- Cross section lower than jets, but easy to trigger (e,μ)
- Many final states contain leptons
- Start with SM signatures
- Deviations can provide hint of NP
- Using ratios may help to look for deviations

SM Higgs and beyond

- Higgs search is a major goal of HEP, central part of Tevatron Program.
- With recent observations of single top and WW/WZ→Ivjj Tevatron is closing in on the SM Higgs boson.
- •Direct search & EW fit set: 114.4<m_H<186 GeV @ 95 % C.L.

•The SM Higgs is now within Tevatron reach!

Michele Gallinaro - "Multi-leptons: from the Tevatron to the LHC" - March 25, 2010

Higgs decays

- At high masses: H→WW is dominant decay mode
- At low masses: H→bbar is dominant decay mode

Search strategies

•Event selections are similar for the corresponding CDF and D0 analyses.

•Search for H→bb in association with W and Z:

- Main low mass channels
- Identify Higgs as two jets with 1 or 2 btags
- W, Z identified as leptonic or hadronic decays

•Search for H→WW→IvIv in inclusive production:

- Main high mass channel
- Selects on two charged leptons + missing et

•Search for $H \rightarrow \tau \tau$, $\gamma \gamma$ in inclusive production:

- Minor channels for Tevatron, but important for LHC
- Identify Higgs as a pair of τ or a pair of γ
- •Employing "no channel too small" strategies to gain signal acceptances while reducing backgrounds with advanced analysis technique(NN,ME,BDT).

Low mass Higgs searches

- Identified leptons
 - WH→Nbb, ZH→IIbb
- Invisible leptons
 - WH→(I)vbō, ZH→vvbō
- 1. Identify W/Z: leptons (e,μ)
- Maximize lepton coverage
 - e.g. leptons not in fiducial region of calorimeter

- 2. Identify Higgs decay: jets
- Develop NN and other advanced tagging algorithms
- Develop multivariate jet corrections
- 3. Reduce backgrounds
- Multijet backgrounds particularly difficult
 - Model using data
 - Use NN to separate

Tagger

ZH channel

- Fully reconstructible final state
- Backgrounds primarily Z+jets, diboson and ttbar (little QCD)
- Very small signal rate
- Expand lepton selection to maximize acceptance
- Select events with 2 leptons, 2 jets, at least one of which is b-tagged
- Can use NN to improve dijet mass resolution

ZH results

- CDF: 2D NN (ZH vs ttbar, ZH vs Z+jets), include leading order ME as input
 - 4.1 fb⁻¹ Observe (expect) 5.9 (6.8)×σ_{SM} @95% CL for m_H=115 GeV
- DØ: boosted decision tree
 - 4.2 fb⁻¹ Observe (expect) 9.1 (8.0)×σ_{SM} @95% CL for m_H=115 GeV

Low-mass Higgs

- Comprehensive search for low mass SM Higgs at CDF and DØ
 - Cover all associated production channels
 - High mass H→W+W⁻ search also contributes at low mass
- Combined CDF+DØ sensitivity at m_H=115 GeV is now 1.78×σ_{SM}
 - Observed limit of 2.70×σ_{SM} at m_H=115 GeV

High-mass Higgs search

- Event signature:
 - two isolated high-pT leptons with opposite charge
 - -large MET
- Backgrounds: dibosons (mainly WW)
 - -Drell-Yan
 - –Top, W+jets, W+γ, multi-jets

$VH \rightarrow VWW \rightarrow |v|v+X$

Search for Higgs signal in sample with same sign dileptons to further increase sensitivity both in the intermediate (~130GeV) and high (~160GeV) mass regions

VH → VWW where V (W or Z) and one of the Ws from H decay leptonically

$$VH \rightarrow VW^{+}W^{-} \rightarrow I^{\pm}vI^{\pm}v + X$$

Largely reduced SM background due to like sign

Instrumental backgrounds: Charge flips and fake leptons

Tevatron combination

Combination of orthogonal final states to maximize sensitivity

Tevatron combination

Combining CDF and D0 for maximum sensitivity

Prospects

Higgs in Top decays

- Search for H[±] in ttbar events: 100≤M(H[±])≤160 GeV/c², BR(H→τν)=1
- if the H $^{\pm}$ exists we may observe an excess of events in the $l\tau$ channel incompatible with the SM

⇒probe non-standard physics (t→H[±]b, ...)

Measuring ratios

- Tau dilepton analysis is useful check on tau efficiency and can be sensitive to non-SM physics
- Key is to understand relative efficiency of I/τ
- All other systematic cancel out (i.e. ISR/FSR, lumi, etc.)
- If discrepancy is found, case is more convincing

H⁺→t ⁺v₊ enhanced if tanβ large

⇒observe more taus

(tanβ: ratio of vacuum expectation values)

Cross section ratios

Top quark: dileptons

- Two leptons (e,μ)+2 jets+MET
- Look at jet multiplicity
- Derive b-tagging, R, cross-section

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)}$$

$$R=1.03^{+0.09}_{-0.08}$$
(stat+syst)

|V_{tb}|>0.71 @95% CL (lepton+jets)

 $|V_{tb}|$ =0.91 (single top) (hep/ex-0612052)

Not yet sensitive to SM

⇒Simultaneous measurement of cross-section and R

Probing heavy flavor of ttbar events

- Study dilepton channel
- Advantages:
 - less combinatorial ambiguity
 - less background
- Disadvantages:
 - lower statistics
 - jet assignment

- Selection:
 - 2 leptons+ ≥2 jets + MET
 - no b-tagging in preselection
- Clean signature
- Goals:
 - measure ε (b) and R, cross section

Multi-bosons

- Direct probe into the gauge structure of the SM
 - rich phenomenology with well calculated predictions:
 - *zero triple neutral gauge coupling
 - *radiation-amplitude zero
- Must-do preliminary for the Higgs
 - benchmark for experimental capabilities
 - diboson final states ~ Higgs final states
- New Physics effects
 - new couplings

Diboson production

Process	Events in 5fb-1
WW→IνΙν	2720
ZZ->IIII	30
Ζγ->ΙΙγ	1485
WZ→Ivbb	599
WH→Ivbb	158

Two leptons: WW

Two isolated leptons and large MET

- Easiest to observe
- Important background for the H→WW

Results:

- CDF: 12.1±0.9(stat)±1.6±1.4(syst) pb
 - arXiv:0912:4500
- D0: 11.5±2.1(stat+syst)±0.7 (lumi) pb
 - PRL 103, 191801 (2009)
- NLO theory: 11.66±0.7 pb

WW and TGC

Lepton p_T is sensitive to TGC

رة O.4 (a))	DØ, 1 fb ¹
0.2		
0	(*)
-0.2		
-0.4		
	-1 () 1 Δκ,

$$\begin{split} \frac{\mathcal{L}_{WWV}}{g_{WWV}} &= i g_1^V (W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu}) \\ &+ i \kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} + \frac{i \lambda_V}{M_W^2} W_{\lambda\mu}^\dagger W^\mu_{\nu} V^{\nu\lambda} \end{split}$$

CDF Preliminary Results at 3.6fb ⁻¹				
Λ	λ^{Z}	Δg_1^Z	$\Delta \kappa^{\gamma}$	
$2.0 \mathrm{TeV}$	(-0.14, 0.15)	(-0.22, 0.30)	(-0.57, 0.65)	
1.5 TeV	(-0.16, 0.16)	(-0.24, 0.34)	(-0.63, 0.72)	
DØ Results at 1.0fb ⁻¹				

Λ	λ^{Z}	Δg_1^Z	$\Delta \kappa^{\gamma}$	
2.0 TeV	(-0.14, 0.18)	(-0.14, 0.30)	(-0.54, 0.83)	

Zγ

- Two leptons and a high ET photon
- FSR and ISR only
 - New physics can contribute
 - H→Zγ
- σ=4.6±0.2(stat)±0.3(syst)±0.3(lumi)pb
- NLO = 4.5±0.4pb

- Add MET channel
 - Z→νν+photon
 - MET+photon final state
 - TGC in high Et photons

Three leptons: WZ

Final state with three leptons

- WZ→IvII (I=e,μ)
- $-\Delta\phi(MET,any-jet/l)>0.15$

Course	Eumootoe	1 Ctat Creat Trees
Source	Expected	$1 \pm \text{Stat} \pm \text{Syst} \pm \text{Lumi}$
$Z+{ m jets}$	2.45	$\pm 0.48 \pm 0.48 \pm 0.00$
ZZ	1.53	$\pm 0.01 \pm 0.16 \pm 0.09$
$Z\gamma$	1.03	$\pm 0.06 \pm 0.35 \pm 0.06$
t ar t	0.17	$\pm 0.01 \pm 0.03 \pm 0.01$
WZ	16.45	$\pm 0.03 \pm 1.74 \pm 0.99$
Total	21.63	$\pm 0.48 \pm 2.25 \pm 1.15$
Observed		25

$$\sigma(p\overline{p}\to WZ)=4.3^{+1.3}_{-1.0}~(stat.)\pm0.4~(syst.+lumi.)~pb$$
 NLO: 3.7±0.3 pb

Four leptons: ZZ

Four lepton final state

$$\sigma_{ZZ} = 1.56^{+0.80}_{-0.63}(stat.) \pm 0.25(syst.)$$

NLO: 1.4±0.1pb

SUSY

Stop searches

Michele Gallinaro - "Multi-leptons: from the Tevatron to the LHC" - March 25, 2010

2 leptons: RPV

Michele Gallinaro - "Multi-leptons: from the Tevatron to the LHC" - March 25, 2010

RPV (cont.)

$D\emptyset$:

• All RPV couplings are null but λ'_{311} and $\lambda_{321} = \lambda_{312}$ • $\lambda'_{311} \le 0.12$, $\lambda_{321} \le 0.07$

for $M_{\tilde{\nu}_{\tau}} < 100 GeV$

3/4 leptons: RPV

- Several models predict final states with 3/4+ leptons in the final state:
 - -RPV SUSY, nMSSM, doubly-charged Higgs
- Two or more leptons: p_T>20, 8, (5) GeV

	bkg	data	
Three-Lepton Signal Samples			
λ_{121} scenario	3.1 ± 0.8	5	
λ_{122} scenario	1.9 ± 1.0	1	
Four-or-More-Lepton Signal Sample			
$\lambda_{121}, \lambda_{122}$ scenarios	0.008 ± 0.00	04 0	

Trileptons: chargino/neutralino

DØ: arXiv 0901.0646

• ee, $\mu\mu$, $e\mu$, $\tau\mu$ + $trk(e,\mu,\tau)$ + E_T

CDF: PRL 101, 251801 (2008)

- 3 leptons (e, μ) + $\not\!\!E_{\rm T}$
- 2 leptons (e, μ) + trk(e, μ , τ) + $\not\!\!\!E_{\rm T}$

 $CDF 2 fb^{-1}$, dilepton+trk:

7 vs 6.4 ± 1.1 (all channels) fake ℓ 1.4, DY 3.0, dibosons 1.6, $t\bar{t}$ 0.5

Trileptons (cont.)

- chargino-neutralino production
- three isolated leptons (low-pT):

$$-\mu\mu+I(I=e,\mu)$$

low background/data-driven

	Total SM expected	SUSY expected	Observed
	3 ± 1	0.06 ± 0.01	4
control regions	14 ± 4	0.08 ± 0.02	16
	0.3 ± 0.1	0.10 ± 0.03	0
	5 ± 2	0.06 ± 0.02	8
	0.03 ± 0.01	0.04 ± 0.02	0
signal region —	0.4 ± 0.1	1.7 ± 0.4	1

Search for I+photon+X

Michele Gallinaro - "Multi-leptons: from the Tevatron to the LHC" - March 25, 2010

Cross section: TeV vs LHC

- First collisions at 0.9 and 2.36 TeV in 2009
- LHC collisions at 7 TeV in 2010 (14 TeV design)
- Top cross section goes up faster than background processes at higher sqrt{s}
- From TeV to LHC, Top cross section goes up by factor of ~20:
 - Cacciari, Frixione, Mangano, Nason, Ridolfi arXiv:0804.2800
 - Top $\sigma(2\text{TeV})=8 \text{ pb}$
 - Top σ (7TeV)=200 pb
- Background is more "flat"

A word about QCD background

- QCD may still be large background in Top events
- From Tevatron to LHC
 - $-\sigma$ (ttbar) increases by 100
 - $-\sigma(W)$ increases by 10

...however...

σ(W+4 jets) increases 100 times
 ⇒W+jet background is large

Slide by Michelangelo Mangano

Summary

- Leptons are experimentally accessible at colliders
 - Good background rejection vs jets
 - Many multi-lepton final states in (B)SM
- Multi-lepton final states may signal New Physics
- Measurement and searches at Tevatron
 - No evidence for anomalies
 - At the limit of current experimental reach
- New LHC energy frontier soon available

backup

A few thoughts

• The devil is in the detail...

Multi-muons

Motivation

- Large inclusive b-quark cross section measured in Run I
- Problems with low-mass dimuon spectrum
- Wrong value of time averaged mixing parameter χ

Recent results:

- New and very precise measurement of σ_{bb} agrees with prediction, PRD 77, 072004 (2008)
- Study of multi-muon events responsible for previous discrepancies, arXiv:0810.5357[hep-ex]

Low-mass dileptons

B enriched sample:

the low mass di-lepton invariant mass is not well modeled by sequential semi-leptonic decays of single b quarks

Simulation: HERWIG+EVTGEN

"Ghost" muons

- Study is about di-muon events
- Requires both muons originate inside beam-pipe

- Size of ghost sample is about the same as bb sample
- No dependence on run#/lumi
- Possible explanations:
 - Tracking reconstruction failure
 - Semi-leptonic decays of b-hadrons with large boost
 - etc.

Muon impact parameter

- Impact parameter of both muons
- Histogram is sum of templates fit to data (bottom, charm, prompt)
- Excellent agreement over 4 orders of magnitude

